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ABSTRACT

Modern neural networks are highly overparameterized, with capacity to substan-
tially overfit to training data. Nevertheless, these networks often generalize well in
practice. It has also been observed that trained networks can often be “compressed”
to much smaller representations. The purpose of this paper is to connect these two
empirical observations. Our main technical result is a generalization bound for
compressed networks based on the compressed size that, combined with off-the-
shelf compression algorithms, leads to state-of-the-art generalization guarantees. In
particular, we provide the first non-vacuous generalization guarantees for realistic
architectures applied to the ImageNet classification problem. Additionally, we
show that compressibility of models that tend to overfit is limited. Empirical results
show that an increase in overfitting increases the number of bits required to describe
a trained network.

1 INTRODUCTION

A pivotal question in machine learning is why deep networks perform well despite overparameteriza-
tion. These models often have many more parameters than the number of examples they are trained
on, which enables them to drastically overfit to training data (Zhang et al., 2017a). In common
practice, however, such networks perform well on previously unseen data.

Explaining the generalization performance of neural networks is an active area of current research.
Attempts have been made at adapting classical measures such as VC-dimension (Harvey et al., 2017)
or margin/norm bounds (Neyshabur et al., 2018; Bartlett et al., 2017), but such approaches have
yielded bounds that are vacuous by orders of magnitudes. Other authors have explored modifications
of the training procedure to obtain networks with provable generalization guarantees (Dziugaite &
Roy, 2017; 2018). Such procedures often differ substantially from standard procedures used by
practitioners, and empirical evidence suggests that they fail to improve performance in practice
(Wilson et al., 2017).

We begin with an empirical observation: it is often possible to “compress” trained neural networks
by finding essentially equivalent models that can be described in a much smaller number of bits;
see Cheng et al. (2018) for a survey. Inspired by classical results relating small model size and
generalization performance (often known as Occam’s razor), we establish a new generalization bound
based on the effective compressed size of a trained neural network. Combining this bound with
off-the-shelf compression schemes yields the first non-vacuous generalization bounds in practical
problems. The main contribution of the present paper is the demonstration that, unlike many other
measures, this measure is effective in the deep-learning regime.
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Generalization bound arguments typically identify some notion of complexity of a learning problem,
and bound generalization error in terms of that complexity. Conceptually, the notion of complexity
we identify is:

complexity = compressed size− remaining structure. (1)
The first term on the right-hand side represents the link between generalization and explicit compres-
sion. The second term corrects for superfluous structure that remains in the compressed representation.
For instance, the predictions of trained neural networks are often robust to perturbations of the network
weights. Thus, a representation of a neural network by its weights carries some irrelevant information.
We show that accounting for this robustness can substantially reduce effective complexity.

Our results allow us to derive explicit generalization guarantees using off-the-shelf neural network
compression schemes. In particular:

• The generalization bound can be evaluated by compressing a trained network, measuring the
effective compressed size, and substituting this value into the bound.

• Using off-the-shelf neural network compression schemes with this recipe yields bounds that are
state-of-the-art, including the first non-vacuous bounds for modern convolutional neural nets.

The above result takes a compression algorithm and outputs a generalization bound on nets com-
pressed by that algorithm. We provide a complementary result by showing that if a model tends to
overfit then there is an absolute limit on how much it can be compressed. We consider a classifier
as a (measurable) function of a random training set, so the classifier is viewed as a random variable.
We show that the entropy of this random variable is lower bounded by a function of the expected
degree of overfitting. Additionally, we use the randomization tests of Zhang et al. (2017a) to show
empirically that increased overfitting implies worse compressibility, for a fixed compression scheme.

The relationship between small model size and generalization is hardly new: the idea is a variant
of Occam’s razor, and has been used explicitly in classical generalization theory (Rissanen, 1986;
Blumer et al., 1987; MacKay, 1992; Hinton & van Camp, 1993; Rasmussen & Ghahramani, 2001).
However, the use of highly overparameterized models in deep learning seems to directly contradict
the Occam principle. Indeed, the study of generalization and the study of compression in deep
learning has been largely disjoint; the later has been primarily motivated by computational and
storage limitations, such as those arising from applications on mobile devices (Cheng et al., 2018).
Our results show that Occam type arguments remain powerful in the deep learning regime. The
link between compression and generalization is also used in work by Arora et al. (2018), who study
compressibility arising from a form of noise stability. Our results are substantially different, and
closer in spirit to the work of Dziugaite & Roy (2017); see Section 3 for a detailed discussion.

Zhang et al. (2017a) study the problem of generalization in deep learning empirically. They observe
that standard deep net architectures—which generalize well on real-world data—are able to achieve
perfect training accuracy on randomly labelled data. Of course, in this case the test error is no better
than random guessing. Accordingly, any approach to controlling generalization error of deep nets
must selectively and preferentially bound the generalization error of models that are actually plausible
outputs of the training procedure applied to real-world data. Following Langford & Caruana (2002);
Dziugaite & Roy (2017); Neyshabur et al. (2018), we make use of the PAC-Bayesian framework
(McAllester, 1999; Catoni, 2007; McAllester, 2013). This framework allows us to encode prior beliefs
about which learned models are plausible as a (prior) distribution π over possible parameter settings.
The main challenge in developing a bound in the PAC-Bayes framework bound is to articulate a
distribution π that encodes the relative plausibilities of possible outputs of the training procedure.
The key insight is that, implicitly, any compression scheme is a statement about model plausibilities:
good compression is achieved by assigning short codes to the most probable models, and so the
probable models are those with short codes.

