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Abstract

Mechanical metamaterials are a special class of materials, whose mechanical proper-

ties are primarily determined by their geometry and topology. Due to their unique

properties and wide applications, mechanical metamaterials have gained increasing

attention in recent years. To name a few, mechanical metamaterials have been used in

designing soft robotics, equipment with local tunable functionalities, etc. For better

exploitation of their huge potential, the ability to design mechanical metamaterials

with particular desired properties is of key importance. Traditional design methods

rely heavily on experimental characterization and are often driven by heuristic rules,

which are time consuming and economically inefficient. This dissertation aims to

establish a computational design framework that enables rational, efficient, and ro-

bust designs for mechanical metamaterials. The challenge is addressed by applying

classical numerical methods and leveraging modern machine learning tools.

The research results can be grouped with three major outcomes. First, we pro-

pose a multi-scale computational homogenization scheme based on a neural network

surrogate energy model to simulate cellular mechanical metamaterials under large de-

formation. Compared with direct numerical simulation, the proposed scheme reduces

the computational cost up to two orders of magnitude. The second part focuses on in-

verse design problems. Within the framework of topology and shape optimization, we

successfully design cellular mechanical metamaterials with several pre-defined goals:

achieving negative Poisson’s ratio, precise control of instabilities, and arbitrary tuning

of band gaps for phononic structures. Besides classical shape optimization methods,

we also propose design approaches inspired by generative models in machine learn-

ing. Composite mechanical metamaterials with controllable overall elastic moduli are

designed, fabricated with additive manufacturing, and experimentally validated. The

final part of this dissertation makes a mathematical abstraction of the design/inverse

problems and focuses on general partial differential equation (PDE) constrained op-
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timization problems. We propose amortized finite element analysis (AmorFEA), in

which a neural network is trained to produce accurate PDE solutions in an unsu-

pervised fashion, while preserving many of the advantages of the traditional finite

element method (FEM). In conclusion, this dissertation successfully tackles issues

on computational modeling and design of mechanical metamaterials with a machine

learning approach.
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Chapter 1

Introduction

1.1 Motivation and objectives

Mechanical metamaterials are artificial structures whose mechanical behavior is de-

termined defined by their geometry rather than their chemical composition. Ar-

chitected with multi-level periodic structures, mechanical metamaterials demonstrate

unique macroscopic properties such as ultra-stiffness [1], negative Poisson’s ratio (aux-

eticity) [2], shape morphing [3], tunable band structures [4], energy absorption [5],

etc. These novel properties have created venues for many engineering applications,

e.g., soft actuators, materials with in situ tunable functionalities, reusable energy-

absorbing materials [6, 7, 8, 9]. For a thorough overview of mechanical metamaterials

and the current state of the art, we refer the interested readers to [10, 11, 12]. The

rapid development of this field has been partly fueled by the advancement of ad-

vanced manufacturing technologies such as additive manufacturing [13, 14], which

enables fast prototyping and economic small-scale production of materials with spe-

cific microstructures [15]. The key step that can bridge the prospect of mechani-

cal metamaterials to real-world engineering applications is the ability to design the

desired type of mechanical metamaterials for particular purposes. Traditional de-
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sign flows focus heavily on experimental characterization and heuristically driven ap-

proaches. Optimal structures of mechanical metamaterials are often devised through

inefficient trial-and-error loops. This dissertation addresses this problem by utilizing

computational tools to build a rational design framework based on efficient numerical

modeling and optimization. When establishing the computational framework, we pay

particular attention to the application of machine learning techniques.

Before considering the inverse design problems, our first objective is to establish an

efficient and robust method for forward numerical simulation of mechanical metama-

terials. While adopting the finite element method (FEM) [16, 17] for solid structures

are standard practices, direct numerical simulation (DNS) with FEM on the full spec-

imen is only possible for mechanical metamaterials with a relatively small number of

repeated cells [18]. The reason is partly due to the high computational cost on super

fine mesh required for the resolution of the microstructure. Under extreme defor-

mation conditions, mechanical metamaterials exhibit highly nonlinear responses and

instabilities are triggered over certain threshold [19, 20], bringing additional difficul-

ties for accurate simulation. Multi-scale analysis tools such as homogenization [21, 22]

give promising solutions to the problem.

Homogenization, also known as “coarse-graining” in the physics community, is of-

ten used to predict the macroscopic behavior of composites from their microstructures.

Homogenization focuses on calculations of a representative volume element (RVE) at

the micro scale by FEM, and then use the obtained average constitutive relation to

perform a coarsened simulation the macro scale. Aside from analytical homogeniza-

tion methods [23, 24, 25, 26], computational homogenization is more suitable for our

problem due to the complexity of mechanical metamaterials. There are two major cat-

egories of computational homogenization methods: concurrent and off-line methods.

Concurrent methods integrate the macro- and micro-scale problems through proper

mathematical formulations and solve both problems simultaneously. One of the rep-
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resentative concurrent methods is the widely adopted FE2 method [27]. Concurrent

methods are powerful, but they can be computationally expensive, due to the nested

numerical solvers at both microscopic and macroscopic scales. On the other hand,

off-line methods treat the macro- and micro-scale problems separately. Equivalent

constitutive laws are first computed based on off-line numerical calculations at micro-

scales, and then used to solve problems at macro-scales [28, 29]. Offline methods can

be expensive during the data generation phase, but they are typically significantly

faster at the deployment phase [30]. Several techniques [31, 32, 33, 34, 30, 29, 35] exist,

particularly we emphasize recent developments using neural networks (NNs) [36, 37].

To this point, we propose the neural networks based computational homogeniza-

tion method to model the nonlinear behavior of mechanical metamaterials under large

deformation. Neural networks, as massively-parametric function approximators, have

been proven to be effective for solving a variety of traditional engineering problems.

More recently, there has been a growing interest in applying neural networks to com-

plicated problems in natural sciences, e.g., physics and chemistry [38, 39, 40, 41],

astronomy [42], and material science [43, 44, 45]. In this work, we train a NN-based

surrogate model to represent the macroscopic strain energy density function. The

training data are generated by performing RVE calculations at the micro scale. At

the deployment stage, the trained surrogate model is used for numerical simulation

at the macro scale. With the proposed NN-based off-line homogenization scheme,

we are able to save the the computational time to several orders of magnitude when

compared to direct finite element simulation. This concludes the first major task of

this dissertation, i.e., a new NN-based homogenization scheme for accelerating the

(traditionally) expensive forward simulation of mechanical metamaterials.

The next part focuses on computational designs of mechanical metamaterials. The

objective is to use shape optimization techniques for the optimization of geometric

structures of mechanical metamaterials so that desired mechanical properties are ob-
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tained. Shape optimization is a rich and classical field of research. Representative

techniques, such as density based methods [46, 47], evolutionary structural optimiza-

tion (ESO) methods [48], and level set methods (LSM) [49, 50, 51] have been devel-

oped and broadly applied to typical mechanical design problems such as stiffness opti-

mization of linear/nonlinear elastic structures, optimization of the heat-conductivity

of composite structures, etc. However, these methods may not necessarily be best

suited for shape optimization of mechanical metamaterials due to the intrinsic ge-

ometric and material nonlinearities. Moreover, under large deformation conditions,

instabilities at both micro and macro scales pose additional challenges to certain nu-

merical schemes. Despite the complexity, several related works have made positive

attempts to metamaterial shape optimization with large deformations [52, 53, 54].

In general accordance with the shape optimization pipeline, we propose a mapped

shape optimization method (MSOM), a numerically stable and easy-to-implement

method that solves the design problems for mechanical metamaterials efficiently. The

MSOM uses gradient-based optimization and the gradients of the objective function

to the geometric parameters are computed using the adjoint method [55, 56]. The

highlight of MSOM is the use of a pre-defined referential configuration a concept

similar to what appears in Arbitrary Lagrangian–Eulerian (ALE) methods [57]. In

the ALE description of motion, neither the material configuration nor the spatial

configuration is taken as the reference, while a third, referential configuration is used

for computations. In MSOM, we also have such a referential configuration where

all numerical computations are performed. The choice of this referential configu-

ration is arbitrary, and we fix it. Therefore, the computational mesh can stay the

same throughout the optimization loops. Compared with classical shape optimiza-

tion methods, MSOM has several advantages when applied to the optimization of

CMMs. MSOM is not a density-based method, hence to avoid dealing with inher-

ent difficulties like the “checkerboard” problem [58]. MSOM shares certain similarity
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with the level set method in the sense that they both rely on the concept of “shape

derivative” [59]. The dichotomy of Eulerian and Lagrangian specifications divides

the level set methods into two classes: the Eulerian shape capturing method with a

fixed mesh [49, 50, 60]; the Lagrangian shape tracking method with a moving mesh to

represent the shape [61, 62]. MSOM can be considered as a third paradigm that uses

a referential description. In contrast to the Eulerian level set method, MSOM avoids

the difficulties implied by stable and accurate evolutions of the level set function;

compared to the Lagrangian level set method, MSOM saves the numerical complica-

tions of modifying the mesh object since it uses a fixed mesh. We apply MSOM to

three important design problems for mechanical metamaterials: optimizing negative

Poisson’s ratio, precise control of the onset of instability, and arbitrary tuning of band

gaps for phononic structures. These examples cover a broad range of engineering ap-

plications, showing that the proposed method is successful in shape optimization for

mechanical metamaterials. The contribution of this part particularly lies in its ability

to solve shape optimization problems with large deformation.

Aside from classical shape optimization methods, the recent trends in using ma-

chine learning techniques for design and synthesis [41, 63, 64, 65] have also opened up

new opportunities for optimal design of mechanical metamaterials. In this next part,

we introduce a design method based on machine learning generative models. The ob-

jective is to design composite mechanical metamaterials with arbitrary macroscopic

elastic moduli. The microscopic RVE is composed of two different base materials,

and the homogenization is restricted to linear elasticity. Energy based computational

homogenization scheme [66] is employed for the evaluation of the macroscopic elas-

tic moduli. It is noticed that parametric representation of RVE structures is key to

the success of design. Density based shape optimization method is computationally

expensive due to voxel level parametrization [67]. Pre-defined parametric family of

microstructures are used in [68] as the template for design. Nevertheless, these tradi-
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tional methods still follow the pattern of trial-and-error loops that require substantial

domain expertise and intensive labor. The proposed method automates the design

flow using several tools from machine learning.

The successful applications of machine learning techniques in the area of structure

and material optimization are seen in [69, 70, 71]. Particularly, a new paradigm

emerges for design optimization with parameters of complicated data structure. The

paradigm compress the high dimensional design parameters into a lower dimensional

latent space, and designs are performed over this reduced latent space instead. The

approach typically involves coupling of a machine learning generative model that

maps from the latent space to the parameter space and a gradient-free optimization

algorithm that operates over the latent space. This design strategy has been used to a

variety of applications: discovery of new molecules with desired properties [41], shape

optimization for minimal drag force in fluid dynamics [72], finding optimal optical

performance of composite materials [73], improvement in solution efficiency for heat

conduction [74], etc. In this work, we propose to combine variational auto-encoders

(VAEs) [75] and Bayesian optimization (BayesOpt) [76] so that the procedures of

designing composite mechanical metamaterials are automated. VAEs are used to

encode the RVE images into the latent space, and then decode the latent vector to

an output that resembles the original RVE. BayesOpt perform optimization over the

latent space so that the design goal is achieved. We present several design examples

where optimal RVEs are found to have desired macroscopic elastic moduli. The RVEs

are printed with customized multi-material 3D printing tools [77]. Experimental

validations show that the proposed method scheme is effective for the design.

Mathematically, solving the forward simulation problem of mechanical metama-

terials is considered as numerically solving the governing partial differential equation

(PDE). PDE-constrained optimization (PDE-CO) addresses the situation where an

objective function is minimized or maximized, subject to the constraints by PDEs.
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In fact, the design problems of mechanical metamaterials can be formulated into

PDE-constrained optimization. In the final part of this dissertation, we make this

mathematical abstraction and focus on general PDE-CO problems. In addition to

designs of mechanical metamaterials, PDE-CO problems also include optimal con-

trol, parameter identification, etc [78, 79]. PDE-CO is computationally expensive in

general since it usually requires to solve the governing PDE at every iteration step of

the outer-loop optimization.

In recent years, there has been a surge of interest in applying deep learning to

solving PDEs in replacement of traditional numerical methods [80, 81, 82, 83]. How-

ever, limited efforts are spent on the (more difficult) PDE-CO problems. Inspired by

amortized optimization, widely used in amortized variational inference [75, 84, 85, 86],

we propose a deep learning method to efficiently tackle PDE-CO problems, which we

refer to as amortized finite element analysis (AmorFEA). AmorFEA introduces a

two-stage strategy such that a neural network is first trained to map from param-

eters to solutions, and then fast PDE-CO can be performed based on the learned

model. AmorFEA supports irregular computational domains as an advantage inher-

ited from classical FEM. Compared with the traditional adjoint method for PDE-CO,

AmorFEA demonstrates huge potential of saving computational cost.

As a final remark, the major research objectives in this dissertation are two-fold.

We aim at establishing new homogenization schemes for accelerating the forward

numerical simulations of mechanical metamaterials. The second goal is to tackle the

inverse design problems with machine learning approaches.

1.2 Outline of Thesis

The overview of this dissertation is as follows.
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Chapter 1 gives the background and objectives of the research, the outline of the

dissertation, and some useful notations. Detailed literature review is delayed in the

following separate chapters to ease reading and make those chapters readable on their

individual basis.

Chapter 2 discusses the forward simulation problem. A neural network based

computational homogenization scheme is proposed for efficient numerical simulations

of cellular mechanical metamaterials. This part is based on T. Xue, A. Beatson,

M. Chiaramonte, G. Roeder, J. T. Ash, Y. Menguc, S. Adriaenssens, R. P. Adams, and

S. Mao, “A data-driven computational scheme for the nonlinear mechanical properties

of cellular mechanical metamaterials under large deformation,” Soft Matter, 2020.

Chapter 3 focuses on the inverse design problem of the same cellular mechanical

metamaterials. We use the adjoint method for optimal designs with several important

engineering applications. The results are in preparation for submission.

Chapter 4 also addresses design problems, but with machine learning aided op-

timization methods applied to composite mechanical metamaterials. The chapter

is based on T. Xue, T. J. Wallin, Y. Menguc, S. Adriaenssens, and M. Chiara-

monte, “Machine learning generative models for automatic design of multi-material

3d printed composite solids,” Extreme Mechanics Letters, vol. 41, p. 100992, 2020.

Chapter 5 abstracts the mathematical nature from design problems and focus

on general partial differential equation constrained optimization. We propose amor-

tized finite element analysis for accelerated solutions. The part is based on T. Xue,

A. Beatson, S. Adriaenssens, and R. Adams, “Amortized finite element analysis for

fast pde-constrained optimization,” in International Conference on Machine Learn-

ing, pp. 10638–10647, PMLR, 2020.

Chapter 6 summarizes the contents with concluding remarks. It also discusses

some visions for future work.
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1.3 Notations

We conclude the introduction with some remarks on notation. Scalars are generally

written in normal fonts, while vectors and second-order tensors are written in boldface

fonts. All tensor and vector components are written with respect to a fixed Cartesian

coordinate system with orthonormal basis {ei}. The summation convention is used

for repeated Latin indices, unless otherwise indicated. We denote by I the second-

order identity tensor. The prefixes tr and det indicate the trace and the determinant

and superscript > the transpose of a second-order tensor. Let (a, b) be vectors, (A,

B) be second-order tensors and ∇ the gradient operator; we define the following:

a · b = aibi, (A · a)i = Ailal, (A · B)il = AipBpl, A : B = AilBil, (∇a)il = ∂lai,

∇·a = ∂iai and (∇·A)i = ∂lAil. The boldface font is also used for large matrix/vector

assembled by the finite element method, e.g. A, and A∗ means the adjoint of A. We

denote by Hk(Ω) the Sobolev space W k,2(Ω).
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Chapter 2

Computational Homogenization

with Neural Network Surrogate

Energy Model

This chapter focuses on providing effective solutions to forward problems of cellular

mechanical metamaterials. Traditional direct numerical simulation methods are com-

putationally prohibitive. The central component is a neural network based surrogate

model that approximates the effective strain energy density function. The formula-

tions are within the classical framework of computational homogenization. We show

that the neural network surrogate model enables accelerated forward simulations for

cellular mechanical metamaterials, compared with a direct numerical simulation ap-

proach.

2.1 Introduction

Cellular mechanical metamaterials (CMMs) with repeating cells are commonly ob-

served in both nature and industry: from biological materials such as honeycombs

to synthetic structures such as metallic microlattices. These materials can exhibit
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unique mechanical properties, such as high stiffness- and/or strength-to-density ra-

tio [90], that are primarily determined by geometries. Traditionally, the study of this

field is limited to several simple structures and under relatively small deformation [91].

Yet in the past decade, the advent of fabrication technologies such as additive man-

ufacturing [14, 13] have enabled precise but fast realization of sophisticated cellular

architectures made of soft materials such as elastomers. These materials, not only

can bear large deformation, but also exhibit novel mechanical properties under that

condition, including negative Poisson’s ratio (auxeticity) [2, 20, 92], shape morph-

ing [3], tunable bandstructures [4] and energy absorption [5]. These novel properties

created an avenue for many exciting engineering applications, e.g., soft actuators,

materials with in situ tunable functionalities, reusable energy-absorbing materials,

etc. [6, 7, 10, 8, 12, 9].

The rapid development on the fabrication side demands a fast and predictive com-

putational method to determine the mechanical behaviors of CMMs. For materials

with a relatively small number of cells, one can conduct a direct numerical simu-

lation (DNS) on the whole specimen using the finite element method (FEM) [18].

However, the mechanical behaviors of soft CMMs are often highly nonlinear and may

involve mechanical instabilities, thus requiring a fine spatiotemporal resolution for

DNS calculations. DNS can easily become computationally intractable as CMMs

usually consist of a large number of cells. Alternatively, one can conduct a fine-mesh

FEM calculation on a representative volume element (RVE), often composed of one or

several repeating cells [20], by prescribing appropriate boundary conditions. Such a

method can efficiently predict the mechanical response of CMMs under homogeneous

deformation. When CMMs are subject to complex loads, such predictions will fail.