2 GENERALIZATION AND THE PAC-BAYESIAN PRINCIPLE

In this section, we recall some background and notation from statistical learning theory. Our aim is
to learn a classifier using data examples. Each example (x, y) consists of some features x ∈ X and
a label y ∈ Y . It is assumed that the data are drawn identically and independently from some data
generating distribution, (Xi, Yi)

iid∼ D. The goal of learning is to choose a hypothesis h : X → Y
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that predicts the label from the features. The quality of the prediction is measured by specifying
some loss function L; the value L(h(x), y) is a measure of the failure of hypothesis h to explain
example (x, y). The overall quality of a hypothesis h is measured by the risk under the data generating
distribution:

L(h) = E(X,Y )∼D[L(h(X), Y )] .

Generally, the data generating distribution is unknown. Instead, we assume access to training
data Sn = {(x1, y1), . . . , (xn, yn)}, a sample of n points drawn i.i.d. from the data generating
distribution. The true risk is estimated by the empirical risk:

L̂(h) = 1
n

∑
(x,y)∈S L(h(x), y) .

The task of the learner is to use the training data to choose a hypothesis ĥ from among some pre-
specified set of possible hypothesisH, the hypothesis class. The standard approach to learning is to
choose a hypothesis ĥ that (approximately) minimizes the empirical risk. This induces a dependency
between the choice of hypothesis and the estimate of the hypothesis’ quality. Because of this, it
can happen that ĥ overfits to the training data: L̂(ĥ)� L(ĥ). The generalization error L(ĥ)− L̂(ĥ)
measures the degree of overfitting. In this paper, we consider an image classification problem,
where xi is an image and yi the associated label for that image. The selected hypothesis is a deep
neural network. We mostly consider the 0 -1 loss, that is, L(h(x), y) = 0 if the prediction is correct
and L(h(x), y) = 1 otherwise.

We use the PAC-Bayesian framework to establish bounds on generalization error. In general, a PAC-
Bayesian bound attempts to control the generalization error of a stochastic classifier by measuring
the discrepancy between a pre-specified random classifier (often called prior), and the classifier of
interest. Conceptually, PAC-Bayes bounds have the form:

generalization error of ρ ≤ O
(√

KL(ρ, π)/n
)
, (2)

where n is the number of training examples, π denotes the prior, and ρ denotes the classifier of
interest (often called posterior).

More formally, we write L(ρ) = Eh∼ρ[L(h)] for the risk of the random estimator. The fundamental
bound in PAC-Bayesian theory is (Catoni, 2007, Thm. 1.2.6):
Theorem 2.1 (PAC-Bayes). Let L be a {0, 1}-valued loss function, let π be some probability
measure on the hypothesis class, and let α > 1, ε > 0. Then, with probability at least 1− ε over the
distribution of the sample:

L(ρ) ≤ inf
λ>1

Φ−1
λ/n

{
L̂(ρ) +

α

λ

[
KL(ρ, π)− log ε+ 2 log

(
log(α2λ)

logα

)]}
, (3)

where we define Φ−1
γ as:

Φ−1
γ (x) =

1− e−γx

1− e−γ
. (4)

Remark 2.2. The above formulation of the PAC-Bayesian theorem is somewhat more opaque than
other formulations (e.g., McAllester, 2003; 2013; Neyshabur et al., 2018). This form is significantly
tighter when KL/n is large. See Bégin et al. (2014); Laviolette (2017) for a unified treatment of
PAC-Bayesian bounds.

The quality of a PAC-Bayes bound depends on the discrepancy between the PAC-Bayes prior π—
encoding the learned models we think are plausible—and ρ, which is the actual output of the learning
procedure. The main challenge is finding good choices for the PAC-Bayes prior π, for which the
value of KL(ρ, π) is both small and computable.

3 RELATIONSHIP TO PREVIOUS WORK

Generalization. The question of which properties of real-world networks explain good general-
ization behavior has attracted considerable attention (Langford, 2002; Langford & Caruana, 2002;
Hinton & van Camp, 1993; Hochreiter & Schmidhuber, 1997; Baldassi et al., 2015; 2016; Chaudhari
et al., 2017; Keskar et al., 2017; Dziugaite & Roy, 2017; Schmidt-Hieber, 2017; Neyshabur et al.,
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2017; 2018; Arora et al., 2018); see Arora (2017) for a review of recent advances. Such results
typically identify a property of real-world networks, formalize it as a mathematical definition, and
then use this definition to prove a generalization bound. Generally, the bounds are very loose relative
to the true generalization error, which can be estimated by evaluating performance on held-out
data. Their purpose is not to quantify the actual generalization error, but rather to give qualitative
evidence that the property underpinning the generalization bound is indeed relevant to generalization
performance. The present paper can be seen in this tradition: we propose compressibility as a key
signature of performant real-world deep nets, and we give qualitative evidence for this thesis in the
form of a generalization bound.