When the size of the CMM is much larger than the repeating cells, multiscale

analysis such as homogenization can be a useful tool. Homogenization, often called

“coarse-graining” in the physics community, is often used to predict the macroscopic
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behavior of composites from their microstructures [21, 22]. The early development of

homogenization primarily focuses on the analytical approach. Following the pioneer

work of Eshelby [23], various analytical homogenization methods have been developed

for linear materials [24, 93, 94, 95, 96, 97] and later extended to nonlinear materi-

als [25, 26, 98, 99]. While these analytical approaches provide useful bounds, they

are less accurate when microstructures become sophisticated [100]. Computational

homogenization is more suitable in this scenario. Reviews of the recent progress in

this field can be found in Ref’s [101, 102, 103] . Among various methods of compu-

tational homogenization, two main categories can be distinguished: concurrent and

off-line methods. Concurrent methods integrate the macro- and mico-scale problems

through proper mathematical formulations and solve both problems concurrently. For

example, the FE2 method is a widely adopted concurrent scheme, and uses FEM to

solve problems at both scales [27, 104, 105, 106, 107, 108]. Another example is given

by the spectral method based on Fast Fourier Transform (FFT) [109, 110, 111, 112].

Concurrent methods are powerful and accurate, yet can still be computationally ex-

pensive, mainly due to the nested numerical solvers needed to balance calculations

at both scales. On the other hand, for off-line methods, the macro- and micro-scale

problems are solved separately. Effective constitutive laws are first constructed based

on a set of numerical calculations at micoscales, and then used to solve problems at

macroscales [28, 29]. Thus, offline methods can avoid the huge cost of nested numeri-

cal solvers and in some cases be orders of magnitude faster than the concurrent meth-

ods [30, 29]. Essentially, the constitutive relation can be seen as a multi-dimensional

mapping from the microstructural features to the macroscopic response of the ma-

terial, and the core of offline methods is to efficiently and accurately construct such

a mapping. To this end, several techniques [31, 32, 33, 34, 30, 29, 35] have been

developed, includig recent efforts using neural networks [36, 37].
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Neural networks (NNs) are massively-parametric function approximators inspired

by biological neural networks [113]. Given a large number of input/output examples,

neural networks can often successfully learn functions on high-dimensional spaces.

This process of “learning” the function corresponds to identifying an optimal set of

parameters, i.e., neural network “weights”, to capture the relationship between inputs

and outputs reflected in the training data. Neural networks have been demonstrated

to be powerful function approximators for solving challenging engineering tasks, such

as language modeling [114], image classification [115], and machine translation [116].

More recently, there has been a growing interest in applying neural networks to com-

plex problems in natural sciences, e.g., physics [38, 39, 40], chemistry [41], astron-

omy [42], biomedicine [117], and material science [43, 44, 45].

In the present work, we extend previous works on NN-based computational ho-

mogenization methods [36, 37] to model the nonlinear mechanical behavior of cellular

mechanical metamaterials under large deformation. For that purpose, we first gener-

ate training data by conducting a large number of RVE calculations at cellular scale.

We then train a neural network on those data to approximate the effective strain

energy density at macro-scale, which is a function of the macroscopic strain and mi-

croscopic structural parameters. Through this NN-based surrogate model for effective

strain energy density, the coarse-grained constitutive relations can be easily obtained,

which greatly reduces the computational cost of determining the mechanical behavior

of the cellular materials at macro-scale.

This chapter is organized as follows. In Section 2.2, the finite deformation theory

of hyperelastic cellular mechanical metamaterials and the specific geometries of this

study are described. In Section 2.3, we propose a neural network-based multiscale

computational scheme to determine the mechanical responses of CMMs and describe

the procedures to carry out the scheme in Section 2.4. Numerical examples are

shown in Section 2.5, where our NN-based method is compared with DNS in terms of
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accuracy and efficiency. In Section 2.6, we discuss the applicability and the limitations

of our NN-based method. Finally we conclude in Section 2.7.

2.2 Problem Formulation

2.2.1 Finite deformation elasticity

Consider a homogeneous elastic body in a 3D Eucleadian space R3, where we intro-

duce a fixed Cartesian coordinate system with orthonormal basis {e1, e2, e3}. In an

unstressed state, the body occupies a region B ⊂ R3 (reference configuration) with

a boundary ∂B whose outward normal is N . Upon mechanical loading, the body

deforms and occupies a different region Bt ⊂ R3 (deformed configuration). Deforma-

tion can therefore be described as a mapping: ϕ : B→ Bt, which maps any material

point X ∈ B to its counterpart x ∈ Bt, i.e. x = ϕ(X). The corresponding displace-

ment field is defined as u = x−X and the deformation gradient F = ∂x
∂X

. We denote

vectors and tensors with a bold font in contrast to scalars with a normal font.

The constitutive model of a hyperelastic material can be defined by a strain energy

density function (per volume) W , which depends on F , through the right Cauchy-

Green tensor C = F TF . The displacement field u can be determined by solving for

the stationary point δΨ = 0 of the following functional (in the absence of body force):

Ψ(u) =

∫
B
W (F ) dX −

∫
∂BN

u · t dS, (2.1)

with u = ub and δu = 0 on ∂BD, where ub is the prescribed displacement

field, t is the prescribed traction (force per unit reference area), ∂BN ∪ ∂BD = ∂B

and ∂BN ∩ ∂BD = ∅. The measures dX and dS are the infinitesimal volume and

surface elements in the reference configuration respectively. Alternatively, the above
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variational problem can be formulated as a boundary value problem:

∇X · P = 0 in B,

u = ub on ∂BD,

P ·N = t on ∂BN , (2.2)

where the divergence operator is in the reference configuration, and P = ∂W
∂F

is the

first Piola-Kirchoff stress. These problems can be numerically solved by FEM.

The formulation described above is applicable to any hyperelastic material, but

in this work we focus on CMMs made of soft elastomers and therefore adopt the

following form of W :

W =
µ

2
(J−2/3I1 − 3) +

κ

2
(J − 1)2, (2.3)

where J = det(F ), I1 = tr(C); µ = E
2(1+ν)

and κ = E
3(1−2ν)

denote the initial shear

and bulk moduli, respectively, E and ν being the material’s Young’s modulus and

Poisson’s ratio. The above W is commonly used to model isotropic elastomers that

are almost incompressible and we assume ν = 0.3 throughout this work.

2.2.2 Problem geometry

In this work, we focus on a special but widely used class of CMM: 2D porous

cellular solids with a repeating unit cell. We adopt a plane strain setting here,

i.e., ui = ui(X1, X2), i = 1, 2 and u3 = 0. Previous works [20, 92] have shown that

the mechanical properties of these CMMs highly depend on the shape of the pore.

Following previous treatments, our study focuses on pores with four-fold symmetry
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Figure 2.1: Left: A map from the parameters to the pore shapes indicated by
Eqn (2.4). For each (ξ1, ξ2), we get a corresponding pore shape. Right: The two
representative pore shapes studied in this work.

whose contour can be described by the following parametrization:

r(θ) = r0(1 + ξ1cos(4θ) + ξ2cos(8θ)), (2.4)

where r and θ are polar radius and polar angle respectively. By changing the param-

eters ξ = (ξ1, ξ2), we get a family of different pore shapes as illustrated in Fig. 2.1.

Specifically in this work, we focus on square arrays of these unit cells and therefore,

for material with a unit cell length of L0, its porosity φ0 is uniquely determined by

r0 and ξ via the relation φ0 = π
2
(r0/L0)2(ξ2

1 + ξ2
2 + 2). In this work, we fix L0 = 0.5

and porosity φ0 = 0.5.

Among all the possible pore shapes, we focus on two types (A and B in Fig. 2.1):

Pore A is circular, with ξA = (0, 0) and pore B breaks the angular symmetry,

with ξB = (−0.2, 0.2). We choose these two shapes as our representative examples

for two reasons. First, mechanical instability can be triggered in CMMs made of both

unit cells under compression, which leads to an asymmetric mechanical response

of the CMMs under tension and compression. Second, even though mechanical

instabilities can be triggered in these two CMMs, they still exhibit very distinct

mechanical responses under the same mechanical loading [20, 92].
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D C

Figure 2.2: A 2x2 RVE taken from a cellular porous structure with repeating units.
Followed by the arrow is an example showing the periodic boundary conditions ap-
plied to the RVE. Here we specify a macroscopic displacement gradient H =

[
0 0.2
0 −0.2

]
.

The deformed configuration (rightmost) shows the resulted displacement field of this
RVE: u = H ·X + u? with u? being the periodic fluctuation. The dashed profile
shows the deformation corresponding to the appplied mean displacement u = H ·X.

2.3 NN-Based Multiscale Approach

Direct numerical simulation of cellular mechanical metamaterials made of large num-

bers of unit cells is challenging, especially for CMMs with complicated cellular ge-

ometries or that undergo large deformation, mainly due to the large computational

cost. The computational expense arises from two factors. First, to resolve the de-

tailed cellular geometries, the finite element mesh size must be no larger than the

microstructural features. Second, since the mechanical responses can be highly non-

linear under large deformation, small timesteps are required for DNS to converge. To

address these issues, we adopt a multiscale approach called (offline) computational

homogenization [36, 37], which performs fine-mesh FEM calculations at the RVE level

to obtain the coarse-grained constitutive relations, and then uses these to predict the

mechanical behavior of the material at larger scale.

Our computational homogenization approach starts with a study of the represen-

tative volume element of the CMM. The choice of RVE is not unique, but it has to

simultaneously be large enough to capture the influence of cellular geometries on the

overall mechanical behavior and small enough to be considered as a material point

for the CMM. For example, as shown in Fig.2.2, for a CMM composed of many unit
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cells with pore A, we have chosen ABCD, a 2× 2 array of the unit cells as our RVE.

This choice of RVE ensures that we capture the mechanical instabilities that lead to

reorganizations of the neighboring unit cells [20, 92]. We emphasize that the above

statement relies on the critical assumption of separation of length scales, i.e. the size

of the CMM is much larger than that of the unit cell and RVE, without which the

homogenization approach is invalid.

To construct the effective strain energy density of this RVE, we conduct a fine-

mesh FEM calculation on the RVE under macroscopic deformations F by prescribing

the following periodic boundary conditions:

u(X) =
(
F − I

)
·X + u?(X) = H ·X + u?(X), (2.5)

where I is identity tensor and H denotes the macroscopic displacement gradient. F

and H are uniform on the RVE and periodic boundary conditions are applied to en-

sure
∫
∂V
n⊗u? = 0. For example, for the RVE ABCD in Fig 2.2, we have u?AD = u?BC

and u?AB = u?DC . Essentially, eqn (2.5) decomposes the total displacement of the RVE

into a macroscopic (overall) part u = H ·X and a microscopic (fluctuating) part u?.

The effective strain energy density W can obtained via the average W over the

RVE: W = V −1

∫
V

W dV with V being the total volume of the RVE (for plane

strain, dV = dX1dX2). Other macroscopic quantities can be obtained in the same

fashion. This effective strain energy density W is the bridge that connects the mi-

croscopic features to macroscopic mechanical responses. In essence, W should be a

function of F as well as the microstructural features ξ: W = W (F , ξ). Once that

relation is established, we then treat the RVE as a material point in the CMM and

use FEM to find the approximate solution to the stationary point of the following

functional:

Ψ(u) =

∫
B
W (F , ξ) dX −

∫
∂BN

u · t dS, (2.6)
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Figure 2.3: A MLP with one hidden layer. The neural network function takes an
input vector and performs an affine transformation followed by a non-linear activation
function on the input vector, producing an intermediate vector at the hidden layer.
A similar transformation on the intermediate vector then yields the output of the
neural network function.

with u = ub and δu = 0 on ∂BD. Making use of the celebrated Hill-Mandel condi-

tion [118]: P = ∂W
∂F

, the above minimization fomulation can be shown to be equivalent

to the following macroscopic BVP:

∇X · P = 0 in B,

u = ub on ∂BD

P ·N = t on ∂BN . (2.7)

Therefore, the key to this computational homogenization scheme is to construct W

as a function of F (more strictly speaking C ) and ξ. In this work, we adopt a

data-driven approach based on neural networks.

Neural networks (NNs) are powerful computational structures for construct-

ing massively-parametric mappings [113]. The classic general form of a neural

network is the multi-layer perceptron (MLP), made up of fully-connected lay-

ers [119]. The input vector x is processed through several hidden layers and

finally to an output vector y. Suppose that the ith layer has m nodes and
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the i + 1 layer has n of them, the computation between these two layers are given

by yi = f i(xi) := σ(wi · xi + bi), where wi ∈ Rn×m, bi ∈ Rm are the weight matrix

and bias vector of the ith layer, and σ is an element-wise nonlinear function, such as a

logistic function σ(y) = 1/(1 + e−y) or tanh. We can “stack” these transformations

as y = fk(xk) = fk ◦ fk−1(xk−1) = ... = fk ◦ ... ◦ f 1(x) for a MLP with k− 1 hidden

layers. We hereby denote this mapping as y = fθ(x) to emphasize that this mapping

is under the parameter θ = (w1,w2, ...,wk; b1, b2, ..., bk). A typical MLP with only

one hidden layer is shown in Fig. 2.3.

The weight matrices and bias vectors θ are called the parameters of the neural

network and they are optimized through a training procedure that minimizes a loss

function reflecting the quality of the fit to data. This training is typically performed

via a stochastic optimization procedure such as stochastic gradient descent [120].

At each step, one randomly selects a subset of the training examples x each with

corresponding target value y∗ and computes a loss function L(y∗,y) (for example,

the squared Euclidean distance between targets and predictions ||y∗ − y||22). Gra-

dients of this loss function with respect to the parameters are then computed using

reverse-mode automatic differentiation and the parameters are updated accordingly

[121]. This proceeds until a convergence criterion is achieved. After training and

other validation and calibration processes, we can then deploy the neural network to

predictions for new inputs.

In this work, we use a MLP to approximate the effective strain energy den-

sity, namely WNN(C, ξ) ≈ W (C, ξ). The input vector is a 5-dimensional vector:

x = (C11, C12, C22, ξ1, ξ2) and the output is a scalar y = WNN . For any given input,

the target output is generated by RVE calculations. The goal is to train an MLP

which can reproduce the result of these calculations for out-of-sample vectors. After

training the MLP, we replace the W in Eqn (2.6) with WNN and solve the macroscopic

problem.
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Step 1: Off-line database construction

Step 2: Neural network training

Sample   and determine RVE pore shapeξ

Sample   and apply to RVE as boundary conditionsH

Perform DNS and compute   W

Collect labeled data {(C11, C12, C22, ξ1, ξ2; W )(i)}Loop

(H, ξ)

WNN

NN

C11

C12

C22

ξ1

... WNN

ξ2

Step 3: Deployment of the NN-based surrogate model

Figure 2.4: The data-driven computational homogenization procedure consists of
three steps: 1) building the offline training database by performing RVE calcula-
tions at cellular level; 2) training the neural network to obtain a surrogate model
for effective strain energy density; 3) deploying the NN-based surrogate model for
macroscopic problems.

We use scikit-learn [122], an open source machine learning framework, to build,

train and later test our neural network. All finite element calculations are carried out

using an open-source FEM package FEniCS [123].

2.4 Construction of the NN-Based Computational

Homogenization Scheme

In the previous section, we have outlined a NN-based multiscale computational ho-

mogenization scheme, with the goal of obtaining a mapping from macroscopic defor-

mation C and microstructural parameters ξ to the effective strain energy density W .

This scheme, as illustrated in Fig. 2.4, mainly consists of three steps: 1) offline con-
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struction of training data, 2) optimization of neural network parameters, and 3) de-

ployment of the NN-based surrogate model for FEM at macro-scale. In this section,

we will describe these steps in detail.

2.4.1 Offline generation of training data

The first step of constructing the NN-based multiscale computational scheme is to

construct a proper training database composed of labeled data, each in the form of an

input vector and its target output: {(C11, C12, C22, ξ1, ξ2;W )(i)}. The target output

W
(i)

is obtained via finite element calculation of the RVE with the corresponding

geometric parameters ξ(i) and subject to the corresponding macroscopic field of C
(i)

.

In this work, we focus on CMMs composed of two types of unit cells: those with

pore A and pore B, so the choice of ξ(i) is limited: ξ(i) ∈ {ξA, ξB}. However, the

choice of the macroscopic field C
(i)

is in principle infinite since it varies continuously.

Therefore some care is necessary in constructing an effective sampling method forC
(i)

.

First we must identify a domain over which C
(i)

is to be sampled. Such a region

should cover the nonlinear mechanical behaviors of primary interest. For example,

for CMMs composed of unit cells with pore A, beyond certain compression the CMM

undergoes mechanical instabilities which lead to auxetic behavior. This behavior can

be observed for H22 = −0.125, H12 = H21 = 0 and H11 ∈ [−0.08, 0.08], as shown in

Fig. 2.5a. The effective Poisson’s ratio is calculated to be ν = −0.26 (defined as −H11

H22

at the star point, where ∂W
∂F 11

= P 11 = 0). As for CMMs made of unit cell with pore B,

when subject to both shear and compression, mechanical instabilities can lead to the

bifurcation of microstructures [92]. This is observed when H22 = −0.125, H11 =

H21 = 0 and H12 ∈ [−0.7, 0.7]. As shown in Fig. 2.5b, a double well shape of the W

is observed as a function of H12 with two energy minima. Therefore, when the CMM

is subject to an overall compression H22 = −0.125, the CMM will bifurcate into two

different microstructures that correspond to these two minima.
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Figure 2.5: Effective strain energy density W (normalized by E) under different H
obtained from RVE calculations for unit cells with pore A and pore B : (a) W/E
versus H11 for pore A and (b) W/E versus H12 for pore B.

The inspections above offer insight into a reasonable range ofH for sampling data.

The range should be sufficiently wide so that important mechanics are reflected in the

database, while it should also be limited so that undesired behaviors like self-contact

are avoided with the current FEM simulation. The sampling region chosen for pore

A is:

{−0.2 ≤ H11 ≤ 0.2,−0.2 ≤ H12 ≤ 0.2,

−0.2 ≤ H21 ≤ 0.2,−0.2 ≤ H22 ≤ 0.2}, (2.8)

23



and that for pore B :

{−0.2 ≤ H11 ≤ 0.2,−0.8 ≤ H12 ≤ 0.8,

−0.8 ≤ H21 ≤ 0.8,−0.2 ≤ H22 ≤ 0.2}. (2.9)

We adopted Sobol sequences [124] to generate 5000 differet samples from each of

the above regions. Such sequence is often used to generate sparse yet representative

samples that are evenly distributed over the given region. To maximize the speed of

data collection, we conducted a mesh refinement study to obtain the optimal mesh

size under a reasonable tolerance (see SI). On a personal computer with 3.2 GHz Intel

Core i7 CPU and 16GB memory, it took about 20 hours to complete the process of

data collection.

2.4.2 Neural network training

Once the database is constructed, the next step is to train a neural network to estab-

lish a mapping from input vector x = (C11, C12, C22, ξ1, ξ2) to its target scalar output

y = W . We randomly split our database into a training set (90% of the data) and a

test set (the rest 10%). Our neural networks will be trained on the training set and

the test set is used to ensure good generalizability and avoid overfitting.

The neural network used here is a MLP with one hidden layer, which as we

will show later is able to provide sufficient accuracy for our problem. The logistic

function σ(y) = 1/(1 + e−y) is chosen as our activation function, and mean squared

error (MSE) is chosen as our loss function: MSE =
∑n

i=1(ŷ(i) − y(i))2/n, where n

is the number of data points evaluated and ŷ(i) denotes the output of the MLP

given input x(i). The neural network is trained using mini-batch stochastic gradient

descent with Adam optimizer [125]. Hyperparameters such as number of neurons

in the hidden layer are first optimized via k-fold cross-validation [126] (see SI). We
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Figure 2.6: Comparisons of the normalized effective strain energy densities obtained
via RVE calculation (solid line) and trained NN model (dashed line) for both pore A
(blue) and pore B (red) on the two benchmarks: (a) uniaxial strain, (b) simple shear
strain.

obtained the following optimal hyperparameters: learning rate 10−2, batch size 64,

and 128 neurons in the hidden layer. We then train our neural networks using these

hyperparameters. The training time for the NN is typically within 1 minute on a

personal computer. After training of 1000 epochs, our NN model reports a training

MSE of 6.11× 10−5 and a test MSE of 7.67× 10−5.

We performed polynomial regression on the same data set as a baseline compari-

son. As shown in Fig. 2.7, when the maximum degree of polynomial is increased, the

MSE tends to decrease. But when the maximum degree exceeds 10, the regression

problem start to become ill-conditioned and thus resulting in large MSE [127]. The
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Figure 2.7: Training and test MSE for polynomial regression.

best of polynomial regression reports a test error of 1.05× 10−3, which is more than

an order of magnitude larger than the neural network model.

We further validate our NN model in two test cases to serve as our benchmarks

by prescribing the following H :

1. uniaxial strain: H11, H12, H21 = 0, H22 6= 0

2. simple shear strain: H11, H21, H22 = 0, H12 6= 0

We conducted above two test cases on both unit cells with pore A and pore B and

ensure that the H ’s tested here are different from those in the database. The results

are shown in Fig. 2.6, where the effective strain energy obtained via RVE calculation

and that from the NN model are compared. It is observed that the NN model agrees

with the RVE calculation reasonably well. The errors between NN model and RVE

calculation are also small among both benchmarks: the respective MSEs are 2.42 ×

10−5 and 4.28× 10−5.

2.4.3 Deployment of the NN-based surrogate model

Now that we have obtained an optimized NN model of the effective strain energy

density WNN , we replace the W in Eqn (2.6) with the obtained WNN . Then, for any
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given ξ, the solution to the macroscopic problem boils down to finding the stationary

point δΨNN = 0 of the following functional:

ΨNN(u) =

∫
B
WNN

[
C(u), ξ

]
dX −

∫
∂BN

u · t dS, (2.10)

with u = ub and δu = 0 on ∂BD.

By extracting out the optimal parameters of the NN model, the explicit func-

tional form of WNN(C, ξ) is readily available, which can be computed iteratively

as described in Section 2.3. However, to find the stationary point of the above

functional ΨNN , one needs to efficiently evaluate the derivatives of ΨNN to com-

pute quantities like first Piola-Kirchhoff stress PNN = ∂WNN

∂F
as well as the tangent

stiffness tensor K = ∂PNN
∂F

. In this work, we made use of the automatic symbolic

differentiation feature provided by the open-source package FEniCS (specifically the

UFL component [128] of the package) to compute those derivatives. The standard

Newton-Raphson method is used to find the root of the nonlinear equations. We

use the automatic differentiation and other features of FEniCS, so that the code can

be written in a concise and near-math fashion, which provides an easier access to

broader audiences. Equivalently, the exact same derivatives could be computed ana-

lytically [36] or via finite differences [37].

2.5 Numerical Examples

In this section, we employed the aforementioned NN-based multiscale approach to

study the mechanical behavior of CMMs composed of 2D arrays of cells with different

pore shapes and compare that with direct numerical simulation. As shown in Fig. 2.8,

a square-shape CMM with a length L = 16L0 is studied. The CMM is subject to a

uniaxial testing with displacement control. Specifically, a displacement ∆L along

the e2 direction is applied at the top with the bottom kept fixed, while the left and
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Figure 2.8: Boundary conditions for uniaxial tests. The upper and lower sides of the
plate have fixed displacement conditions while the left and right sides are traction
free.

right sides of the CMM remain traction free. This uniaxial testing is a standard

practice to obtain the stress-strain curve of materials. Here, the engineering strain ε

and engineering stress σ of the CMM are defined as follows: ε = ∆L
L

and σ = F
L

,

where F =
∫

top
P22 dX1 is the total resultant force (per thickness) on the top surface.

We perform this uniaxial test on a CMM with spatially uniform pore shapes of

either pore A or pore B. Previous studies [20] suggested that compression can lead

to distinct mechanical behaviors of these two CMMs. This phenomenon is indeed

observed in Fig 2.9, where the deformed shapes of the CMMs under an engineering

strain of −10% are shown. Both DNS (Fig 2.9a and b) and the NN-based model

(Fig 2.9e and f) have shown that even under the same compressive loads, the two

CMMs develop very different shapes. We also computed the average displacement

field over each RVE element of the CMMs using data from DNS. The results are

shown Fig 2.9c and d.

Specifically for CMMs with pore A, as mentioned in Section 2.4.2, a negative

Poisson’s ratio is expected, i.e., the compression in e2 direction will lead to a con-

traction also in e1 direction. This can be easily observed for the DNS results shown

in Fig 2.9a, where the CMM starts to contract in the middle region. Although not

as visually observable, the NN-based model also produces that result, as shown in
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Figure 2.9: Deformed configurations of CMM with pore A (left column) and pore
B (right column) under a 10% uniaxial compressive strain. (a) and (b) are results
obtained from DNS, (c) and (d) are the RVE-averaged field of DNS, and (e) and (f) are
obtained via NN-based model. Color contours indicate the value of u1 (displacement
component along e1 direction).

Fig. 2.9e where displacement component u1 is plotted. We can observe that it is

positive on the left and negative on the right, which is a clear sign of contraction. As

for CMMs with pore B, compression can lead to a bifurcation of local microstructure,

as mentioned in Section 2.4.2, which again can be observed from the DNS result in

Fig. 2.9b. For NN-based model, since the microstructural information has been aver-

aged out, such bifurcation can only be inferred indirectly. Recall that in Fig. 2.5b, the

two minima of W correspond to nonzero shear deformation with equal and opposite

shear components. In Fig. 2.9f, we observe that under pure compression, the CMM

develops a large local shear in the upper and lower part of the material, with opposite

29



� σ
E

DNS − pore A
NN − pore A
DNS − pore B
NN − pore B

�10−2

�ε
Figure 2.10: Stress-strain curve for CMM under uniaxial test with pore A (red) and
pore B (blue) obtained via DNS (solid line) and NN-based model (dashed line).

shear directions. The results in Fig. 2.9, whether obtained via DNS or the NN-based

approach are all in qualitative agreement with previous experimental work [20].

Beyond visual qualitative comparisons, we obtained a stress-strain (σ-ε) curve for

both CMMs to quantitatively assess the accuracy of our NN-based approach. The

curves are obtained by varying the applied engineering strain ε from −10% to 10%

and the results are shown in Fig. 2.10. The curves obtained from DNS and the NN-

based model are almost identical for both pore A and pore B when under tension,

even at large strain up to 10%. The NN-based model can reproduce the result of

DNS for pore B for compression, but it starts to deviate from DNS results for pore A

when the compression becomes large. This deviation is observed even with a much

finer mesh for our NN-based approach.

One possible reason for such behavior is the boundary effect. For the CMMs with

pore B we can observe some variation of microstructures near the boundary, but the

variation is quite smooth and the main effect – the bifurcation into two shear states –

is captured by the NN-based model. However for CMMs with pore A, on the left and

right boundaries there are strong pore-boundary interactions, resulting in a drastic

change in pore shapes (see SI). This boundary effect persists even with the increasing
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number of composing unit cells. Another possible reason is that there is strong

microstructure localization in the case of pore A. We can see that the rotation of the

holes is drastic, and the distances between holes are small, thus leading to strong

local interactions between the RVEs (Fig. 2.9a and SI). This is in contrast to the case

of pore B, where pore rotations vary more smoothly yielding no strong localization

(Fig. 2.9b and SI). Moreover, the strongly localized deformations in the case of pore

A can lead to contacts between the interior boundaries of the pore, at which point

our finite element model becomes invalid (without extension to handle contacts). In

conclusion, the strong local variations in the microstructural features may impede

the predictive power of our computational scheme. Possible ways of resolving this

issue include using a separate model to account for the boundary effects [129], or

utilizing more advanced homogenization techniques to deal with the aformentioned

localization effects [101, 102].

Aside from accuracy, we also compared the efficiency of the NN-based approach

with DNS. Recall that one of our main motivations to construct such a surrogate-

based approach is to reduce the computational complexity of DNS. This computa-

tional expense is mainly due to the fact that a small mesh size is needed to resolve

the detailed cellular geometries, which results in a large number of degrees of free-

dom (DoF). Our NN-based model can use a much coarser mesh since the detailed

microstructural features have already been averaged out and factored into the effec-

tive strain energy density. This significantly reduces the degrees of freedom when

solving for the macroscopic behavior of the CMM–of course at the cost of losing

the detailed local information of relevant fields. Table 2.1 summarizes the computa-

tional performance of DNS and NN-based approach when they are used to generate

the stress-strain curve in Fig. 2.10. NN-based approach needs much fewer DoF to

accurately capture the overall mechanics of the CMMs and hence can reduce the

computational time by up to two orders of magnitude for both CMM with pore A
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DoF computation time [s]

DNS - pore A - compression
158310

5.15× 102

DNS - pore A - tension 7.42× 102

NN - pore A - compression
290

6.18

NN - pore A - tension 6.41

DNS - pore B - compression
139520

5.33× 102

DNS - pore B - tension 5.19× 102

NN - pore B - compression
290

8.20

NN - pore B - tension 6.94

Table 2.1: Comparison of DoF (degrees of freedom) and computation time (in secends)
for DNS and NN with different pore shapes and loading conditions.

and that with pore B. Note that for our problem, we used the same increment in ε

to obtain the stress-strain curve. For time-dependent problem, it is also important

to examine the numerical stability of both approaches when different time steps are

used.

2.6 Discussion

Our NN-based approach is shown to efficiently predict the mechanical behavior of

CMMs with homogeneous ξ but an inhomogeneous deformation field. Here we further

consider a CMM whose ξ is macroscopically inhomogeneous: ξ (X) =
X2

L
ξB + (1− X2

L
)ξA,

a linearly varying ξ along the e2 direction. The shape of the CMM is still a square,

with size L = 16L0 and under the same uniaxial loading as described in Fig. 2.8.

A maximum strain of 20% is applied to this CMM. Its deformed shape is shown in

Fig. 2.11 when under a tensile strain of 20%. The macroscopic responses for both

DNS and the NN-homogenized model agree with each other qualitatively by visual

observation. When the applied ε > 0, i.e., tensile loading, we have found that the

NN-based approach can reproduce the DNS results very well–as in the case of a
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a b

Figure 2.11: Deformed configuration of a CMM with non-uniform pore shapes under
a 20% uniaxial tension obtained via (a) DNS and (b) NN-based approach. Color
contours indicate the value of u2.

CMM with homogeneous ξ. While when under compression, the NN-based approach

starts to diverge and fails to find a solution even at small compression.

We suggest two explanations for this phenomenon. First, since W is a strongly

nonlinear function of ξ, especially when under compression, the ability of our neural

network to capture that functional dependence remains uncertain, given that only two

different ξ’s (ξA and ξB) are included in the training data. Second, since the local

mechanical properties of the CMM depend on ξ in a strongly nonlinear fashion, the ξ

used in this study can still create a strong local variation. When the characteristic

length of that variation is comparable to the RVE size, the assumption of separation

of scales can break and in that case our multiscale framework will fail. Particularly in

the above example, when the CMM is under uniaxial tension, as shown in Fig. 2.10,

the mechanical properties of CMMs vary smoothly between different ξ’s. Therefore,

the NN-based approach gives us good agreement with the DNS results in tension.

However, when under compression, as the properties vary drastically between different

ξ’s, our NN-based approach starts to fail.

To enhance the fidelity of our NN-based approach for CMMs with complex pore

shapes, it is useful to include a larger number of sampled ξ’s in the database. This

way, our neural networks can better capture the nonlinear dependence of W on the
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geometric parameters ξ. We can validate our results by conducting similar uniaxial

tests on CMMs with a homogeneous ξ that are different from those in the training

data and compare with DNS results. Once that dependence is established with good

accuracy, we can use the NN-based approach to predict the mechanical behavior of

CMMs with an arbitrary uniform ξ or those with a non-uniform ξ, which varies

“smoothly enough”.

However, for those ξ’s that lead to large local variations and with characteristic

lengths comparable to the size of RVE, our NN-based approach will fail since it

breaks the basic assumption of our multiscale framework. For those CMMs, we have

to rely on DNS or some other approaches. We must be cautious about the spatial

inhomogeneity of the problem that we are solving: be it either in the geometric

features or in the deformation field. For the multiscale approach to work, we must

ensure that those variations have negligible influence on the macroscopic problems of

interest. In principle, our NN-based multiscale approach only works when the size of

the CMM is much larger than of the RVE and when there is no strong localization

effect.

In Section 2.5 we have demonstrated that our NN-based scheme can capture the

mechanics of moderately-sized CMM’s with reasonable accuracy, but with significant

computational savings over DNS. We anticipate further reduction for even larger

CMM size. Nevertheless, it is worth noting that the most time-consuming step of our

NN-based scheme is not solving the macroscopic problem using NN-based model, but

the generation of the training data. As reported in Section 2.4.1, it takes about 20

hours to construct the database, although it is trivially parallelizable. Even though it

is time-consuming, this generation step is only required once, and the resulting NN-

based model can be used to solve multiple problems. Therefore, significant time can

still be saved compared to other multiscale methods like FE2 where micro- and marco-

scopic problems have to be solved at the same time, as pointed out in Refs [36, 37].
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Owing to its great computational efficiency, the NN-based approach proposed in

this work can be particularly useful for solving design problems–the reverse engi-

neering of CMMs to achieve specific mechanical properties. Compared with typical

multiscale approaches, our approach provides a straightforward way of evaluating the

necessary derivatives needed for the sensitivity analysis [130, 131], once the functional

dependence of W on ξ are well established. Therefore we envision that those power-

ful tools used for structural topological optimization of composite materials can now

be used for the design of CMMs under the NN-based framework. However, since our

NN-based multiscale approach only works for CMMs with smoothly varying ξ, proper

regularization has to be imposed to ensure that the optimal solution that we obtained

does not violate that condition. Other structural parameters can also be included for

the design of CMM. For example, the porosity of the CMM, the arrangement of the

pores (other than the square arrays used in this work), etc.

Differentiability and fast deployment are two important motivators for choosing

neural networks for this work. Other than neural networks and polynomial regression

in Section 2.4.2, there are many machine learning techniques available, each suit-

able for different types of problems. For example, decision trees [132] are a popular

machine learning technique which offers great interpretability, however they are not

typically differentiable. Gaussian process regression can be an alternative to neu-

ral networks for small datasets, and can sometimes outperform neural networks in

terms of accuracy. Yet, there can be great computational cost for deployment once

the dataset becomes large [133]. The choice of machine learning techniques largely

depends on the types of problem and applications considered. Sometimes multiple

machine learning techniques can be combined together for optimal performance. In

this work, our aim is to demonstrate that neural networks are a promising tool for

the design of CMMs. There are limitations – the need to generate a large dataset,

the need for smoothly varying ξ – but we expect that future work may be able to
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compose the model we present with other machine learning techniques to relax these

restrictions.

2.7 Conclusion

In this work, we proposed a neural network based multiscale computational scheme

which can be used to predict the overall mechanical behavior of cellular mechanical

metamaterials under large deformation. Our scheme adopts a data-driven approach

to estimate the functional dependence of the effective strain energy density on com-

plex cellular geometries and finite overall deformation. We first identify a proper

RVE of the cellular solid and build an offline training data set by varying overall

deformation as well as cellular geometries. The database is then used to train and

validate a neural network model that can best represent the effective strain energy

density as a function of cellular geometries and overall deformation. This neural

network model is then treated as a coarse-grained constitutive model of the metama-

terial and used to predict its overall mechanical behavior. Under certain conditions,

our proposed scheme can significantly reduce the computational time compared with

direct numerical simulation while achieving reasonable accuracy, especially when the

metamaterial consists of a large number of unit cells. We discussed the limitations of

the current scheme and emphasized the types of problems for which it is appropriate.

Finally, we discussed the potential of using this to enable efficient rational design of

metamaterials.
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Chapter 3

Mapped Shape Optimization

Method for Designing Cellular

Mechanical Metamaterials

In this chapter, we propose the mapped shape optimization method that solves the

inverse design problem of the same cellular mechanical metamaterials discussed in

Chapter 2. The proposed method provides efficient computations of the sensitiv-

ity of objective functions to key geometric parameters using the adjoint method.

The design framework is of general purpose, and we show several benchmark design

problems. Notably, automatic differentiation technique, which is the workhorse for

training neural networks in modern deep learning, is used in this work but with a

different goal.

3.1 Introduction

Cellular mechanical metamaterials (CMMs) are common observation in nature, such

as honeycombs, as well as in industry, such as microlattices. One key feature of these

materials is that they can have unique mechanical properties such as high stiffness-
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and/or strength-to-density ratio [90] and these properties are largely determined by

their geometries . Traditionally, limited by the fabrication technologies, the study

of this field tends to focus on several simple structures and under relatively small

deformation [91]. Yet in the past decade, due to the advent of new technologies such

as additive manufacturing [14, 13], sophisticated cellular architectures made of soft

materials such as elastomers can now be easily realized in labs. Such metamaterials

not only can go under large deformation without failure, they further open up the

possibility of novel mechanical properties, including auxeticity, i.e. negative Pois-

son’s ratio [2, 20, 92], shape morphing [3], tunable bandstructures [4] and energy

absorption [5]. These properties have great potential for many exciting engineer-

ing applications, e.g., soft actuators, materials with in situ tunable functionalities,

reusable energy-absorbing materials, etc. [6, 7, 10, 8, 12, 9].