The idea that compressibility leads to generalization has a long history in machine learning. Minimum
description length (MDL) is an early formalization of the idea (Rissanen, 1986). Hinton & van
Camp (1993) applied MDL to very small networks, already recognizing the importance of weight
quantization and stochasticity. More recently, Arora et al. (2018) consider the connection between
compression and generalization in large-scale deep learning. The main idea is to compute a measure
of noise-stability of the network, and show that it implies the existence of a simpler network with
nearly the same performance. A variant of a known compression bound (see (McAllester, 2013)
for a PAC-Bayesian formulation) is then applied to bound the generalization error of this simpler
network in terms of its code length. In contrast, the present paper develops a tool to leverage existing
neural network compression algorithms to obtain strong generalization bounds. The two papers are
complementary: we establish non-vacuous bounds, and hence establish a quantitative connection
between generalization and compression. An important contribution of Arora et al. (2018) is obtaining
a quantity measuring the compressibility of a neural network; in contrast, we apply a compression
algorithm and witness its performance. We note that their compression scheme is very different from
the sparsity-inducing compression schemes (Cheng et al., 2018) we use in our experiments. Which
properties of deep networks allow them to be sparsely compressed remains an open question.

To strengthen a naïve Occam bound, we use the idea that deep networks are insensitive to mild
perturbations of their weights, and that this insensitivity leads to good generalization behavior. This
concept has also been widely studied (e.g., Langford, 2002; Langford & Caruana, 2002; Hinton &
van Camp, 1993; Hochreiter & Schmidhuber, 1997; Baldassi et al., 2015; 2016; Chaudhari et al.,
2017; Keskar et al., 2017; Dziugaite & Roy, 2017; Neyshabur et al., 2018). As we do, some of these
papers use a PAC-Bayes approach (Langford & Caruana, 2002; Dziugaite & Roy, 2017; Neyshabur
et al., 2018). Neyshabur et al. (2018) arrive at a bound for non-random classifiers by computing the
tolerance of a given deep net to noise, and bounding the difference between that net and a stochastic
net to which they apply a PAC-Bayes bound. Like the present paper, Langford & Caruana (2002);
Dziugaite & Roy (2017) work with a random classifier given by considering a normal distribution
over the weights centered at the output of the training procedure. We borrow the observation of
Dziugaite & Roy (2017) that the stochastic network is a convenient formalization of perturbation
robustness.

The approaches to generalization most closely related to ours are, in summary:

Reference Structure Non-Vacuous
MNIST ImageNet

Dziugaite & Roy (2017) Perturbation Robustness 3 7
Neyshabur et al. (2018) Perturbation Robustness 7 7
Arora et al. (2018) Compressibility (from Perturbation Robustness) 7 7
Present paper Compressibility and Perturbation Robustness 3 3

These represent the best known generalization guarantees for deep neural networks. Our bound
provides the first non-vacuous generalization guarantee for the ImageNet classification task, the
de facto standard problem for which deep learning dominates. It is also largely agnostic to model
architecture: we apply the same argument to both fully connected and convolutional networks. This
is in contrast to some existing approaches that require extra analysis to extend bounds for fully
connected networks to bounds for convolutional networks (Neyshabur et al., 2018; Konstantinos
et al.; Arora et al., 2018).
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Compression. The effectiveness of our work relies on the existence of good neural network
compression algorithms. Neural network compression has been the subject of extensive interest in
the last few years, motivated by engineering requirements such as computational or power constraints.
We apply a relatively simple strategy in this paper in the line of Han et al. (2016), but we note that
our bound is compatible with most forms of compression. See Cheng et al. (2018) for a survey of
recent results in this field.

4 MAIN RESULT

We first describe a simple Occam’s razor type bound that translates the quality of a compression into
a generalization bound for the compressed model. The idea is to choose the PAC-Bayes prior π such
that greater probability mass is assigned to models with short code length. In fact, the bound stated
in this section may be obtained as a simple weighted union bound, and a variation is reported in
McAllester (2013). However, embedding this bound in the PAC-Bayesian framework allows us to
combine this idea, reflecting the explicit compressible structure of trained networks, with other ideas
reflecting different properties of trained networks.

We consider a non-random classifier by taking the PAC-Bayes posterior ρ to be a point mass at ĥ, the
output of the training (plus compression) procedure. Recall that computing the PAC-Bayes bound
effectively reduces to computing KL(ρ, π).

Theorem 4.1. Let |h|c denote the number of bits required to represent hypothesis h using some
pre-specified coding c. Let ρ denote the point mass at the compressed model ĥ. Let m denote any
probability measure on the positive integers. There exists a prior πc such that:

KL(ρ, πc) ≤ |ĥ|c log 2− log(m(|ĥ|c)) . (5)

This result relies only on the quality of the chosen coding and is agnostic to whether a lossy
compression is applied to the model ahead of time. In practice, the code c is chosen to reflect some
explicit structure—e.g., sparsity—that is imposed by a lossy compression.

Proof. Let Hc ⊆ H denote the set of estimators that correspond to decoded points, and note that
ĥ ∈ Hc by construction. Consider the measure πc onHc:

πc(h) =
1

Z
m(|h|c)2

−|h|c , where Z =
∑
h∈Hc

m(|h|c)2
−|h|c . (6)

As c is injective onHc, we have that Z ≤ 1. We may thus directly compute the KL-divergence from
the definition to obtain the claimed result.