The key step that can bridge the prospect of soft CMMs to real-world engineering

application is the ability to design the desired type of CMMs for particular purposes.

Since the unique properties of soft CMMs largely rely on their geometries, an ef-

ficient, yet reliable computational framework for shape optimization is the core of

this ability. Techniques such as the density based method [46, 47], the evolution-

ary structural optimization (ESO) [48], and the level set method (LSM) [49, 50, 51].

While these methods have been demonstrated to be extremely powerful for tradi-

tional problems like stiffness optimization of linear elastic structures, they might not

necessarily be best suited for optimization of CMMs. One of the reasons are the

geometric and material nonlinearities involved in the forward problem. To achieve

novel properties, CMMs tend to undergo large deformation, which is known to be

a strongly nonlinear problem. Such large deformation is often accompanied by me-

chanical instabilities occurring at both the micro and macro scales, which adds extra

difficulties to the problem. The forward problem itself is already non-trivial, not to

mention solving the inverse problem, namely the design problem, which often involves

38



iterations of solving the forward problems. Despite the complexity, several related

works have made positive attempts to metamaterial shape optimization with large

deformations [52, 53, 54].

In this work, we propose a mapped shape optimization method (MSOM) to tackle

this problem, which is a numerically stable and easy-to-implement method that solves

the design problems for CMMs efficiently. MSOM uses gradient-based optimization

and the gradient of the objective function to the geometric parameters is computed

using the adjoint method [55, 56]. The novelty of MSOM is that it uses a pre-

defined referential configuration, a concept similar to what appears in Arbitrary La-

grangian–Eulerian (ALE) methods [57]. In the ALE description of motion, neither

the material configuration nor the spatial configuration is taken as the reference,

while a third, referential configuration is used for computations. In MSOM, we also

have such a referential configuration where all numerical computations are performed.

The choice of this referential configuration is arbitrary, and we fix it. Therefore, the

computational mesh can stay the same throughout the optimization loops.

Compared with classical shape optimization methods, MSOM has several advan-

tages when applied to the optimization of CMMs. MSOM is not a density-based

method, hence to avoid dealing with inherent difficulties like the “checkerboard”

problem [58]. MSOM shares certain similarity with the level set method in the sense

that they both rely on the concept of “shape derivative” [59]. The dichotomy of

Eulerian and Lagrangian specifications divides the level set methods into two classes:

the Eulerian shape capturing method with a fixed mesh [49, 50, 60]; the Lagrangian

shape tracking method with a moving mesh to represent the shape [61, 62]. MSOM

can be considered as a third paradigm that uses a referential description. In contrast

to the Eulerian level set method, MSOM avoids the difficulties implied by stable and

accurate evolutions of the level set function; compared to the Lagrangian level set
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method, MSOM saves the numerical complications of modifying the mesh object since

it uses a fixed mesh.

The chapter is organized as follows. Section 3.2 introduces the geometric setting

of our problem as well as the fundamentals of finite-deformation elasticity. Section 3.3

focuses on the mathematical foundation and detailed procedures of MSOM. In Sec-

tion 3.4, we used three important types of numerical examples to demonstrate the

advantage of our method. They include the optimization of the negative Poisson’s ra-

tio, controlling the instability point, as well as the band-structures. We then conclude

in Section 3.5.

3.2 Cellular Mechanical Metamaterials

The main goal of this section is to introduce the subject of this research: cellular me-

chanical metamaterials (CMMs). We will explain the the geometric parametrization

of the structure, the material model, and the boundary value problem involved. The

background knowledge about CMMs forms the prerequisite for the discussions of the

optimization problems introduced later.

3.2.1 Problem geometry

To connect with previous related work [20, 92, 87], we study a specific class of CMMs

that are elastomers containing periodic pores. It was shown that by changing the

pore shapes, the CMMs can exhibit a wide range of interesting mechanical behaviors.

In polar coordinates, the contours of these pores are parametrized as

r(θ) = r0(1 + ξ1cos(4θ) + ξ2cos(8θ)), (3.1)
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where r and θ are polar radius and polar angle respectively, ξ1 and ξ2 are two param-

eters that control the shape, and r0 is given by

r0 =
L0

√
2φ0√

π(2 + ξ2
1 + ξ2

2)
, (3.2)

with L0 being the unit cell length and φ0 being the initial porosity. In this work, the

collection of

α = (ξ1, ξ2, φ0) (3.3)

are the design parameters upon which we will perform optimization. For visualization,

a family of various pore shapes are illustrated in Fig. 3.1 with ξ1 ranging from −0.2

to 0, ξ2 ranging from −0.1 to 0.1, and φ0 fixed to be 0.5.

−0.2 0−0.1

0

−0.1

0.1

ξ1

ξ2

Figure 3.1: A map from the design parameters to the pore shapes indicated by
Eq. (3.1). Porosity φ0 is fixed to be 0.5.

3.2.2 Finite deformation elasticity

The mechanical behaviors of the CMMs are assumed to follow finite strain theory.

In an unstressed state, the body occupies a region BX ⊂ R3 (material/Lagrangian

configuration). Upon mechanical loading, the body deforms and occupies a different

region Bx ⊂ R3 (spatial/Eulerian configuration). Deformation can therefore be de-
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scribed as a mapping: ϕ : BX → Bx, which maps any material point X ∈ BX to its

counterpart x ∈ Bx, i.e. x = ϕ(X). The corresponding displacement field is defined

as u = x−X and the deformation gradient F = ∂x
∂X

.

For a hyperelastic material, the constitutive model can be defined by a strain

energy density function (per volume) W , which depends on F . The first Piola-

Kirchhoff stress P is given by P = ∂W
∂F

. The displacement field u at static equilibrium

can be determined by solving for the boundary value problem (in the absence of body

force)

∇X · P = 0 in BX , (3.4)

where the divergence operator is in the material configuration.

In this work, a Neo-Hookean material model is used for the strain energy density

function W

W (F ) =
µ

2
(J−2/3I1 − 3) +

κ

2
(J − 1)2, (3.5)

where J = det(F ), I1 = tr(C); µ = E
2(1+ν)

and κ = E
3(1−2ν)

denote the initial shear

and bulk moduli, respectively, E and ν being the material’s Young’s modulus

and Poisson’s ratio. The above W is commonly used to model isotropic elas-

tomers that are almost incompressible. We adopt a plane strain setting here,

i.e., ui = ui(X1, X2), i = 1, 2 and u3 = 0.

3.2.3 Boundary conditions

The nonlinear problem posed in Eq. (3.4) can be numerically discretized and solved

for a finite size structure, e.g., the (leftmost) 6× 6 elastomeric matrix in Fig. 3.2.
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A

C

B

D

Figure 3.2: A 2x2 RVE taken from a cellular porous structure with repeating units.
Periodic boundary conditions are applied to the RVE. Here we specify a macroscopic
deformation gradient H =

[
0 0.1
0 −0.1

]
. The deformed configuration (rightmost) shows

the resulted displacement field of this RVE: u = H ·X + u? with u? being the peri-
odic fluctuation. The rightmost dashed profile shows the deformation corresponding
to the applied mean displacement u = H ·X.

However, to reduce computational cost and avoid spurious boundary effects, we

focus exclusively on studying a Representative Volume Element (RVE). The choice

of RVE must properly reflect local properties in the sense that it can be treated as a

material point when considering overall macroscopic mechanical responses. Following

previous studies, we choose a 2× 2 array of unit cells to be our RVE, as shown of the

middle structure ABCD in Fig. 3.2.

The RVE is subject to a macroscopic deformation gradient F condition such that

the displacement field u is decomposed into a macroscopic (overall) and a microscopic

(fluctuation) part u?:

u(X) = (F − I) ·X + u?(X) = H ·X + u?(X), (3.6)

where H is the macroscopic displacement gradient and H = F − I. The macro-

scopic deformation gradient F (or the macroscopic displacement gradient H) is

uniform all across the RVE. When specifying the macroscopic loading conditions,

one can choose to specify either F or H . In fulfilling the celebrated Hill-Mandel

condition [95], periodic boundary conditions are applied for fluctuation displace-
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ments such that u?AD = u?BC and u?AB = u?DC ; opposite conditions for tractions such

that tAD = −tBC and tAB = −tDC .

3.3 Mapped Shape Optimization Method

In this section, we propose the mapped shape optimization method (MSOM) and

explain it in detail. We first establish a differentiable chain from the pore shape

parameter α to a certain objective functional J . The computations from a given

pore shape α to the objective J is referred to as the forward problem. We wish

to compute the total gradient of J to α by means of the adjoint method, enabling

efficient gradient-based optimization algorithms for the inverse problem. The math-

ematical structure of the inverse problem falls into the category of PDE-constrained

optimization. However, the change of the pore shape indicates a change of the com-

putational domain that often needs re-meshing, breaking the differentiability of the

forward chain. MSOM is developed to overcome this difficulty by introducing a fixed

referential domain and mapping all computations to this referential domain, therefore

avoiding an actual change of the computational domain to allow for adjoint optimiza-

tion.

3.3.1 The referential configuration

We have introduced the finite strain problem in the total Lagrangian formulation

(see Eq. (3.4)). The classic deformation map ϕ connects a material point X to a

spatial point x. For MSOM, we propose a third configuration Bχ, which we refer

to as referential configuration. We define the shape map ψ : Bχ → BX , which maps

a referential point χ ∈ Bχ to a material point X ∈ BX , i.e. X = ψ(χ). We also

define the total map φ : Bχ → Bx that maps a referential point χ ∈ Bχ to a spatial
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point x ∈ Bx, i.e. x = φ(χ). Naturally, we have φ = ϕ ◦ψ. Fig. 3.3 shows the three

domains and the one-to-one transformations relating the configurations.

ϕ

φψ

X x

χ

Figure 3.3: The referential configuration, the material configuration, and the spatial
configuration with maps between them.

It is clear that for different pore shapes, the material domains BX must change.

However, the referential domain Bχ can be fixed. This allows us to perform shape

optimization without actually changing the shape of computational domains, i.e.,

we only need to solve the problems in the same, fixed referential configuration.

This idea is reflected in Fig. 3.4, where we show the three configurations for a

typical RVE. In this case, the referential domain Bχ is set to be a square with

four identical circular pores. The material domain BX corresponds to a choice

of α = (ξ1, ξ2, φ0) = (−0.05,−0.05, 0.55). The spatial domain Bx shows the deformed

body with an imposed macroscopic displacement gradient H =
[

0 0.1
0 −0.1

]
.
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ϕ

φψ

BX Bx

Bχ

∂BEχ

∂BIχ

Figure 3.4: The referential domain Bχ, the material domain BX , and the spatial
domain Bx.

3.3.2 The forward problem

Conceptually, there are two major steps in the forward problem. The first step is to

compute the shape map ψ given the pore shape parameters α. Once ψ is known,

the second step is to solve for problems of interest bearing the shape, such as to find

the deformation map ϕ subject to certain loading conditions. Throughout the work,

the formulation of the first step is always the same, yet the formulation of the second

step depends on specific problems.

Step 1 To solve for ψ given α, we formulate a pseudo linear elasticity problem, a

similar approach being found in [134]. The problem states that find shape displace-
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ment s(χ) := X − χ = ψ(χ)− χ such that

∇χ · σ = 0 in Bχ,

s = 0 on ∂BEχ ,

s = b on ∂BIχ, (3.7)

where

σ = 2µpε+ λptr(ε)I

ε =
1

2
(∇χs+∇χs>) (3.8)

with µp and λp being the pseudo Lamé parameters. Note that the dependency of

α enters the equations in b as part of the Dirichlet boundary conditions. We have

fixed s to be zero on the exterior boundaries ∂BEχ (see Fig. 3.4), while on the interior

boundaries ∂BEχ the shape displacement s must conform to the pore shape described

by α. The choice of µp and λp are not necessarily to be constants. Rather, they

can be fields as µp(χ) and λp(χ). The purpose of tuning these two parameters is to

generate a relatively smooth ψ, as shown of BX in Fig. 3.4.

One convenient way to capture the link between b and s is through weakly im-

posing boundary conditions of s = b on ∂BIχ via Nitsche’s method [135, 136]. Con-

sequently, we state the weak form of Eq. (3.7) as follows: find s ∈ V , such that

∀w ∈ V ,

Π
(
[s;w], [b]

)
=

∫
Bχ
σ(s) : ∇χw dχ−

∫
∂BIχ

w · σ(s) · n dS −
∫
∂BIχ

s · σ(w) · n dS+

η

∫
∂BIχ

s ·w dS +

∫
∂BIχ

b · σ(w) · n dS − η
∫
∂BIχ

b ·w dS = 0,

(3.9)
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where

V =
{
s ∈ H1(Bχ)

∣∣ s = 0 on ∂BEχ
}
, (3.10)

is the set of admissible field, n is the outward normal, and η is a large constant. The

weak form is linear in s and is ready for numerical discretization.

We us the finite element method for the solution. Let sh(χ) =
∑N

n snnn(χ) be

the discretized solution of s(χ) where sn is the nth degree of freedom and nn(χ) is the

basis function. Let S = {sn} ∈ RN be the vector of degrees of freedom. Similarly, let

bh(χ) =
∑M

m bmnm(χ) be the discretization of b(χ), and B = {bm} ∈ RM . Eq. (3.9)

can be discretized into

G(S,B) = 0,

G : RN × RM → RM . (3.11)

We leave out the details of assembling G for the sake of brevity.

Step 2 This step is problem dependent. For illustration of the method, we consider

a model problem. Let us revisit the problem posed in Eq. (3.4). Besides solving

the strong problem, the displacement field u can alternatively be determined by

minimization of the following functional:

E([u]) =

∫
BX

W (F ) dX. (3.12)

To get the weak form, we take the variation of E with respect to u in the direction

of v.

δE([u;v]) =

∫
BX
P (F ) : ∇Xv dX = 0. (3.13)
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To build the link between s and u, MSOM requires the integral in Eq. (3.13) to be

transformed to the referential domain Bχ. The problem states that find u ∈ U , such

that ∀v ∈ U ,

δE([u;v], [s]) =

∫
Bχ
P
(
∇χx ·

(
∇χX

)−1︸ ︷︷ ︸
F

)
: ∇χv ·

(
∇χX

)−1︸ ︷︷ ︸
∇Xv

det
(
∇χX

)
dχ︸ ︷︷ ︸

dX

= 0,

(3.14)

where

U =
{
u ∈ H1(Bχ)

∣∣ u periodic on ∂BEχ
}
. (3.15)

The transformation is nothing but a change of variable, where we have used

Fij =
∂xi
∂Xj

=
∂xi
∂χk

∂χk
∂Xj

=
(
∇χx · (∇χX)−1

)
ij
,

dX = det
(
∇χX

)
dχ. (3.16)

The dependency of s and u in Eq. (3.14) can be seen by replacing X = χ+ s

and x = χ+ s+ u. We emphasize that the shape displacement s has been explicitly

incorporated into the weak form of Eq. (3.14), in contrast to Eq. (3.13), a fact that

makes optimization possible.

For finite element discretization, let uh(χ) =
∑L

l slnl(χ) be the discretized so-

lution. Let U = {ul} ∈ RL be the vector of degrees of freedom. Eq. (3.14) can be

discretized into

K(U ,S) = 0,

K : RL × RN → RL. (3.17)
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In FEniCS, codes are written in a concise and near-math fashion. With the energy

functional (Eq. (3.12)), FEniCS is able to derive its first variation (Eq. (3.13)) auto-

matically. This automatic differentiation feature is enabled due to the UFL compo-

nent [128] of the package. The procedures for linearization of Eq. (3.17) for Newton’s

method to solve are also automated, whose details we omit. It is noted that the CMMs

may undergo extreme deformations, where Newton’s method often fails to converge.

Therefore alternative methods must be applied such as dynamic relaxation [137] or

arc-length method [138]. In this work, we adopt the dynamic relaxation solver origi-

nally developed in [139].

3.3.3 Adjoint optimization

To this point, we state the optimization problem that is the main focus of this work,

and we use the adjoint method to compute the gradient for efficient optimization

algorithms. Formally, we aim to solve the following optimization problem with J

being some objective functional depending on u:

min
α∈RK

J (u), (3.18)

where the design parameter α is implicitly linked to u by the PDEs described in the

forward problem. The discretized counterpart of the optimization problem can be

stated as

min
α∈RK

J(U). (3.19)
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Here is a chain of the dependency relationship of the involved variables:

Original forward problem: α→ b→ s→ u→ J , (3.20a)

Discretized forward problem: α→ B → S → U → J. (3.20b)

The maps from α to b and from u to J are explicit, hence the derivatives are

straightforward to compute. In contrast, the maps from b to s and from s to u are

implicitly defined by the forward PDEs mentioned in the two major steps.

We define the reduced functional Ĵ(α) = J(U) to be the objective function di-

rectly represented by α. The goal is to compute the total gradient dĴ
dα

. We first derive

the tangent linear equations from Eq. (3.11) and Eq. (3.17):

∂G(S,B)

∂S

dS

dB
= −∂G(S,B)

∂B
, (3.21a)

∂K(U ,S)

∂U

dU

dS
= −∂K(U ,S)

∂S
. (3.21b)

Therefore

dĴ

dα
=

dJ

dU︸︷︷︸
1×L

dU

dS︸︷︷︸
L×N

dS

dB︸︷︷︸
N×M

dB

dα︸︷︷︸
M×K

=

λ∗u︷ ︸︸ ︷
dJ

dU

(∂K
∂U

)−1 ∂K

∂S

(∂G
∂S

)−1

︸ ︷︷ ︸
λ∗s

∂G

∂B

dB

dα
(3.22)

can be computed efficiently with the adjoint equations

∂K

∂U

∗
λu =

dJ

dU

∗
, (3.23a)

∂G

∂S

∗
λs =

∂K

∂S

∗
λu. (3.23b)

We perform adjoint optimization based on dolfin-adjoint [140], an open-source

library that interfaces with FEniCS for deriving the discrete adjoint and tangent linear

models from a forward model.
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3.3.4 Verification of the total gradients

We use Taylor test to verify the correctness of the computed gradient. Given a

perturbation δα, Taylor’s theorem states that for residuals to decrease, the rate of

convergence is 1 by a zeroth-order expansion

rzeroth =
∣∣Ĵ(α+ hδα)− Ĵ(α)

∣∣→ 0 at O(h), (3.24)

and the convergence rate is 2 by a first-order expansion

rfirst =
∣∣Ĵ(α+ hδα)− Ĵ(α)− h dĴ

dα
· δα

∣∣→ 0 at O(h2). (3.25)

We conduct a case study to pass the Taylor test. For the forward problem, we

follow the parameters used in Fig. 3.4 and choose the design variable α = (ξ1, ξ2, φ0) =

(−0.05,−0.05, 0.55). Then the shape displacement s can be determined, based on

which we impose the macroscopic deformation gradient H =
[

0 0.1
0 −0.1

]
to compute the

material displacement u. For adjoint optimization, we define the objective functional

to be the total stored strain energy J (u) =
∫
BX

W dX. The optimization problem is

understood as to find an optimal pore shape such that when the RVE is subject to a

certain macroscopic deformation gradient condition, the stored elastic energy should

be minimized.

We set h = 10−5, 5×10−6, 2.5×10−6, 1.25×10−6, and α to be along the directions

of ξ1, ξ2, φ0 separately. The convergence results are shown in Fig. 3.5. As expected,

the residuals of the first order expansion decrease at a rate proportional to 2, which

validates the total gradients.
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(a) (b)

Figure 3.5: Convergence reports of (a) zeroth- and (b) first-order Taylor expansion.

3.4 Numerical Examples

The CMMs studied in this research have wide applications due to their unique me-

chanical properties. In this section, we apply MSOM to solve three representative

optimization problems: designing metamaterials with negative Poisson’s ratio, con-

trolling critical load for buckling, and maximizing band gaps for phononic structures.

Compared with traditional approaches that often perform heuristic search for optimal

structures, MSOM guides the optimization with gradients and is much more efficient.

The presentations of the three numerical examples are structured to follow the

same pattern. We first discuss the background and significance of the application.

Then the forward problem is introduced. The final part is to bring up the optimization

problem and use MSOM for solutions.

3.4.1 Negative Poisson’s ratio

CMMs exhibit negative Poisson’s ratio behavior when under compression [2, 20]. The

auxetic behavior is triggered by an elastic instability that leads to a pattern trans-

formation. It is uncovered that pore shapes play an important role in the mechanical
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response of the CMMs [92]. Yet, a sensitivity computation that quantitatively re-

flects how the auxetic behavior is affected by the change of pore shape is lacking. We

address this question by formulating the problem into the framework of MSOM.

Consider imposing a fixed macroscopic displacement gradient H =
[ −0.04 0

0 −0.1

]
condition to a RVE parameterized by α and solving for the equilibrium displacement

field u. The forward problem follows the formulations of Step 1 and Step 2 in

Section 3.3.2. It is useful to consider the macroscopic first Piola-Kirchhoff stress

P = V −1

∫
BX
P dX, (3.26)

where V = 4L2
0 is the total volume for a RVE including the voids. We define the

effective Poisson’s ratio to be

ν = −H11

H22

. (3.27)

The effective Poisson’s ratio only makes sense when P 11 vanishes. Therefore, the

optimization problem is formulated as

min
α∈RK

P
2

11. (3.28)

The optimization problem essentially seeks a solution (an optimal pore shape) that

enables the RVE to have a prescribed effective Poisson’s ratio ν = −H11

H22
= 0.4. By

MSOM, we obtain the gradient of the objective function, which is then passed to

standard optimization algorithms L-BFGS-B [141, 142] with lower and upper bounds

for design variables to avoid nonphysical solutions. The optimization results are

demonstrated in Fig. 3.6 (b). As shown, the objective value decreases to almost zero

in only several steps, indicating that a pore shape for P 11 ≈ 0 has been found. The

optimization step is counted each time L-BFGS-B queries a gradient computation.
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To view the results through a different lens, we compute the macroscopic strain

energy density W via the average W over the RVE:

W = V −1

∫
BX

W dX. (3.29)

The macroscopic first Piola-Kirchhoff stress can alternatively be derived as

P =
∂W

∂F
. (3.30)

In our problem, it is expected that for the optimial RVE we have P 11 = ∂W
∂F 11
≈ 0

at H11 = −0.04. Therefore we fix H12 = 0, H21 = 0, and H22 = −0.1 to run the

forward problems with varying H11 and show W in Fig. 3.6 (a). We see that W

achieves a local extreme at H11 = −0.04, hence by first order condition P 11 ≈ 0,

justifying our statement.

(a) (b)

Figure 3.6: Optimization results for a RVE with specified negative Poisson’s ratio. (a)
The normalized macroscopic strain energy density for the optimal RVE with varying
H11. The three RVEs correspond to H11 = −0.08, H11 = −0.04, and H11 = 0. (b)
The optimization iterations. The three RVEs correspond to the first two iterations
and the final iteration.

The energy density plot in Fig. 3.6 (a) shows that the optimal RVE achieves a

local minimum at H11 = −0.04 among all possible H11 values, which means that the
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RVE is at a stable equilibrium under this macroscopic condition. It is of interest to

test if a similar behavior exists when varying along the shear direction, i.e., fixing

other components but adjusting H12. Therefore we consider imposing a macroscopic

displacement gradient H =
[

0 0.3
0 −0.125

]
condition to a RVE. The optimization problem

is formulated as

min
α∈RK

P
2

12. (3.31)

The physical meaning of this problem is to find an optimal pore shape such that

the RVE achieves a stable equilibrium at H12 = 0.3. As shown in Fig. 3.7 (b), the

objective value decreases to almost zero quickly. To validate the optimization results,

we fix H11 = 0, H21 = 0, and H22 = −0.125 to run the forward problems with varying

H12 and show W in Fig. 3.7 (a). It is observed that W achieves a local minimum

at H12 = 0.3 among all possible H12 values, thereby validating the RVE is at a stable

equilibrium.

(a) (b)

Figure 3.7: Optimization results for the shear test. (a) The normalized macroscopic
strain energy density for the optimal RVE with varying H12. The three RVEs corre-
spond to H12 = 0, H12 = 0.3, and H12 = 0.6. (b) The optimization iterations. The
three RVEs correspond to the first two iterations and the final iteration.
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3.4.2 Buckling control

To understand the buckling behavior of CMMs under external loading, we investigate

the stability of RVEs. Without loss of generality, we consider biaxial compression for

RVEs. Specifically, we assume the macroscopic displacement gradient H =
[ −λ 0

0 −λ
]
,

where λ ≥ 0 is the monotonically increasing load parameter. It is observed that when

λ is small, the RVE achieves a stable equilibrium. With increased λ, the geometric

and material nonlinearities start to affect the stability of the system. Upon reaching a

critical value of λ, the RVE loses stable equilibrium and bifurcates to a certain mode

for new stable equilibrium.

The onset of instabilities can be tracked with eigenfrequency analysis. Buckling

occurs when an initial negative eigenvalue appears, indicating the system fails to

maintain the stable equilibrium. To perform eigenfrequency analysis, we introduce

a small time-dependent perturbation δu superimposed to a base state displacement

u = H ·X. Rigorously speaking, the base displacement should satisfy the equilibrium

condition. Here the condition is approximated, but for the sake of simplicity the

method is still helpful for the understanding of material behaviors. The incremental

displacement δu satisfies the governing equations:

∇X · δP = ρ0
∂2δu

∂t2

∣∣∣
X

in BX , (3.32)

where ρ0 is the mass density in the material configuration, and δP is the increment

of the first Piola-Kirchhoff stress due to δu,

δP = L : ∇Xδu, (3.33)
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where L is the fourth-order tangent modulus tensor whose components are given by

Lijkl = ∂2W
∂Fij∂Fkl

. We see that δu is a harmonic oscillation, i.e.,

δu = ũ exp(−iωt), (3.34)

where (ω2, ũ) is a pair of eigenvalue and eigenfunction to the eigenvalue problem

represented by Eq. (3.32). The weak form states that find ũ such that ∀ṽ

∫
BX
∇X ṽ : L : ∇Xũ dX = ρ0ω

2

∫
BX
ũ · ṽ dX. (3.35)

For adjoint optimization, the dependency of the shape displacement s must be ex-

plicit. Therefore we transform the weak form in Eq. (3.35) from the material domain

BX to the referential domain Bχ to obtain

∫
Bχ
∇χṽ ·

(
∇χX

)−1
: L : ∇χũ ·

(
∇χX

)−1
det
(
∇χX

)
dχ = ρ0ω

2

∫
Bχ
ũ · ṽ det

(
∇χX

)
dχ.

(3.36)

The finite element discretization yields the following discrete eigenvalue problem:

A(S)V = ω2M (S)V ,

A : RN → RL × RL,

M : RN → RL × RL, (3.37)

where V ∈ RL is the eigenvector paired with the eigenvalue ω2. The generalized

eigenvalue problem is solved with SLEPc [143], a software library for the solution of

large scale sparse eigenvalue problems. The matrix A and M are real symmetric,

hence the eigenvalues are all real numbers.
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Consider a representative pore shape α = (ξ1, ξ2, φ0) = (0, 0, 0.5). We load the

RVE from λ = 0 to λ = 0.05 with a incremental step of 0.0025. For each loading

step, we solve the eigenvalue problem posed in Eq. (3.37). The eigenvalues and

eigenmodes are plotted with respect to load parameters in Fig. 3.8. As shown, we

record three major eigenvalues with their eigenmodes. The eigenvalue represented by

the blue curve is repeated and has two distinct eigenmodes. The eigenvalue by the

red curve is the dominant one that first approaches zero at λcr ≈ 0.0125. The RVE

therefore buckles towards the dominant eigenmode at this critical load.

Figure 3.8: Numerical study of the instability of a RVE with a circular pore shape.
The left plot shows the evolution of eigenvalues ω2 at different levels of compression
(increasing the load parameter λ) for the RVE with initial porosity. The right legends
show the deformation of RVEs with corresponding eigenmodes.

The discussions above are on the forward problem. Namely, given the pore shape

and loading conditions, compute the buckling load λcr. We remind the readers that

forward problem actually contains two major steps. The first step solves for the

shape displacement s that exactly follows Step 1 in Section 3.3.2, so the formulation

is omitted in this subsection. The second step is different from Step 2 in Section 3.3.2.

We have derived from Eq. (3.32) to Eq. (3.37) to present the formulation of the second

step.
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As the challenge to address, we aim to solve the following design problem: given

a critical load parameter, find the pore shape that exactly buckles precisely at this

loading condition. Formally, we propose the optimization problem

min
α∈RK

(
ω2

dom

)2

, (3.38)

where ω2
dom is the dominant eigenvalue at a prescribed load parameter λcr. The objec-

tive function is basically a penalty term that drives ω2
dom to vanish at λcr, interpreted

in the sense that the RVE buckles at λcr. To avoid unnecessary difficulties, we fix

ξ1 = 0 and ξ2 = 0 (pore shape is a perfect circle), only to optimize over porosity

φ0, which suffices to produce satisfactory optimization results. The load parameter

is set to be λcr = 0.02. After optimization, we load the RVE again with the opti-

mal porosity φ0. As shown in Fig. 3.9 (a), the dominant eigenvalue (represented by

the red curve) intersects the zero axis exactly at λ = 0.02, indicating that the RVE

buckles at this critical load. The objective values and the porosity values during op-

timization iterations are plotted in Fig. 3.9 (b), showing a relatively quick and steady

convergence.

As a remark, when computing the gradient of the objective function in Eq. (3.38),

we have adopted a key formula [144] for evaluating the derivative of an eigenvalue

dω2

dS
=
V ∗
(

dA
dS
− ω2 dM

dS

)
V

V ∗MV
, (3.39)

where (ω2,V ) is a pair of eigenvalue and eigenvector.
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(a) (b)

Figure 3.9: Optimization results of the circular pore shape RVE for controlling critical
buckling load. (a) The evolution of eigenvalues ω2 at different levels of compression
(increasing the load parameter λ) for the RVE with optimal porosity. (b) The opti-
mization iterations showing the objective values and the porosity values.

In the next numerical example, we choose another representative pore shape so

that ξ1 = −0.2 and ξ2 = 0.1 (see Fig. 3.1) are fixed. The change of pore shape leads

to a distinct buckling behavior. Similarly, we load the RVE with increasing λ from

0 to 0.05 and the results are shown in Fig. 3.10. If we compare the eigenmodes in

Fig 3.8 with those in Fig 3.10, we can see that the third eigenmode stays the same,

but the first eigenmode(s) and the second eigenmode(s) are exchanged. For the newly

selected pore shape, the dominant eigenmodes are under a repeated eigenvalue. By

inspecting the intersection point of the dominant eigenvalue (the red curve) with the

zero axis, we find that the RVE loses stability at λ ≈ 0.0175.
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Figure 3.10: Numerical study of the instability of a RVE with a newly selected pore
shape. The left plot shows the evolution of eigenvalues ω2 at different levels of com-
pression (increasing the load parameter λ) for the RVE with initial porosity. The
right legends show the deformation of RVEs with corresponding eigenmodes.

The optimization problem is posed using the same objective function as in

Eq. (3.38). However, the dominant eigenvalue and eigenvector should be changed

accordingly. We set the desired critical load parameter λcr = 0.03 and perform

adjoint optimization. We then load the RVE again with the optimized porosity φ0.

As shown in Fig. 3.11 (a), the dominant eigenvalue (represented by the red curve)

intersects the zero axis exactly at λ = 0.03, validating the optimization results. The

objective values and the porosity values during optimization iterations are plotted in

Fig. 3.11 (b), showing a quick convergence.
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(a) (b)

Figure 3.11: Optimization results of the RVE with newly selected pore shape for
controlling critical buckling load. (a) The evolution of eigenvalues ω2 at different levels
of compression (increasing the load parameter λ) for the RVE with optimal porosity.
(b) The optimization iterations showing the objective values and the porosity values.

3.4.3 Maximizing band gaps

Periodic structures have the potential to manipulate the propagation of waves through

band gaps, frequency ranges in which the propagation of elastic waves is signifi-

cantly attenuated [145, 146, 147]. Band gaps property of periodic structures have

been used with wide applications in designing frequency modulators [148], noise con-

trollers [149], and vibration isolators [150]. An example of such periodic structures is

given by CMMs, the subject of this study, whose pores are periodically arranged in

an elastomer. Previous studies show that the propagation of elastic waves in CMMs

are affected by geometric features (e.g., porosity [151]), material nonlinearities [152],

and external loadings that cause the structure to undergo large deformations [153].

In discoveries of novel structures with optimal wave-guiding properties though, these

approaches are often heuristic and the design process follows the pattern of trial-and-

error loops. We use MSOM for gradient-based rational designs of CMMs that achieve

maximum band gaps by optimizing pore shapes.
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We focus on CMMs with infinite extent characterized by a RVE, which is specified

by the lattice vector a1 = (2L0, 0) and a2 = (0, 2L0), as shown in Fig. 3.12 (a). The

reciprocal lattice in Fig. 3.12 (b) is identified by the reciprocal lattice vectors

b1 = 2π
a2 × z
‖z‖2

, b2 = 2π
z × a1

‖z‖2
, (3.40)

where z = a1 × a2. It follows that ai · bj = 2πδij, where δij is the Kronecker delta.

a1

a2

b1

G

b2

X

M

(a) (b)

Figure 3.12: (a) Point lattice. (b) Reciprocal lattice and irreducible Brillioun zone
(yellow triangle GXM).

Bloch wave analysis applied to periodic structures gives the form of small-

amplitude elastic waves superimposed on a finite state of deformation [154, 155, 156]

δu = ũ exp(ik ·X)exp(−iωt),

ũ = ũre + ũimi, (3.41)

where ũ is a periodic function of the unit cell, and exp(ik ·X) accounts for the phase

change across each unit cell with k being the Bloch-wave vector. Following the linear

perturbation analysis by Eq. (3.32), we derive the corresponding weak form by the
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Hermitian inner product with a test vector v written as [157]

v = ṽ exp(−ik ·X),

ṽ = ṽre − ṽimi. (3.42)

Omitting the imaginary part, the weak form states that find (ũrm, ũim) such

that ∀(ṽrm, ṽim)

∫
BX

(
∇X ṽre : L : ∇Xũre +∇X ṽim : L : ∇Xũim + ṽre ⊗ k : L : ũre ⊗ k + ṽim ⊗ k : L : ũim ⊗ k+

∇X ṽim : L : ũre ⊗ k −∇X ṽre : L : ũim ⊗ k − ṽim ⊗ k : L : ∇Xũre + ṽre ⊗ k : L : ∇Xũim

)
dX

= ρ0ω
2

∫
BX

(
ṽre · ũre + ṽim · ũim

)
dX.

(3.43)

The weak form of Eq. (3.43) is then transformed to the referential configuration so

that the dependency of the shape displacement s is explicit. The final discrete system

is an eigenvalue problem as the following

N (S)W = ω2M(S)W ,

N : RN → R2L × R2L,

M : RN → R2L × R2L, (3.44)

where V ∈ R2L is the eigenvector paired with the eigenvalue ω2. Eq. (3.43) is for a

fixed k, and the angular frequency ω is a function of k. Due to symmetries, we only

need to consider ω(k) in the irreducible Brillouin zone [158] as shown by the triangle

GXM in Fig. 3.12 (b).

In this numerical example, the forward problem involves three major steps. The

first two steps exactly follow Step 1 and Step 2 in Section 3.3.2, namely, we first solve
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for the shape displacement s to obtain the pore shape, and then we solve for a base

state displacement field u at equilibrium under a specified external loading condi-

tion. Specifically for the loading condition, we assume the macroscopic displacement

gradient H =
[ −λ 0

0 −λ
]
, where λ ≥ 0 is given. The third step as discussed in this

subsection is a linear perturbation operation and we solve an eigenvalue problem for

the angular frequency ω under a given k.

As a first case to study, we set α = (0, 0, 0.5) (circular pore shape with porosity

0.5), and the external loading condition to be free (λ = 0). We run the forward model

for a set of Block-wave vectors in the irreducible Brillouin zone. The normalized

frequencies ω = ωL0

πcT
(cT = (µ/ρ0)

1
2 is the shear wave speed) are plotted against the

reduced wave vectors in the band diagram, shown in Fig. 3.13 (a). As noticed, there

appears a band gap at the normalized frequency from 1.39 to 1.58. The band gap

width is around 0.19.