Remark 4.2. To apply the bound in practice, we must make a choice of m. A pragmatic solution is to
simply consider a bound on the size of the model to be selected (e.g. in many cases it is reasonable to
assume that the encoded model is smaller than 264 bytes, which is 272 bits), and then consider m to
be uniform over all possible lengths.

4.1 USING ROBUSTNESS TO WEIGHT PERTURBATIONS

The simple bound above applies to an estimator that is compressible in the sense that its encoded
length with respect to some fixed code is short. However, such a strategy does not consider any
structure on the hypothesis spaceH. In practice, compression schemes will often fail to exploit some
structure, and generalization bounds can be (substantially) improved by accounting for this fact. We
empirically observe that trained neural networks are often tolerant to low levels of discretization
of the trained weights, and also tolerant to some low level of added noise in the trained weights.
Additionally, quantization is an essential step in numerous compression strategies (Han et al., 2016).
We construct a PAC-Bayes bound that reflects this structure.

This analysis requires a compression scheme specified in more detail. We assume that the out-
put of the compression procedure is a triplet (S,C,Q), where S = {s1, . . . , sk} ⊆ {1, . . . , p}
denotes the location of the non-zero weights, C = {c1, . . . , cr} ⊆ R is a codebook,
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and Q = (q1, . . . , qk), qi ∈ {1, . . . , r} denotes the quantized values. Most state-of-the-art com-
pression schemes can be formalized in this manner (Han et al., 2016).

Given such a triplet, we define the corresponding weight w(S,Q,C) ∈ Rp as:

wi(S,Q,C) =

{
cqj if i = sj ,

0 otherwise.
(7)

Following Langford & Caruana (2002); Dziugaite & Roy (2017), we bound the generalization
error of a stochastic estimator given by applying independent random normal noise to the non-
zero weights of the network. Formally, we consider the (degenerate) multivariate normal centered
at w: ρ ∼ N (w, σ2J), with J being a diagonal matrix such that Jii = 1 if i ∈ S and Jii = 0 other-
wise.
Theorem 4.3. Let (S,C,Q) be the output of a compression scheme, and let ρS,C,Q be the stochastic
estimator given by the weights decoded from the triplet and variance σ2. Let c denote some arbitrary
(fixed) coding scheme and let m denote an arbitrary distribution on the positive integers. Then, for
any τ > 0, there is some PAC-Bayes prior π such that:

KL(ρS,C,Q, π) ≤ (kdlog re+ |S|c + |C|c) log 2− logm(kdlog re+ |S|c + |C|c)

+

k∑
i=1

KL
(

Normal(cqi , σ
2),

r∑
j=1

Normal(cj , τ
2)
)
.

(8)

Note that we have written the KL-divergence of a distribution with a unnormalized measure (the last
term), and in particular this term may (and often will) be negative. We defer the construction of the
prior π and the proof of Theorem 4.3 to the supplementary material.
Remark 4.4. We may obtain the first term kdlog re+ |S|c + |C|c from the simple Occam’s bound
described in Theorem 4.1 by choosing the coding of the quantized values Q as a simple array of
integers of the correct bit length. The second term thus describes the adjustment (or number of bits
we “gain back”) from considering neighbouring estimators.

5 GENERALIZATION BOUNDS IN PRACTICE

In this section we present examples combining our theoretical arguments with state-of-the-art neural
network compression schemes.1 Recall that almost all other approaches to bounding generalization
error of deep neural networks yield vacuous bounds for realistic problems. The one exception
is Dziugaite & Roy (2017), which succeeds by retraining the network in order to optimize the
generalization bound. We give two examples applying our generalization bounds to the models output
by modern neural net compression schemes. In contrast to earlier results, this leads immediately to
non-vacuous bounds on realistic problems. The strength of the Occam bound provides evidence that
the connection between compressibility and generalization has substantive explanatory power.

We report 95% confidence bounds based on the measured effective compressed size of the networks.
The bounds are achieved by combining the PAC-Bayes bound Theorem 2.1 with Theorem 4.3,
showing that KL(ρ, π) is bounded by the “effective compressed size”. We note a small technical
modification: we choose the prior variance τ2 layerwise by a grid search, this adds a negligible
contribution to the effective size (see Appendix A.1 for the technical details of the bound).

LeNet-5 on MNIST. Our first experiment is performed on the MNIST dataset, a dataset of 60k
grayscale images of handwritten digits. We fit the LeNet-5 (LeCun et al., 1998) network, one of the
first convolutional networks. LeNet-5 has two convolutional layers and two fully connected layers,
for a total of 431k parameters.

We apply a pruning and quantization strategy similar to that described in Han et al. (2016). We prune
the network using Dynamic Network Surgery (Guo et al., 2016), pruning all but 1.5% of the network
weights. We then quantize the non-zero weights using a codebook with 4 bits. The location of the
non-zero coordinates are stored in compressed sparse row format, with the index differences encoded
using arithmetic compression.

1 Code to reproduce the experiments is available in the supplementary material.
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We consider the stochastic classifier given by adding Gaussian noise to each non-zero coordinate
before each forward pass. We add Gaussian noise with standard deviation equal to 5% of the
difference between the largest and smallest weight in the filter. This results in a negligible drop in
classification performance.We obtain a bound on the training error of 46% (with 95% confidence).
The effective size of the compressed model is measured to be 6.23 KiB.

ImageNet. The ImageNet dataset (Russakovsky et al., 2015) is a dataset of about 1.2 million natural
images, categorized into 1000 different classes. ImageNet is substantially more complex than the
MNIST dataset, and classical architectures are correspondingly more complicated. For example,
AlexNet (Krizhevsky et al., 2012) and VGG-16 (Simonoyan & Zisserman, 2014) contain 61 and 128
million parameters, respectively. Non-vacuous bounds for such models are still out of reach when
applying our bound with current compression techniques. However, motivated by computational
restrictions, there has been extensive interest in designing more parsimonious architectures that
achieve comparable or better performance with significantly fewer parameters (Iandola et al., 2016;
Howard et al., 2017; Zhang et al., 2017b). By combining neural net compression schemes with
parsimonious models of this kind, we demonstrate a non-vacuous bounds on models with better
performance than AlexNet.

Our simple Occam bound requires only minimal assumptions, and can be directly applied to existing
compressed networks. For example, Iandola et al. (2016) introduce the SqueezeNet architecture, and
explicitly study its compressibility. They obtain a model with better performance than AlexNet but
that can be written in 0.47 MiB. A direct application of our naïve Occam bound yields non-vacuous
bound on the test error of 98.6% (with 95% confidence). To apply our stronger bound—taking into
account the noise robustness—we train and compress a network from scratch. We consider Mobilenet
0.5 (Howard et al., 2017), which in its uncompressed form has better performance and smaller size
than SqueezeNet (Iandola et al., 2016).

Zhu & Gupta (2017) study pruning of MobileNet in the context of energy-efficient inference in
resource-constrained environments. We use their pruning scheme with some small adjustments. In
particular, we use Dynamic Network Surgery (Guo et al., 2016) as our pruning method but follow a
similar schedule. We prune 67 % of the total parameters. The pruned model achieves a validation
accuracy of 60 %. We quantize the weights using a codebook strategy (Han et al., 2016). We consider
the stochastic classifier given by adding Gaussian noise to the non-zero weights, with the variance set
in each layer so as not to degrade our prediction performance. For simplicity, we ignore biases and
batch normalization parameters in our bound, as they represent a negligible fraction of the parameters.
We consider top-1 accuracy (whether the most probable guess is correct) and top-5 accuracy (whether
any of the 5 most probable guesses is correct). The final “effective compressed size” is 350 KiB. The

Table 1: Summary of bounds obtained from compression

Dataset Orig. size Comp. size Robust. Adj. Eff. Size Error Bound
Top 1 Top 5

MNIST 168.4 KiB 8.1 KiB 1.88 KiB 6.23 KiB < 46 % NA
ImageNet 5.93 MiB 452 KiB 102 KiB 350 KiB < 96.5 % < 89 %

stochastic network has a top-1 accuracy of 65 % on the training data, and top-5 accuracy of 87 %
on the training data. The small effective compressed size and high training data accuracy yield
non-vacuous bounds for top-1 and top-5 test error. See Appendix B for the details of the experiment.

6 LIMITS ON COMPRESSIBILITY

We have shown that compression results directly imply generalization bounds, and that these may be
applied effectively to obtain non-vacuous bounds on neural networks. In this section, we provide a
complementary view: overfitting implies a limit on compressibility.

Theory. We first prove that the entropy of estimators that tend to overfit is bounded in terms of the
expected degree of overfitting. That implies the estimators fail to compress on average. As previously,
consider a sample Sn = {(x1, y1), . . . , (xn, yn)} sampled i.i.d. from some distribution D, and an
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estimator (or selection procedure) ĥ, which we consider as a (random) function of the training data.
The key observation is:

P(L(ĥ(x), y) = 1 | (x, y) ∈ Sn) = E(L̂(ĥ)),

P(L(ĥ(x), y) = 1 | (x, y) /∈ Sn) = E(L(ĥ)).

That is, the probability of misclassifying an example in the training data is smaller than the probability
of misclassifying a fresh example, and the expected strength of this difference is determined by
the expected degree of overfitting. By Bayes’ rule, we thus see that the more ĥ overfits, the better
it is able to distinguish a sample from the training and testing set. Such an estimator ĥ must thus
“remember” a significant portion of the training data set, and its entropy is thus lower bounded by the
entropy of its “memory”.

Theorem 6.1. Let L, L̂, and ĥ be as in the text immediately preceeding the theorem. For simplicity,
assume that both the sample space X × Y and the hypothesis setH are discrete. Then,

H(ĥ) ≥ ng(E[L̂(ĥ)],E[L(ĥ)]), (9)

where g denotes some non-negative function (given explicitly in the proof).

We defer the proof to the supplementary material.

Experiments. We now study this effect empirically. The basic tool is the randomization test
of Zhang et al. (2017a): we consider a fixed architecture and a number of datasets produced
by randomly relabeling the categories of some fraction of examples from a real-world dataset.

0%

30%

50%

70%
100%

ac
cu

ra
cy

(tr
ai

n)

sparsity

Figure 1: Training performance after pruning at varying levels of
label randomization.

If the model has sufficiently high ca-
pacity, it can be fit with approximately
zero training loss on each dataset. In
this case, the generalization error is
given by the fraction of examples that
have been randomly relabeled. We
apply a standard neural net compres-
sion tool to each of the trained models,
and we observe that the models with
worse generalization require more bits
to describe in practice.