The optimization goal is to maximize the band gap. By observation, the band

gap is between the 12th and 13th frequencies. Denote the ith normalized frequency by

wi(k). We state the optimization problem as

min
α∈RK

(
max(Ωlow)−min(Ωhigh)

)
(3.45)

where

Ωlow =
{
ωi(k)

∣∣∣ i ∈ {1, 2, ..., 12},k ∈ [G→ X →M → G]
}
, (3.46a)

Ωhigh =
{
ωi(k)

∣∣∣ i ∈ {13, 14, ..., 16},k ∈ [G→ X →M → G]
}
. (3.46b)

In the objective function of Eq. (3.45), the “max” and “min” operators are not dif-

ferentiable. We apply the LogExpSum (LSE) trick to get a smoothed maximum
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operator, namely,

max
(
{xi}ni=1

)
≈ 1

β
log
( n∑
i=1

exp(βxi)
)
, (3.47)

where β is a large constant that makes the approximation tight. The evaluation of

LSE requires numerical hacks to avoid large number overflow due to the exponentials

in the function [159]. When computing the total gradient of the objective function,

Eq. (3.39) is adopted for computing derivatives of eigenvalues.

(a) (b)

Figure 3.13: Band diagrams for RVEs with no deformation (λ = 0) (a) before opti-
mization and (b) after optimization. The normalized frequency w is plotted against
the reduced wave vector k. The gray area shows the band gap that forbids wave
propagation.

The optimization iterations are shown in Fig. 3.14, where the initial RVE corre-

sponds to the band diagram in Fig. 3.13 (a) and the optimal RVE corresponds to

the band diagram in Fig. 3.13 (b). The optimized band gap forbids frequencies from

1.07 to 1.54, forming a band gap of width around 0.47. The width of the band gap is

increased by 143%, showing a successful optimization result.
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Figure 3.14: The optimization iterations for the case with no RVE deformation (λ =
0). The left RVE corresponds to the initial pore shape and the right RVE corresponds
the optimized pore shape that maximizes the band gap.

It is pointed out by [153] that wave propagation in CMMs is affected when the

structure undergoes large deformation. For completeness, we perform a second nu-

merical experiment including deformations of RVE in the sense that we set the loading

condition to be λ = 0.1. Before optimization, the band diagram is shown in Fig. 3.15

(a), where we observe a band gap of width around 0.35. After optimization, the band

gap (see Fig. 3.15 (b)) is increased to 0.51, an improvement of around 45%. The

corresponding RVEs before and after optimization are found in Fig. 3.16, where opti-

mization iterations are shown. The optimization is still effective, but the improvement

is not as significant as when the RVE is undeformed.
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(a) (b)

Figure 3.15: Band diagrams for RVEs with deformation (λ = 0.1) (a) before opti-
mization and (b) after optimization. The normalized frequency w is plotted against
the reduced wave vector k. The gray area shows the band gap that forbids wave
propagation.

Figure 3.16: The optimization iterations for the case with RVE deformations (λ =
0.1). The left RVE corresponds to the initial pore shape and the right RVE corre-
sponds the optimized pore shape that maximizes the band gap.
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3.5 Conclusions

In this work, we proposed a mapped shape optimization method (MSOM) for the

rational design of soft cellular metamaterials under large deformation. The geometry

of the metamaterials are parametrized by several key parameters that are used for

optimization. Finite element computation is performed over a referential configu-

ration Then, an adjoint-based optimization scheme is developed based on the FEM

set-up. Benchmark problems are used to demonstrate the convergence properties of

the proposed MSOM, which shows apparent advantages. We used our MSOM to

solve several important problems in the design of CMM’s, including optimization of

the negative Poisson’s ratio, precise control over the instability point of the struc-

tures, and arbitrary tunability of the band structures of phononic CMM’s. In all of

these problems, MSOM can not only solve the problem, but solve them efficiently.

In conclusion, the proposed MSOM can be a useful tool for advanced optimization

purposes in CMM’s.
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Chapter 4

Machine Learning Generative

Models for Designing Composite

Mechanical Metamaterials

This chapter studies the inverse design problems of composite mechanical metamate-

rials. We apply machine learning enabled approaches for optimal design of metama-

terials with arbitrary overall elastic moduli. Unlike previous chapters that consider

finite strain deformations, we only stick to the assumption of small displacement

and linear elasticity in this chapter. The designed samples are fabricated with ad-

ditive manufacturing techniques, and the mechanical properties are experimentally

validated.

4.1 Introduction

Architected with multi-level structures, mechanical metamaterials exhibit unique

macroscopic properties such as being ultralight and ultrastiff [1], pentamodal [160],

auxetic [2], etc. The rapid growth of this field has been partly fueled by the advance-

ment of manufacturing technologies such as additive manufacturing [13, 14], which
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enables fast prototyping and economic small-scale production of materials with spe-

cific microstructures [15]. Among them, the emerging technique of multi-material 3D

printing [161] reveals a promising direction of designing novel composite solids by

combining multiple base materials with distinct properties [162, 163].

We focus on elastic moduli control, an important subject in designing mechanical

metamaterials [164]. The goal is to design a representative volume element (RVE)

composed of different base materials so that when the RVEs are periodically arranged

into a lattice structure, the macroscopic elastic moduli achieve a desired set of values.

Central to the design problems is the appropriate parametric representation of RVE

structures. Standard topology optimization methods suffer from being computation-

ally expensive due to voxel level parametrization [67]. To avoid direct parametrization

of voxels, [68] pre-defines a set of manually constructed microstructure families and

base the design on these templates. Still, traditional approaches like this need to

go through trial-and-error design loops which involve domain expertise and intensive

labor. Establishing an optimization framework where design parameters are selected

automatically without human interference remains challenging. Those parameters

must live in a relatively low dimensional space feasible for optimization while not

losing their representation power. Our proposed optimization framework addresses

the challenge using machine learning techniques.

Over the past few years, groundbreaking advances in machine learning provide new

insight into the development of robust design strategies, particularly in mechanics,

materials and structures [89, 165, 87]. New paradigms have emerged where compli-

cated data structures are compressed into an effective lower dimensional space and

designs are instead performed over such reduced space. This usually requires coupling

of a generative model that maps from the reduced space to the original data space and

a gradient-free optimization algorithm that operates over the reduced space. Vari-

ational autoencoders (VAEs) [75] and generative adversarial networks (GANs) [166]
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are the two most popular generative models. Bayesian optimization (BayesOpt) [76],

a sequential design strategy to seek global optimum, is usually adopted to couple

with the generative models for optimization. Representative works using this coher-

ent design strategy include but not limited to discovery of new molecules with desired

properties [41], shape optimization for minimal drag force in fluid dynamics [72], find-

ing optimal optical performance of composite materials [73], improvement in solution

efficiency for heat conduction [74], etc.

In this work we propose an optimization framework that automates the procedures

of designing composite mechanical metamaterials. We adopt VAEs to compress RVE

images that describe the spatial distribution of base materials to a reduced latent

space. As generative models, VAEs also provide a venue to recover RVE images from

the latent space. We then use BayesOpt to find an optimal RVE configuration that

fulfills the prescribed design goal. Within each iteration of BayesOpt, we need to

compute the macroscopic elastic moduli. We take a systematic approach known as

homogenization, a well established technique [93, 94, 95, 97], for the evaluation of

the effective macroscopic elastic moduli. After the optimization loop, we use multi-

material 3D printing to fabricate samples and experimentally measure their elastic

moduli for validation. Quantitative comparisons show that our scheme is applicable

and reliable.

4.2 Computational Homogenization for Linear

Elasticity

Before proceeding to the design problem, we introduce the computational homog-

enization scheme, a key step in each iteration of BayesOpt. We consider a linear

elasticity problem over a domain Ω ⊂ R2. The problem (in the absence of body
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force) reads: Find the displacement field u : Ω→ R2 such that

∇ · σ = 0 in Ω,

u = ub on ∂ΩD,

σ · n = t on ∂ΩN , (4.1)

where σ is the stress tensor, ub is a known function defined on ∂ΩD, n is the unit

outward normal, t is the traction applied on the boundary ∂ΩN , ∂ΩN ∪ ∂ΩD = ∂Ω

and ∂ΩN ∩ ∂ΩD = ∅. The constitutive model can be defined by a strain energy density

function

W =
1

2
ε : C : ε, (4.2)

where ε = 1
2
(∇u+∇u>) is the strain tensor and C is the fourth order constitutive

tensor.

The above formulation is based on a single, homogeneous material. Our composite

solids are composed of multiple materials. The overall mechanical properties may

significantly differ from each of the base material. Computational homogenization is

a systematic approach to obtain “averaged” macroscopic mechanical properties. At

the macroscopic level, we formulate the homogenized constitutive relationship as

W =
1

2
ε : C : ε, (4.3)

where � denotes a macroscopic quantity. Given C for each base material and RVE

configuration of how they form the composite solid, our goal is to compute the macro-

scopic constitutive tensor C. We follow the treatment by [66], where the principle for

homogenization is that the total strain energy stored in the RVE computed via Eq. 4.2
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and Eq. 4.3 must be equal for arbitrarily imposed macroscopic strain conditions. For

further details about computational homogenization of linear elasticity, see 4.4.

In this work, the composite solids are made from two base materials: a commer-

cial hard polyurethane (RPU) with measured Young’s modulus Eh = 1300MPa and

Poisson’s ratio νh = 0.23 and a custom soft silicone (SilDN) [167] with Es = 0.12MPa

and νs = 0.33. We make plane stress assumption throughout the work. We further

restrict the composite solids to preserving cubic symmetry as shown in Fig. 4.1. It

can be shown that under these assumptions the constitutive tensor C are fully de-

scribed by three independent elastic moduli [168, 169]. For example, it is common to

pick Young’s modulus E, shear modulus G and Poisson’s ratio ν as a complete set of

description, in which case the macroscopic stress-strain relationship simplifies to


σ11

σ22

σ12


=


E

1−ν2
νE

1−ν2 0

νE
1−ν2

E
1−ν2 0

0 0 G




ε11

ε22

2ε12


. (4.4)

As shown in Fig. 4.1, we summarize the computational homogenization problem as

to find out the macroscopic elastic moduli {E, ν,G} given an image-like description

(binary pixel values indicating base material information) of a RVE. The compu-

tational homogenization technique requires the use of the Finite Element Method

(FEM). We choose the open source FEM software FEniCS [170] for the implementa-

tion.
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{Es, νs}

{Eh, νh}RPU

SilDN

homogenization function( ) = {E, ν, G}

Figure 4.1: Computational homogenization setup. Leftmost is a composite solid com-
posed of two base materials RPU and SilDN, with elastic moduli {Eh, νh} and {Es, νs}
respectively. A magnified RVE is also shown for clarity. Rightmost is the homoge-
nization function, treated as a black-box function that takes the input of an image
representation of a RVE and yields the output of the set of homogenized macroscopic
elastic moduli {E, ν,G}.

4.3 Composite Mechanical Metamaterials for

Elasticity Control

One can view computational homogenization as a “forward problem” in that a descrip-

tion of RVE is given and the aim is to find the macroscopic elastic moduli {E, ν,G}.

On the contrary, the design problem seeks an optimal RVE in order to achieve a

prescribed set of macroscopic elastic moduli, so it is helpful to think about the design

problem as an “inverse problem”. In our problem, the design space is the set of binary

images, immediately leading to an intractable, high dimensional combinatorial opti-

mization problem. We tackle the challenge by learning a reduced representation of

the image data, and performing optimization over this low dimensional space instead.

Once we obtain the optimal design, we use 3D printing to fabricate the corresponding

composite solids and measure the macroscopic mechanical properties experimentally

for validation.
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Computational Homogenization

Latent Space

Step 1: Building Image Database

Random Processes

Encoder

Latent Space

Decoder

Step 2: Training a VAE

Decoder

Step 3: Bayesian Optimization

Acquisition Function

A gallery of generated samples

Figure 4.2: The proposed optimization framework. Step 1: Draw samples from a
random process to build the artificial database of RVE images (28 × 28 pixels for
each image). Step 2: Train a VAE so that it generates realistic output samples. By
flipping the 28 × 28 images twice we obtain the 56 × 56 RVE images that preserve
symmetry. Step 3: BayesOpt towards optimal design of a RVE that achieves the
prescribed macroscopic elastic moduli.

4.3.1 Bayesian optimization over reduced space

The overall design flow is presented in Fig. 4.2. We prepare an artificial image

database and train the VAE to generate realistic images. BayesOpt operates over

the reduced latent space learned by the VAE and couples with the homogenization

procedure introduced in Section 4.2.

VAEs are among the family of latent-variable models [127]. The observable RVE

image data can be considered as samples drawn from a probability distribution p(x)

where x ∈ X lives in a high dimensional space. Under the assumption, the high di-

mensional image data can be compressed into a low dimensional space without severe

loss of information. We denote the associated low dimensional distribution as p(z)

where z ∈ Z is the latent variable. VAEs provide a principled approach for learn-

ing latent-variable models by jointly training over two parameterized neural network
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models: the encoder or recognition model, and the decoder or generative model.

VAEs generalize autoencoders and encourage the latent space to be continuous in

producing valid decoded images, which qualifies as the design space for optimization.

We implement the VAE model in PyTorch [171], an open source deep learning

platform. The input to the VAE are images of size (batch, 1, 28, 28) while the output

is of the same size. The input image database is constructed following a stochastic ap-

proach adopted in [172, 173]. The method thresholds a Gaussian random field (GRF)

to generate realistic binary representations of RVEs. The width for the hidden layer

is set to be 10, namely, Z = R10. The encoder part consists of two convolutional and

two dense layers. Similarly, the decoder consists of two dense layers followed by two

deconvolutional layers. Right before the output layer we add an additional constraint

to force diagonal symmetry on the output tensors. To generate new samples, we only

need the decoder model. We draw random variables from a unit Gaussian distribu-

tion as the input to the decoder and threshold the decoded images to reconstruct

the binary composition. Fig. 4.2 shows a gallery of generated RVE samples. A more

detailed description on VAEs can be found in 4.4.

To further demonstrate the feasibility of optimizing over the latent space Z, we

draw 200 samples from p(z), obtain decoded RVE images, and perform computa-

tional homogenization. For visualization purpose, we use principal component analy-

sis (PCA) [174] to compress the latent space into a 2-dimensional space and show the

results in Fig. 4.3. As shown, the latent space demonstrates a continuous variation

for the macroscopic Young’s modulus E and the macroscopic shear modulus G, while

a less clear trend is observed for macroscopic Poisson’s ratio ν. This is not surprising,

though, as adjusting E or G is straightforward by allocating RPU (hard material)

and SilDN (soft material) in different proportions to the RVE, yet to get a desired ν

is not immediately obvious from the perspective of a human expert. It is therefore

expected that the optimization towards a tailored ν be more difficult than E or G.
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Figure 4.3: PCA plots for latent space carrying information of the macroscopic elastic
moduli.

We next show that coupled with BayesOpt, we are able to design a RVE that

simultaneously achieves desired E and ν. Formally, we state our design problem as

an optimization problem:

z? = arg max
z∈Z

f(z), (4.5)

where f(z) = cost function(homogenization function(decoder function(z)))

is treated as a black-box function. The decoder function is the decoder part of the

VAE model. The homogenization function is discussed in Section 4.2. We define

cost function as

cost function({E, ν,G}) = e−(Ê−Êt)2−(ν̂−ν̂t)2 , (4.6)

where

Ê =
log(E)− log(Es)

log(Eh)− log(Es)
, ν̂ =

ν − νh
νs − νh

, Êt =
log(Et)− log(Es)

log(Eh)− log(Es)
, ν̂t =

νt − νh
νs − νh

,

(4.7)

with Et = 260MPa and νt = 0.4 being set as the design goal. These numbers are

arbitrarily selected and only serve for the purpose of a concrete demonstration of the
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proposed methodology. The cost function considers normalized quantities (denoted

by �̂) to alleviate the effect of various length scales of different quantities.

The computational cost to evaluate the objective function in Eq. 4.5 is not cheap,

motivating the use of BayesOpt, a class of machine-learning-based optimization meth-

ods. BayesOpt builds a probabilistic surrogate model for the objective function and

queries the next data point by minimizing an expected loss function. The optimization

loop is completely automatic and avoids subjective human decisions in trial-and-error

design. In this work, we use noise free Gaussian process regression as the surrogate

model for BayesOpt. We apply expected improvement, a classic acquisition function

to determine the next data point to sample. The searching process in principle tries

to gain a balance between exploitation and exploration. We point to [175, 176] for

comprehensive descriptions of BayesOpt.

We adopt an open source library BoTorch [177] for BayesOpt. We evaluate the

objective function values for 100 randomly generated RVEs for warm-up and obtain

the objective value to be around 0.8, considered as a suitable initial point. Then,

we start BayesOpt and plot the current best objective values with respect to the

iteration number. We terminate the optimization when the current best objective

value is close to 1, which is the theoretical limit when the elastic moduli of the

optimized RVE perfectly match the targets. As shown in Fig. 4.4, the optimized

RVE has the macroscopic elastic moduli:

{E?
, ν?, ·} = homogenization function(decoder function(z?), (4.8)

which are close to the target values {Et, νt, ·} measured in the normalized sense.
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Figure 4.5: Detailed procedures of multi-material 3D printing. We fabricate the three
highlighted samples matching the ones presented in Fig. 4.4.
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̂E ⋆ = 0.898
̂ν ⋆ = 1.74

Figure 4.4: Iterations of BayesOpt. The objective function is defined using Eq. 4.5.
The theoretical limit is achieved only if the macroscopic elastic moduli exactly match
the desired values. Three RVEs are plotted on the path to optimum. The third RVE
is the optimal one with Ê? and ν̂? close to the targets Êt and ν̂t.
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4.3.2 Experimental validation

It is acknowledged here that Thomas J. Wallin led the physical prototyping of the

composite solids. With his help, we fabricate the three highlighted samples in Fig. 4.4

and measure their mechanical properties for experimental validation. Both RPU and

SilDN photopolymerize from low viscosity precursors which enables high resolution

Stereolithography (SLA, see Fig. 4.5) 3D printing of arbitrary structures like those

generated by the VAE. Strong interfacial bonding between material layers remains

a significant challenge to 3D printing multimaterial combined structures. Our cho-

sen materials are “dual-stage” polymers; photo-crosslinking during 3D printing sets

the object’s shape followed by a second, condensation based crosslinking reaction

that improves the mechanical robustness. [77] recently employed this latent con-

densation reaction to cohesively bond 3D printed materials to substrates spanning

seven orders of magnitude in Young’s Modulus. Though possible to SLA print di-

rectly using resin-exchange methods, manufacturing ease and rapid iteration led us

to combine SLA printing and UV-assisted replica molding (see Fig. 4.5) when fab-

ricating our multimaterial structures. Briefly, we first print (CarbonTM M2 printer)

the RPU structure onto a release film and then cast the SilDN precursor into the

voids. Temporarily clamping a flat, transparent substrate coated with Teflon on top

of the printed structure removes excess resin and the subsequent irradiation solidi-

fies the SilDN material. Interfacial crosslinks between RPU and SilDN form during

the second stage of curing at room temperature (t ∼ 15 hours) followed by thermal

treatment at 120◦C (t ∼ 8 hours).