For simplicity, we consider the
CIFAR-10 dataset, a collection of
40000 images categorized into 10
classes. We fit the ResNet (He et al.,
2016) architecture with 56 layers with
no pre-processing and no penalization
on the CIFAR-10 dataset where the labels are subjected to varying levels of randomization. As noted
in Zhang et al. (2017a), the network is able to achieve 100 % training accuracy no matter the level of
randomization.

We then compress the networks fitted on each level of label randomization by pruning to a given
target sparsity. Surprisingly, all networks are able to achieve 50 % sparsity with essentially no loss of
training accuracy, even on completely random labels. However, we observe that as the compression
level increases further, the scenarios with more randomization exhibit a faster decay in training
accuracy, see Figure 1. This is consistent with the fact that network size controls generalization error.

7 DISCUSSION

It has been a long standing observation by practitioners that despite the large capacity of models used
in deep learning practice, empirical results demonstrate good generalization performance. We show
that with no modifications, a standard engineering pipeline of training and compressing a network
leads to demonstrable and non-vacuous generalization guarantees. These are the first such results
on networks and problems at a practical scale, and mirror the experience of practitioners that best
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results are often achieved without heavy regularization or modifications to the optimizer (Wilson
et al., 2017).

The connection between compression and generalization raises a number of important questions.
Foremost, what are its limitations? The fact that our bounds are non-vacuous implies the link between
compression and generalization is non-trivial. However, the bounds are far from tight. If significantly
better compression rates were achievable, the resulting bounds would even be of practical value.
For example, if a network trained on ImageNet to 90% training and 70% testing accuracy could be
compressed to an effective size of 30 KiB—about one order of magnitude smaller than our current
compression—that would yield a sharp bound on the generalization error.
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A PROOF OF THEOREM 4.3

In this section we describe the construction of the prior π and prove the bound on the KL-divergence
claimed in Theorem 4.3. Intuitively, we would like to express our prior as a mixture over all possible
decoded points of the compression algorithm. More precisely, define the mixture component πS,Q,C
associated with a triplet (S,Q,C) as:

πS,Q,C = Normal(w(S,Q,C), τ2). (10)

We then define our prior π as a weighted mixture over all triplets, weighted by the code length of the
triplet:

π ∝
∑
S,Q,C

m(|S|c + |C|c + kdlog re)2−|S|c−|C|c−kdlog reπS,Q,C , (11)

where the sum is taken over all S and C which are representable by our code, and all Q =
(q1, . . . , qk) ∈ {1, . . . , r}k. In practice, S takes values in all possible subsets of {1, . . . , p}, and C
takes values in F r, where F ⊆ R is a chosen finite subset of representable real numbers (such as
those that may be represented by IEEE-754 single precision numbers), and r is a chosen quantization
level. We now give the proof of Theorem 4.3.

Proof. We have that:

π =
1

Z

∑
S,Q,C

m(|S|c + |C|c + kdlog re)2−|S|c−|C|c−kdlog reπS,Q,C , (12)

where we must have Z ≤ 1 by the same argument as in the proof of Theorem 4.1

Suppose that the output of our compression algorithm is a triplet (Ŝ, Q̂, Ĉ). We recall that our
posterior ρ is given by a normal centered at w(Ŝ, Q̂, Ĉ) with variance σ2, and we may thus compute
the KL-divergence:

KL(ρ, π) ≤ KL
(
ρ,
∑
S,Q,C

m(|S|c + |C|c + kdlog re)2−|S|c−|C|c−kdlog reπS,Q,C

)
≤ KL

(
ρ,
∑
Q

m(|Ŝ|c + |Ĉ|c + k̂dlog r̂e)2−|Ŝ|c−|Ĉ|c−k̂dlog r̂eπŜ,Q,Ĉ

)
≤
(
|Ŝ|c + |Ĉ|c + k̂dlog r̂e

)
log 2 + logm(|Ŝ|c + |Ĉ|c + k̂dlog r̂e) + KL

(
ρ,
∑
Q

πŜ,Q,Ĉ

)
.

(13)

We are now left with the mixture term, which is a mixture of rk many terms in dimension k, and
thus computationally untractable. However, we note that we are in a special case where the mixture
itself is independent across coordinates. Indeed, let φτ denote the density of the univariate normal
distribution with mean 0 and variance τ2, we note that we may write the mixture as:(∑

Q

πŜ,Q,Ĉ

)
(x) =

r∑
q1,...,qk=1

k∏
i=1

φτ (xi − ĉqi)

=

k∏
i=1

r∑
qi=1

φτ (xi − ĉqi).