With samples fabricated, we experimentally validated our design strategy via ten-

sile tests. As shown in Fig. 4.6, our experimentally measured values for macro-

scopic elastic moduli generally agree with the computational homogenization pre-

dicted trends. The predicted Poisson’s ratios fall within the error of the measured

values. However, the actual Young’s modulus values are consistently higher than
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predictions. We postulate that the manufacturing process of the composite materials

could have consistently favoured RPU over SilDN, leading to a higher macroscopic

Young’s modulus. Also, the samples (see Fig. 4.5) contain only a finite number RVEs

and the measurement could have been affected by the boundary effects, whereas

the computational homogenization essentially assumes infinite size of samples. It

is important to note that while the composite solid yields an intermediate modulus

(Es < E < Eh), this strategy can obtain Poisson’s ratios beyond the range found be-

tween the base materials (νh < νs < ν). Thus confirming the ability to obtain novel

material properties via mechanical design of metamaterials. For completeness, Ta-

ble 4.1 gives a summary of the target values, optimization results, and experiment

outcomes.

True
Et (Target) E

?
(Optimized) Ee (Exp) νt (Target) ν? (Optimized) νe (Exp)

260MPa 505MPa 562MPa 0.400 0.404 0.43

Normalized
Êt (Target) Ê?(Optimized) Êe(Exp) ν̂t (Target) ν̂? (Optimized) ν̂e (Exp)

0.827 0.898 0.910 1.70 1.74 2.0

Table 4.1: Comparisons between target values, optimization results and experiment
outcomes.

In Table 4.1, we notice that the optimization result of E
?

(505MPa) is still much

larger than the target value Et (260MPa), while the optimization result of ν? (0.404)

is relatively close to the specified νt (0.4). However, the discrepancy is smaller under

the normalized metric, with Ê? (0.898) close to Êt (0.827) and ν̂? (1.74) close to ν̂t

(1.70). The actual optimization is implemented using the normalized metric. There

is no obvious evidence showing either optimizing towards a tailored Young’s modulus

or Poisson’s ratio is easier, in contrast to our original speculation. For more flexible

control of the optimization outcomes, we propose to use a weighted cost function
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Figure 4.6: Experimental validation. Left: macroscopic Young’s modulus by experi-
ment measurement and computational homogenization for the three RVEs in Fig. 4.4.
Right: macroscopic Poisson’s ratio by experiment measurement and computational
homogenization for the same RVEs.

instead of the original Eq. 4.6

cost function({E, ν,G}) = e−wE(Ê−Êt)2−wν(ν̂−ν̂t)2 , (4.9)

where wE and wν are two constants reflecting a bias on the optimization targets. We

leave the explorations of a more adequately designed cost function as our future work.

Though we have already simplified the optimization problem to a relatively low

dimensional parameter space, it is important to be aware that the problem is still

highly non-convex. The searching path may finally lead to a local optimum.

4.4 Conclusions

We propose an optimization framework based on machine learning techniques to

design composite mechanical metamaterials. We focus on controls of macroscopic

elastic moduli and design optimal RVEs to achieve the goal. Results are verified by

experimental measurements on multi-material 3D printed samples.
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One limitation of this work is that the database of RVE samples are constructed

via drawing samples from a artificially defined random process. Since we know pre-

cisely about the data generating process, it is possible to use more effective data

compression methods than to use a VAE. For example, directly applying PCA to the

database used in this work could have yielded a comparable performance to a non-

linear autoencoder model. However, the proposed scheme with VAEs are generally

applicable to empirical databases whose structure may not be transparent. Promising

future improvements on this work include adopting variants of VAEs like conditional

variational autoencoder (CVAE) [178] for more regularized mappings from the la-

tent space to the decoded samples, a more systematic way of choosing BayesOpt

hyperparameters such as Gaussian process kernels and acquisition functions [175],

etc. Finally, we wish to extend the work to 3D mechanical metamaterial designs.

Appendix A Computational Homogenization

We use a homogenization method to compute the macroscopic material parameters.

For an arbitrary RVE, we impose macroscopic deformations by prescribing the fol-

lowing periodic boundary conditions:

u(x) = h · x+ u?(x), (4.10)

where h = ∇u is the macroscopic displacement gradient and is uniform on the

RVE. Essentially, Eq. (4.10) decomposes the total displacement of the RVE into a

macroscopic (overall) part u = h · x and a microscopic (fluctuating) part u?. Pe-

riodic boundary conditions are applied such that for RVE ABCD in Fig. 4.1, we

have u?AD = u?BC and u?AB = u?DC . A fine-mesh FEM calculation is used to solve

for u with such boundary conditions described above. Then the macroscopic strain
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energy density W can be obtained via the average of W over the RVE:

W = V −1

∫
V

WdV , (4.11)

with V being the total volume of the RVE. Note that W is also computed using

Eq. 4.3. Therefore we are able to obtain an equation for the unknown macroscopic

constitutive tensor C.

The choice of h is not unique, though. In this work, since C has three independent

components, we pick three distinct h:

h1 = εe1 ⊗ e1,

h2 = εe2 ⊗ e2,

h3 =
ε

2
(e1 ⊗ e2 + e2 ⊗ e1), (4.12)

where ε is a small constant. The resulting three independent equations are used to

solve for C, thus completing the homogenization procedures for such a RVE.

A B

CD

Figure 4.1: A sample RVE in its reference configuration (leftmost), and illustration
of the deformed configurations with imposed macroscopic displacement gradient con-
ditions (right three).

Appendix B Formulation of a VAE

We present a more detailed description of the formulation of a VAE, particularly

the one used in this work. As a generative model, a VAE aims at simulating the

86



underlying data generating process. The observable RVE image data are assumed to

be generated from a high dimensional probability distribution p(x) where x ∈ R28×28.

Approximating p(x) with a parametrized distribution pθ(x) directly is considered not

feasible [179]. To see this, the maximum likelihood estimate given dataset {x(i)}

yields

max
θ

∑
i

ln pθ(x
(i)) = max

θ

∑
i

ln
(∫

z

pθ(x
(i), z)dz

)
, (4.13)

where marginalization over the latent variable z is often intractable. Note that z

typically lives in a low dimensional space. In our work, z ∈ R10 serves as the design

parameter. Based on the variational principle, an auxiliary function variable q ∈ Q

(Q is the variational family) is introduced to reformulate Eq. 4.13 as:

max
θ

∑
i

(
ln pθ(x

(i))−min
q∈Q

KL
(
q(z) || pθ(z |x(i))

))
= max

θ

∑
i

max
q∈Q

Eq(z)
[
ln
pθ(x

(i), z)

q(z)

]
,

(4.14)

where KL( · || · ) is the Kullback-Leibler divergence [180]. The optimization problem

is still rather complicated, though, since it is a bi-level optimization problem and

involves a function variable q.

To overcome these difficulties, VAEs adopt an approximate approach. By amor-

tizing the computational cost, VAEs propose to solve the following optimization prob-

lem:

max
θ,φ

∑
i

Eqφ(z |x(i))

[
ln
p(z)pθ(x

(i) | z)

qφ(z |x(i))

]
, (4.15)

where qφ(z |x(i)) is a neural network function parametrized by φ (known as the encoder

function), and pθ(x
(i) | z) is another neural network function parametrized by θ (known

as the decoder function). Eq. 4.15 is the loss function of a VAE and can be rewritten
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into a more familiar format:

min
θ,φ

∑
i

(
− Eqφ(z |x(i))

[
ln pθ(x

(i) | z)
]

+ KL
(
qφ(z |x(i)) || p(z)

))
. (4.16)

In Eq. 4.16, the first term is the reconstruction loss of the ith data point x(i) while the

second term is the KL-divergence between two multivariate Gaussian distributions.

We randomly split our database (containing 3000 data points) into a training set

(80% of the data) and a test set (the rest 20%). We use mini-batch stochastic gradient

descent with Adam optimizer [125] to train the VAE with the loss function defined by

Eq. 4.16. Learning rate is set to be 10−3 while batch size is set to be 64. The training

time is typically within 1 minute on a personal computer to achieve a satisfactory

model performance.
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Chapter 5

Amortized Finite Element Analysis

for Fast PDE-Constrained

Optimization

The content in this chapter is beyond the scope of only considering mechanical meta-

materials. General partial differential equation constrained optimization problems

are studied with neural networks. We propose the so-called amortize finite element

analysis so that both the forward numerical problems and the inverse design problems

are solved with acceleration compared with traditional methods.

5.1 Introduction

Partial differential equations (PDEs) are widely used to describe the properties of

physical systems, including heat transfer, electromagnetics, and elasticity. PDE-

constrained optimization (PDE-CO) addresses the situation in which an objective

function must be minimized or maximized, subject to the constraints of real-world

physics as expressed by PDEs. Common examples include optimal design, optimal

control, and the identification of parameters to relate a simulation to observed data
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[78, 79]. PDE-CO can be computationally challenging, however, for even moderately

sized problems, as it is usually necessary to solve the associated PDE at every iteration

of the outer-loop optimization.

As a motivating example, consider a heat conduction problem on a unit disk. The

physical system is governed by a Poisson’s equation:

−∆u = λ in Ω,

u = ub on Γ, (5.1)

where ∆ = ∂2

∂x21
+ ∂2

∂x22
is the Laplace differential operator, u(x) is the temperature

field and λ(x) is the heat source field (see Fig. 5.1). Finite element analysis (FEA)

is arguably the most powerful method known for computing numerical solutions to

this kind of PDE problems. With a given source field λ(x), FEA identifies the best

approximate solution field u(x) in a piece-wise polynomial function space [16].

PDE-CO poses a higher level problem, seeking to optimize an objective func-

tional jointly over u(x) and λ(x), under the constraint imposed by the governing

PDE. In the example problem above, one may reasonably ask: how can we design

a source field λ(x) so that a desired temperature field ud(x) is fulfilled while the

FEA mesh source (control parameter) solution (state variable)

Figure 5.1: The heat equation on a disk of unit radius. Left: the finite element
mesh. Middle: an example source field λ(x) = x2

1 + x2
2. Right: the solution field u(x)

associated with the source field solved by FEA. x = (x1, x2) ∈ R2 denote the spatial
coordinates.
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cost of λ(x) is minimized? Such PDE-CO problems are typically high-dimensional

(e.g., # of input parameters = 811 in the model problem) and often require iterative

procedures that must solve the governing PDE repeatedly using FEA.

We propose a two-stage optimization framework to efficiently tackle sequences

of related PDE-constrained optimization problems. At the first stage, we introduce

amortized finite element analysis (AmorFEA) to efficiently learn the physics governed

by the PDE without requiring supervised data provided by expensive PDE solvers.

We borrow the idea of amortized optimization, widely used in amortized variational

inference [75, 84, 85, 86]. By learning to jump directly to the FEA solution with

a neural network, we obtain a surrogate model that is able to predict the solutions

directly from the control parameters. At the second stage, we perform gradient-

based PDE-CO using the AmorFEA-enabled neural surrogate model. During each

optimization iteration, the gradient is efficiently computed via one forward and one

backward pass through the neural network, instead of querying an expensive PDE

solver as in the traditional adjoint method requires [56].

5.1.1 Related work

Deep Learning for Solving PDEs The idea of approximating the solution to the

PDE by a neural network instead of a piece-wise polynomial function (as in FEA)

goes back decades [181] and has been continuously explored since then [182, 80, 81].

However, neural networks have only generally shown advantages on high-dimensional

PDEs when the finite element mesh is infeasible, as shown by [183]. Recently, [83]

proposed to predict PDE solutions directly from parameter fields by training neural

networks with a physically-constrained loss. Since their method essentially integrates

with the finite difference method [184], it only handles structured data in regular

domains. Our proposed method, AmorFEA, integrates with the more powerful finite
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element method and benefits from many of the advantages of FEA, such as native

support of irregular domains and approximation guarantees [16].

PDE-constrained Optimization The two main workhorses for PDE-constrained

optimization problems are the all-at-once approach and the reduced approach [185].

The all-at-once approach simultaneously optimizes over both the control parame-

ters and the state variables with a strategy such as sequential quadratic program-

ming [186]. Though attractive from an optimization perspective, they are infeasible

for large-scale problems with a huge number of state variables to store [187]. The

reduced approaches treat the state variables as implicit functions of the control pa-

rameters and optimize only over the control parameters. When the control parameters

significantly outnumber the objectives (which is often the case), adjoint sensitivity

analysis becomes the dominant method under the reduced approaches [55, 56]. In

spite of its relative success, the adjoint method requires solutions to the original PDE

and the adjoint PDE during each optimization iteration, which is still expensive.

Optimization Using Surrogate Models AmorFEA-based PDE-CO is a surro-

gate model optimization approach. In optimization problems where the objective

function is expensive to evaluate, it is popular to build a surrogate model and perform

optimization on the surrogate model instead [188]. There are various approaches for

building the surrogate model such as random forests [189], Gaussian processes [175]

and Student-t processes [190]. AmorFEA builds a neural network surrogate model

for optimization. Although some previous work has used neural network surrogates

(e.g., [191]), AmorFEA takes a further step to integrate tightly with finite element

analysis.
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5.1.2 Contributions

This chapter proposes AmorFEA, a framework for training surrogate PDE solvers for

finite element analysis, without supervised training data. As AmorFEA is based on

an amortized approach to FEA, it inherits the benefits of naturally handling irregular

domains and unstructured meshes. As FEA is a variational formalism, we are able

to draw useful connections to variational inference tools developed for probabilis-

tic reasoning—AmorFEA inherits FEA’s expressive basis, analagous to performing

amortized inference with a rich variational family. The speed and differentiability of

AmorFEA make it particularly well-suited to PDE-constrained optimization prob-

lems and we show that it can outperform the traditional adjoint method in terms of

computation time, while still providing solutions of comparable quality.

5.2 Amortized Finite Element Analysis

Many physical systems governed by PDEs obey variational principles. For a given

control field λ (e.g., heat source), the true solution field u (e.g., temperature) is the

one that minimizes the total potential energy of the system. Finite element analysis

is an approach in which the domain is discretized into a finite set of elements, and the

solution u is approximated by a piece-wise polynomial function. This approximation

allows us to use a vector u ∈ Rn to represent the FEA solution, since the piece-wise

polynomial function space is finite-dimensional and forms an isomorphism with Rn.

For a full description of FEA, see Appendix A.

In a FEA problem, given a fixed control vector λ ∈ Rm, we find the solution vector

(or the state vector) u ∈ Rn by solving an optimization problem:

min
u∈Rn

L(u,λ), (5.2)
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where L(u,λ) denotes the total potential energy.

Our amortized finite element analysis (AmorFEA) approach reframes the per-

control-vector optimization process into a shared regression problem. We use a neural

network to build a deterministic mapping gψ : Rm → Rn, whose weights ψ are learned

by minimizing the expected potential energy:

min
ψ

Ep(λ)[L(gψ(λ),λ)], (5.3)

where p(λ) is the distribution of typical control parameters associated with specific

problems and we hope that u ≈ û = gψ(λ). Traditional FEA forces the trial solution

to be correct by committing to a class of test functions. In a similar sense, Amor-

FEA forces the correctness of the model by considering a distribution over control

parameters.

Since FEA is an approximate variational procedure (in the general sense of min-

imizing a functional), it resembles variational inference in latent variable models in

that the finite element basis functions are analogous to the variational family of dis-

tributions and the FEA solution vector mirrors the variational parameters. It can

therefore be helpful to think of AmorFEA as a direct analogue to popular amortized

variational inference approaches [75, 192] in which the solution to the variational

problem is produced via function approximation rather than per-example optimiza-

tion.

5.2.1 Amortization suboptimality

For amortized variational inference, [193] introduced the notions of approximation,

amortization, and inference gap. The approximation gap arises in variational infer-

ence due to the inadequacy of the variational family to approximate the true posterior

distribution. The amortization gap reflects the difference between the approximate
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posterior produced by function approximation and the optimal one within the varia-

tional family. The inference gap is the sum of the approximation and amortization

gaps, reflecting the total error in the amortized variational inference scheme.

Similar to gaps for amortized inference, we propose the approximation, amortiza-

tion and “inference” (total error) gaps for AmorFEA:

∆ap = Ep(λ)

[
L(u?λ,λ)− L(ue, λ)

]
(5.4)

∆am = Ep(λ)

[
L(gψ?(λ),λ)− L(u?λ,λ)

]
(5.5)

∆inf = ∆ap + ∆am, (5.6)

where ψ? is the optimal solution to Eq. 5.3, u?λ is the optimal solution to Eq. 5.2 for a

given λ, and ue is the exact solution to the governing PDE which is generally impos-

sible to obtain. Note that we are abusing notation somewhat here in allowing L(·, ·)

to take inputs of either functions (e.g., normal font u) or FEA vectors (e.g., bold font

u).

5.2.2 Computational complexity

Solving a PDE for u ∈ Rn by a numerical method such as FEA usually involves

solving a large system of equations. A crude estimate of the cost can be described

as O(dnr), where d = 1 if the system is linear and d > 1 if it is nonlinear. For the

nonlinear system, d can be viewed as the number of iterations required for a nonlinear

solver such as Newton-Raphson to converge. The exponent r depends on the sparsity

structure of the linear system (or the linearized system for a nonlinear problem) and

the algorithm used by the solver. A näıve solver yields r = 3, while more efficient

solvers usually require case-by-case analysis to take advantage of problem structure.

By amortizing the FEA solving process, we obtain a neural network surrogate

function that predicts the state vector u directly from the control vector λ. Excluding
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the cost of training time, for a standard multilayer perceptron (MLP) with l equally

wide layers of n hidden units, the computational cost is simply the forward pass,

which is O(ln2). However, AmorFEA requires an up-front training time that we

informally think of as O(ksln2) where s is the number of training examples and k is

the number of training epochs, which tends to be fixed. AmorFEA is able to produce

a relatively efficient feed-forward solver, which could be used to save computational

resources when an expensive PDE must be solved many times, or when many PDEs

must be solved which lie within a given class. In the next subsection, we introduce

PDE-CO as such a scenario where AmorFEA can be advantageous.