Additionally, as our chosen stochastic estimator ρ is independent over the coordinates, the KL-
divergence decomposes over the coordinates, to obtain:

KL
(
ρ,
∑
QπŜ,Q,Ĉ

)
=

k∑
i=1

KL
(
ρi,
∑r
qi=1Normal(ĉqi , τ

2)
)
. (14)

Plugging the above computation into (13) gives the desired result.
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A.1 DETAILS IN PRACTICAL USES OF THE BOUND

Although Theorem 4.3 contains the main mathematical contents of our bound, applying the bound in
a fully correct fashion requires some amount of minutiae and book-keeping we detail in this section.
In particular, we are required to select a number of parameters (such as the prior variances). We
extend the bound to account for such unrestricted (and possibly data-dependent) parameter selection.
Typically, such adjustments have a negligible effect on the computed bounds.
Theorem A.1 (Union Bound for Discrete Parameters). Let πξ, ξ ∈ Ξ, denote a family of priors
parameterized by a discrete parameter ξ, which takes values in a finite set Ξ. There exists a prior π
such that for any posterior ρ and any ξ ∈ Ξ:

KL(ρ, π) ≤ KL(ρ, πξ) + log|Ξ|. (15)

Proof. We define π as a uniform mixture of the πξ:

π =
1

|Ξ|
∑
ξ∈Ξ

πξ. (16)

We then have that:
KL(ρ, π) = EX∼ρ log

dρ

dπ
, (17)

but we can note that dρdπ ≤ |Ξ|
dρ
dπξ

, from which we deduce that:

KL(ρ, π) ≤ KL(ρ, πξ) + log|Ξ|. (18)

We make liberal use of this variant to control a number of discrete parameters which are chosen
empirically (such as the quantization resolution at each layer). We also use this bound to control
a number of continuous quantities (such as the prior variances) by discretizing these quantities as
IEEE-754 single precision (32 bit) floating point numbers.

B EXPERIMENT DETAILS

Code used to run these experiments is available on github: https://github.com/
wendazhou/nnet-compression-generalization.

B.1 LENET-5

We train the baseline model for LeNet-5 using stochastic gradient descent with momentum and no
data augmentation. The batch size is set to 1024, and the learning rate is decayed using an inverse
time decay starting at 0.01 and decaying every 125 steps. We apply a small `2 penalty of 0.005. We
train a total of 20000 steps.

We carry out the pruning using Dynamic Network Surgery (Guo et al., 2016). The threshold is
selected per layer as the mean of the layer coefficients offset by a constant multiple of the standard
deviation of the coefficients, where the multiple is piecewise constant starting at 0.0 and ending at
4.0. We choose the pruning probability as a piecewise constant starting at 1.0 and decaying to 10−3.
We train for 30000 steps using the ADAM optimizer.

We quantize all the weights using a 4 bit codebook (Han et al., 2016) per layer initialized using
k-means. A single cluster in each weight is given to be exactly zero and contains the pruned weights.
The remaining clusters centers are learned using the ADAM optimizer over 1000 steps.

B.2 MOBILENET

MobileNets are a class of networks that make use of depthwise separable convolutions. Each layer is
composed of two convolutions, with one depthwise convolution and one pointwise convolution. We
use the pre-trained MobileNet model provided by Google as our baseline model. We then prune the
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pointwise (and fully connected) layers only, using Dynamic Network Surgery. The threshold is set
for each weight as a quantile of the absolute values of the coordinates, which is increased according
to the schedule given in (Zhu & Gupta, 2017). As the lower layers are smaller and more sensitive, we
scale the target sparsity for each layer according to the size of the layer. The target sparsity is scaled
linearly between 65% and 75% as a proportion of the number of elements in the layer compared to
the largest layer (the final layer). We use stochastic gradient descent with momentum and decay the
learning with an inverse time decay schedule, starting at 10−3 and decaying by 0.05 every 2000 steps.
We use a minibatch size of 64 and train for a total of 300000 steps, but tune the pruning schedule so
that the target sparsity is reached after 200000 steps.

We quantize the weights by using a codebook for each layer with 6 bits for all layers except the last
fully connected layer which only has 5 bits. The pointwise and fully connected codebooks have a
reserved encoding for exact 0, whereas the non-pruned depthwise codebooks are fully learned. We
initialize the cluster assignment using k-means and train the cluster centers for 20000 steps with
stochastic gradient with momentum with a learning rate of 10−4. Note that we also modify the batch
normalization moving average parameters in this step so that it adapts faster, choosing .99 as the
momentum parameter for the moving averages.

To witness noise robustness, we only add noise to the pointwise and fully connected layer. We are able
to add Gaussian noise with standard deviation equal to 2% of the difference in magnitude between the
largest and smallest coordinate in the layer for the fully connected layer. For pointwise layers we add
noise equal to 1% of the difference scaled linearly by the relative size of the layer compared to the
fully connected layer. These quantities were chosen to minimally degrade the training performance
while obtaining good improvements on the generalization bound: in our case, we observe that the
top-1 training accuracy is reduced to 65% with noise applied from 67% without noise.

C PROOF THAT OVERFITTING IMPLIES HIGH CLASSIFIER ENTROPY

As previously, consider a sample S = {(x1, y1), . . . , (xn, yn)} sampled i.i.d. from some distribution
D, and an estimator (or selection procedure) ĥ. The statement that ĥ overfits may then be captured in
terms of the training and testing error of ĥ, namely that L̂(ĥ)� L(ĥ). We note that this statement
depends on the randomness of the sample through its impact on ĥ, and we will make the interpretation
precise momentarily.

Such an estimator ĥ that overfits may be transformed into a procedure which discriminates between
samples from the training and testing set. Indeed, let (x, y) ∈ X × Y be drawn from an independent
mixture of the uniform distribution on S and the data-generating distributionD, where by independent
we mean that I(x,y)∈S is independent of S . Then, we have by Bayes rule that:

P((x, y) ∈ S | L(ĥ(x), y) = 1) =

P(L(ĥ(x), y) = 1 | (x, y) ∈ S)

P(L(ĥ(x), y) = 1 | (x, y) ∈ S) + P(L(ĥ(x), y) = 1 | (x, y) /∈ S)
, (19)

where the probability is taken with respect to the distribution of (x, y). By the definition of in-sample
and out-of-sample loss, we have by independence that:

P(L(ĥ(x), y) = 1 | (x, y) ∈ S) = E(L̂(ĥ)),

P(L(ĥ(x), y) = 1 | (x, y) /∈ S) = E(L(ĥ)).

We may thus rewrite (19) (and its analogue conditional probability on the event L(ĥ(x), y) = 0) to
obtain:

P((x, y) ∈ S | L(ĥ(x), y) = 1) =

(
1 +

E(L(ĥ))

E(L̂(ĥ))

)−1

,

P((x, y) ∈ S | L(ĥ(x), y) = 0) =

(
1 +

1− E(L(ĥ))

1− E(L̂(ĥ))

)−1

.

14



Published as a conference paper at ICLR 2019

We thus see that the more ĥ overfits, the better it is able to distinguish a sample from the training and
testing set. Such an estimator ĥ must thus “remember” a significant portion of the training data set,
and its entropy is thus lower bounded by the entropy of its “memory”. Quantitatively, we note that
the quality of ĥ as a discriminator between the training and testing set is captured by the quantities

pn =
(

1 +
E(L(ĥ))

E(L̂(ĥ))

)−1

, qn =
(

1 +
1− E(L(ĥ))

1− E(L̂(ĥ))

)−1

, ln =
1

2
E[L̂(ĥ) + L(ĥ)].

We may interpret pn as the average proportion of false positives and qn as the average proportion
of true negatives when viewing ĥ as a classifier. We prove that if those quantities are substantially
different from a random classifier, then ĥ must have high entropy. We formalize this statement and
provide a proof below.

Theorem C.1. Let S = {(x1, y1), . . . , (xn, yn)} be sampled i.i.d. from some distribution D, and
let ĥ be a selection procedure, which is only a function of the unordered set S. Let us view ĥ as a
random quantity through the distribution induced by the sample S. For simplicity, we assume that
both the sample space X × Y and the hypothesis setH are discrete. We have that:

H(ĥ) ≥ ng(pn, qn, ln), (20)

where g denotes some non-negative function.

Proof. Consider a sequence of pairs (s0
1, s

1
1), . . . , (s0

n, s
1
n), where each sji = (xji , y

j
i ) is sampled

independently according to the data generating distribution D. Let E = ((s0
i , s

1
i ))i=1,...n denote the

of sample pairs. Additionally, let b1, . . . , bn ∈ {0, 1} denote n i.i.d. Bernoulli random variables, and
let B = (bi)i=1,...,n denote the sequence. We may construct a sample S by selecting elements of E
according to B:

S = ((xbii , y
bi
i ))i=1,...,n, (21)

and we note that S is an i.i.d. sample of size n from the data generating distribution D. Additionally,
by independence of B and E, we have that H(B | E) = H(B) = n log 2. On the other hand, we
have

H(B | E, ĥ) ≤
n∑
i=1

H(Bi | E, ĥ)

≤
n∑
i=1

H(Bi | ĥ(x0
i ), ĥ(x1

i ), y
0
i , y

1
i )

≤
n∑
i=1

H(Bi | L(ĥ(x0
i ), y

0
i )).

We compute the conditional distribution of Bi given L(ĥ(x0
i ), y

0
i ) = L0

i . In particular, we claim
that Bi | L0

i = 0 is Bernoulli with parameter pn. Indeed, note that Bi, L0
i and ĥ have the same

distribution as if they were sampled from the procedure described before (19). Namely, sample S
i.i.d. according to the data generating distribution, and let ĥ be the corresponding estimator, Bi an
independent Bernoulli random variable, and Li = L(ĥ(x), y) where (x, y) is sampled uniformly from
S if Bi = 0 and according to the data generating distribution if Bi = 1. Note that this distribution
does not depend on i due to the assumption that ĥ is measurable with respect to the unordered sample
S. By (19), we thus deduce that:

P(Bi = 0 | L0
i = 1) = pn (22)

which yields the desired result by taking expectation over the distribution of ĥ, L̂(ĥ).

Similarly, we may compute the distribution of Bi conditional on the event where L0
i = 0, as

P(Bi = 0 | L0
i = 0) = qn. By definition, we now have that:

H(Bi | L0
i ) = lnhb(pn) + (1− ln)hb(qn), (23)
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where hb(p) denotes the binary entropy function. Finally, we apply the chain rule for entropy. We
note that

H(B | E, ĥ) = H(B, ĥ | E)−H(ĥ | E), (24)

and write H(B, ĥ | E) ≥ H(B | E) = n log 2 and H(ĥ | E) ≤ H(ĥ). In summary,

H(ĥ) ≥ H(ĥ | E)

= H(B, ĥ | E)−H(B | E, ĥ)

≥ n log 2− n[lnhb(pn)− (1− ln)hb(qn)]

≥ n[hb(1/2)− lnhb(pn)− (1− ln)hb(qn)] ,

which yields (20).
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