5.2.3 PDE-constrained optimization

The discretized PDE-constrained optimization is formulated as

min
u∈Rn,λ∈Rm

J (u,λ)

s.t. c(u,λ) = 0, (5.7)

where J (·, ·) : Rn × Rm → R is the objective function and c(·, ·) : Rn × Rm → Rn is

the constraint function imposed by the governing PDE. A reduced formulation is

often used to embed the PDE constraint as

min
λ∈Rm

Ĵ (λ), (5.8)

where Ĵ (λ) := J (u(λ),λ) and u(λ) is the implicit function arising from the solution

to Eq. 5.2. Gradient-based optimization algorithms require the evaluation of the

derivative of the objective function with respect to the control vector:

dĴ
dλ

=
∂J
∂u

du

dλ
+
∂J
∂λ

. (5.9)
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A common way to compute this gradient is to use the adjoint method [56]. Taking

the derivative of Eq. 5.7 with respect to λ yields chains of Jacobian matrices:

dc

dλ
=
∂c

∂u

du

dλ
+
∂c

∂λ
= 0. (5.10)

Hence,

du

dλ
= −

( ∂c
∂u

)−1 ∂c

∂λ
. (5.11)

Substitute Eq. 5.11 to Eq. 5.9, we obtain

dĴ
dλ

= −

adjoint PDE︷ ︸︸ ︷
∂J
∂u

( ∂c
∂u

)−1 ∂c

∂λ︸ ︷︷ ︸
tangent linear PDE

+
∂J
∂λ

. (5.12)

Resembling the two different modes of automatic differentiation, we could choose

to either solve the adjoint PDE first (reverse-mode) or the tangent linear PDE first

(forward-mode). When the size of the control vector is larger than that of the objec-

tive (e.g., m� 1 in our case), it is more efficient to solve the adjoint PDE first, giving

the name adjoint method. The adjoint PDE is a linear PDE to solve, but it also relies

on the Jacobian matrix ∂c
∂u

, which requires the solution vector u. As shown, the cost

for solving the governing PDE is O(dnr), which dominates the total cost of using the

adjoint method in one iteration of PDE-CO.

We propose accelerating PDE-CO with AmorFEA. AmorFEA yields a differen-

tiable map from the control vector λ to the state vector u, which does not require

solving the governing PDE via traditional FEA, and which can be used to approxi-

mate the costly term du
dλ

in Eq. 5.9. With the differentiable neural surrogate model,
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we can formulate the PDE-constrained optimization problem as

min
λ∈Rm

J̃ (λ), (5.13)

where J̃ (λ) := J (gψ?(λ),λ) and ψ? are the learned weights of the neural network.

The derivative is given by

dJ̃
dλ

=
∂J
∂u

dgψ?

dλ
+
∂J
∂λ

. (5.14)

We employ reverse-mode automatic differentiation, since m� 1. By using a standard

MLP, the total cost within each iteration of the PDE-CO is O(ln2), and so guaranteed

to be relatively efficient.

A summary for the procedures of AmorFEA along with AmorFEA based PDE-CO

can be found in Fig. 5.2 by visualizing the computation graph.

Figure 5.2: Computation graph for AmorFEA based PDE-CO. Red arrows denote
automatic differentiation. Left: AmorFEA training for the surrogate model. Right:
PDE-CO with the learned model.

5.3 Linear Models

An important and general class of PDE-CO problems impose a linear relationship

between the control parameter and the state variable. These linear problems provide a
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useful testbed for examining the AmorFEA approach. We focus on the model problem

in Section 5.1, where the source vector λ is linearly related to the solution vector u.

We show that by employing a linear regression model and performing AmorFEA, we

are able to fully recover the underlying physics and achieve an amortization gap of

zero; this result is unsurprising due to the assumption of a linear relationship between

u and λ. Though simple to analyze, the linear case gives intuition about the proposed

scheme. We also compare AmorFEA with supervised learning, where we run FEA

simulations to obtain labeled data and train the linear model in a traditional fashion.

FEA simulations are carried out using an open source Python package FEniCS [123].

Neural network training is performed in PyTorch [194]. We show that both AmorFEA

and supervised training have the same global optimality condition.

We use AmorFEA to train a single-layer network that predicts u ∈ Rn

from λ ∈ Rm, where m = 811 and n = 721 in this case. We assume the distri-

bution over source terms λ is a uniform distribution on the hypercube [−1, 1]m.

10, 000 samples were drawn from this distribution to form the training data. FEA

converts the minimization problem in Eq. 5.2 into a linear system to solve:

Au = Bλ, (5.15)

where A ∈ Rn×n and B ∈ Rn×m arise from the assembly procedure of the weak form

in FEA (see details in Appendix A). Let us denote f = Bλ. The linear model we

employ has a weight matrix W ∈ Rn×n and no bias vector so that û = Wf . The

potential energy in this case is therefore equivalent to the least-squares loss for the

solution to the linear system, preconditioned by the stiffness matrix A:

La(W ;f) =
1

2
(Wf)>A(Wf)− f>(Wf). (5.16)
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As an instantiation of Eq. 5.3 using the Monte Carlo estimate of the expectation,

AmorFEA leads to the following optimization problem:

min
W∈Rn×n

La(W ), (5.17)

where

La(W ) =
1

K

K∑
k=1

(1

2
(Wfk)

>A(Wfk)− f>k (Wfk)
)
. (5.18)

Next, we study supervised learning in the same environment. We expand the

empirical data set D = {λ(i)} to D′ = {(λ,u)(i)} by running FEA simulations. The

supervised loss function for each data point is defined as

Ls(W ;f) =
1

2
‖û− u‖2

2 =
1

2
‖Wf −A−1f‖2

2. (5.19)

Supervised training solves the following minimization problem:

min
W∈Rn×n

Ls(W ), (5.20)

where

Ls(W ) =
1

K

K∑
k=1

(1

2
(Wfk−A−1fk)

>(Wfk−A−1fk)
)
. (5.21)

We show that both La(W ) and Ls(W ) are convex (see proofs in Appendix B).

Proposition 1. The empirical loss function La(W ) of AmorFEA in the linear model

is convex.

Proposition 2. The empirical loss function Ls(W ) of supervised learning in the

linear model is convex.
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We also see that the first order condition (FOC) for AmorFEA gives

∂La
∂W

= (AW − I)
( 1

K

K∑
k=1

fkf
>
k

)
= 0. (5.22)

Similarly, the FOC for supervised training gives

∂Ls
∂W

= (W −A−1)
( 1

K

K∑
k=1

fkf
>
k

)
= 0. (5.23)

By Proposition 1 and Proposition 2 along with Eq. 5.22 and Eq. 5.23, we conclude

that both AmorFEA and supervised learning achieve the global minimum with same

condition W = A−1. The only difference between these problems is the “physical”

preconditioning from A. As a supporting experiment, we show in Fig. 5.3 that both

AmorFEA and supervised training have similar capabilities to recover the underlying

model.

Figure 5.3: Normalized error versus training epochs. We define the normalized error

ε = ‖W−A−1‖∞
‖A−1‖∞ .

Since the fully trained linear model is able to produce û = u, we have a zero

amortization gap as computed by Eq. 5.5. We do not study PDE-CO in the linear

case.
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5.4 Nonlinear Models

Method α Optimized objective [10−3] Wall time [ms]

Adjoint Method

10−6 0.338± 0.002 728.2± 5.5

10−3 2.599± 0.075 511.6± 223.2

1 2.587± 0.012 15370.0± 1804.3

AmorFEA

10−6 0.340± 0.003 39.7± 5.0

10−3 2.613± 0.104 71.5± 63.1

1 2.593± 0.008 838.5± 208.4

Table 5.1: PDE-CO results for the adjoint method and AmorFEA. For different
regularity coefficient α, AmorFEA achieves similar optimal objectives compared with
the adjoint method, but with less wall time.

We examine two more realistic nonlinear settings and perform PDE-CO in this

section. Here the solution vector u and the control vector λ have a nonlinear re-

lationship, which naturally motivates the use of a neural network as the predictive

mapping.

5.4.1 Source field finding

We consider a two-dimensional optimal source control problem simplified from super-

conductivity theory [195]. Intuitively, we have a known, target field ud(x) that we

want our physical field u(x) to achieve. We accomplish this by imposing an appro-

priate source field λ(x). To save cost, we prefer the magnitude of λ(x) to be small.

The solution field u(x) and the source field λ(x) are related by the governing PDE

(Eq. 5.25).

Mathematically, the problem is to minimize the functional

J (u, λ) =
1

2

∫
Ω

(u− ud)2dx+
α

2

∫
Ω

λ2dx (5.24)
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subject to a nonlinear Poisson’s equation with Dirichlet boundary conditions:

−∆u+ 10(u+ u3) = λ in Ω,

u = ub on Γ, (5.25)

where we set a constant boundary condition ub = 1. We use Fig. 5.4 to further

demonstrate the setup of this problem. Note that we employ an irregular domain

with a dolphin-shaped hole in the middle. The irregular domain cannot be discretized

using a structured mesh (a lattice). Many FEA benchmark cases are performed in

this domain with dolfin [196], the finite element computing component of FEniCS.

The potential energy L(u, λ) from which the governing PDE (Eq. 5.25) can be

derived is described in Appendix C. We use AmorFEA to train a neural network

that predicts u ∈ Rn from λ ∈ Rm, where m = n = 759 in this case. The assumed

distribution over λ is constructed from a zero-mean Gaussian process given by

f(x) ∼ GP
(
µ(·), k(·, ·)

)
µ(x) = 0

k(x(i), x(j)) = σ2exp
(
− ‖x

(i) − x(j)‖2
2

l2

)
, (5.26)

where we set the output variance σ = 102 and the lengthscale l = 0.1. To construct the

training and testing data from this distribution, 30, 000 source terms were generated.

Compared with supervised data generated by expensive FEA simulations, our data

are almost free to obtain.

For the neural network model, we use a MLP with “scaled exponential linear units”

(SELUs) for the activation functions [197]. We perform a 90/10 train-test split for

our data. For the 10% test data, we run FEA simulation so that we can report test

error by comparing the AmorFEA solutions with the FEA solutions. Since our data
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FEA mesh source (control parameter) solution (state variable)

Figure 5.4: Setup of the problem. Left: the finite element mesh for a irregular domain
with a dolphin-shaped hole. Middle: an example source field λ(x) = 100sin(2πx1).
Right: the solution field u(x) associated with the source field.

MLP-0 MLP-1 MLP-2

∆am 0.1593± 0.0032 0.0227± 0.0003 0.0156± 0.0002

ε 0.0468± 0.0004 0.0110± 0.0002 0.0086± 0.0001

Table 5.2: Test performance. The amortization gap ∆am is computed according
Eq. 5.5. The relative error ε is computed as Eq. 5.27. The number suffix to “MLP”
refers to the number of hidden layers.

represent functions, it is more meaningful to define an error quantification metric for

functions than to use simple mean squared error (MSE). We define the relative error

ε using norms on the L2(Ω) space:

ε = Ep(λ)

[‖u? − ua‖L2
‖u?‖L2

]
, (5.27)

where u? is the FEA solution and ua is the AmorFEA solution. With FEA simulations

available in the test set, we can also compute the amortization gap introduced in

Eq. 5.5. Since analytical solutions are generally not possible, we cannot explicitly

evaluate the approximation gap or the inference gap. However, the approximation

gap is a well-studied subject in the literature on finite element analysis [16].

We run experiments using MLPs with different layers and report the amortization

gap and relative error in Table 5.2. The layers in all MLPs have equal widths.
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As shown in the table, a single-layer network cannot perfectly solve this nonlinear

problem, in contrast to the linear problem in Section 5.3. We observe that both

the amortization gap and the relative error decrease with deeper neural networks.

Using bigger neural networks may give us smaller amortization gaps, but there is a

trade-off between training time and performance. We show next that a MLP with

2 hidden layers provides adequate accuracy for the PDE-CO problem while being

trained cheaply.

We solve the aforementioned PDE-constrained optimization problem using both

the adjoint method (see Eq. 5.12) and the AmorFEA based method (see Eq. 5.14). We

use dolfin-adjoint [196], an open source package written in the Python interface

to FEniCS for implementing the adjoint method. We vary the values of the regularity

coefficient α in Eq. 5.24 and run PDE-CO experiments using the conjugate gradient

method [198] in SciPy [199]. We record the wall-clock time for different cases and

show the results in Table 5.1. Note that since AmorFEA-based PDE-CO solves a

surrogate model optimization problem, the objective function is defined differently

(see Eq.5.8 and Eq.5.13). We have considered this difference and reported the recon-

structed true objective function for AmorFEA based PDE-CO in Table 5.1. As shown,

AmorFEA based PDE-CO achieves similar optimized objective values compared with

the adjoint method, but with significantly less computation time, excluding time to

train the network. However, it took approximately 5 minutes to train the neural

network; thus AmorFEA is most interesting when such problems need to be solved

repeatedly for, e.g., optimal control of a source.

5.4.2 Inverse kinematics of a soft robot

In the second nonlinear example, we consider the control of a snake-like soft robot

made of elastic material. Such robots represent promising solutions to minimally

invasive surgery [200]. We control the static position of the robot by expanding or
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contracting “muscles” on the left and right sides of the robot, quantitatively described

by an actuation field λ(x) that controls the stretch ratio on the two sides. As shown

in Fig. 5.5, the bottom side of the robot is fixed while the top side is free to deform.

While a forward PDE problem solves for the displacement field u(x) with given λ(x),

we here consider the PDE-constrained optimization problem of inverse kinematics,

i.e., determining the appropriate actuation field to achieve an end-effector location.

We focus on the middle point x0 at the top of the robot and specify an arbitrary two-

dimensional displacement u0 that we hope this tip point can achieve by optimizing

the actuation field λ(x).

FEA mesh fixed bottom

contraction 
expansion

Figure 5.5: Setup of the problem. Left: the finite element mesh for the soft robot in
an undeformed configuration. Right: with the actuation field λ(x) set to be half-and-
half for contraction and expansion, but upside down for the two sides, the robot can
deform to a specific configuration. Colors indicate the displacement magnitude ‖u‖2.

Mathematically, the problem is to minimize the functional

J (u, λ) = ‖u(x0)− u0)‖2
2 (5.28)
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Figure 5.6: Objective function versus gradient descent steps for both AmorFEA and
the adjoint method. The four cases correspond to the same scenarios in Fig. 5.7.

subject to an equilibrium equation for hyperelastic material with appropriate bound-

ary conditions:

Div P (u) = 0 in Ω,

r(u, λ) = 0 on Γ, (5.29)

where “Div” is the divergence operator, P is the a second-order stress tensor and r

is the boundary constraint. For more precise definitions of these terms, refer to

Appendix C. Since the boundary constraint in Eq. 5.29 is unusual, there is no direct

implementation in FEniCS. We implement both the FEA algorithms and the adjoint

method with our custom code for this problem.

The potential energy L(u, λ) from which the governing PDE (Eq. 5.29) can be de-

rived is known as the strain energy, fully described in Appendix C. We use AmorFEA

to train a neural network to predict u ∈ Rn from λ ∈ Rm, where m = 40 and n = 206
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Figure 5.7: Wall time measurement for both the adjoint method and AmorFEA.
There are four target displacements for the tip point displacement u(x0) to achieve.
In these plots, one blue dot indicate one gradient descent step of the adjoint method,
while one red dot indicate multiple gradient steps for AmorFEA. Following the row-
first order, the numbers of steps per red dot are (40, 40, 400, 600). The gradient
descent step size is set to be consistent within each case, but different across the four
cases: (10−2, 10−2, 2× 10−3, 2× 10−3).

in this case. The assumed distribution over actuation fields is constructed from a uni-

form distribution over the hypercube [−a, a]m with a > 0. 30, 000 training data were

generated from this distribution. Training is similar to the source-finding case in

Section 5.4.1. However, the potential energy L(u, λ) in this case is sensitive to the

displacement u. For a displacement field that causes any overlap of the deformed

robot, the energy will be infinite. We take a warm-start strategy to train the network

by varying a from 0.1, 0.2, 0.4 until 0.8, and train the network successively. Training

took 5− 10 minutes.

To demonstrate the ability of the resulting neural network to enable solutions

to the inverse kinematics problem via PDE-CO of the actuation field, we pick four

equally-spaced target points on a circle centered at the robot tip and perform PDE-CO
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to find actuations. As shown in Fig. 5.7, we use gradient descent for both the adjoint

method and AmorFEA. AmorFEA consumes significantly less time than the adjoint

method. However, since AmorFEA-based PDE-CO uses an approximate surrogate

model, we may expect the objective to plateau before reaching the true minimum.

One may view this as an asymptotic bias, which can be remedied by “fine tuning”

the AmorFEA result with the adjoint method. From this perspective, AmorFEA

provides a fast and accurate initial guess for the non-convex PDE-CO problem.

We additionally demonstrate that AmorFEA follows a similar optimization

path to the adjoint method, by showing the objective function versus the number

of gradient descent steps in Fig. 5.6 for each of the four cases. Wall time mea-

surements in [s] of these four cases are (119, 218, 133, 113) for the adjoint method

and (0.215, 0.210, 0.226, 0.249) for AmorFEA. For completeness, we also explored

gradient-free techniques such as the Nelder–Mead method [201], but they typically

converged to an unsatisfactory local minimum.

5.5 Limitations and Future Work

Compared to traditional FEA, AmorFEA consumes additional computational re-

sources up front for training the model. To accommodate the training time, AmorFEA

only starts to show its edge when a sequence of related problems need to be solved.

Additionally, we note that the current formulation requires the governing PDE to

be derived from minimization of a potential energy, but this is not applicable for all

PDEs, which limits the scope of this work.

Promising directions for future work include a more systematic study of the amor-

tization gap in nonlinear problems, using higher order finite element basis functions

for AmorFEA, and parameterization of the domain for topology optimization in PDE-

CO.
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5.6 Conclusions

In this work, we proposed a novel formulation (AmorFEA) that amortizes the solv-

ing process of classic finite element analysis. AmorFEA enables fast, differentiable

prediction of PDE solutions, which accelerates PDE-constrained optimization. We

quantitatively studied the amortization gap for both linear problems and nonlinear

problems. Numerical experiments show that our method outperforms the traditional

adjoint method on a per-iteration basis.

Appendix A Finite Element Analysis

The Finite Element Analysis (FEA) is arguably the most powerful approach known

for the numerical solutions of problems characterized by partial differential equations

(PDEs). We demonstrate the basic idea by considering the linear Poisson’s equation

as a model problem. As shown in Fig. 5.8, we start with the strong formulation of

the problem and then introduce the weak formulation upon which the finite element

approximation is built, namely, the Galerkin weak formulation. We further introduce

the minimization formulation and the corresponding Galerkin minimization formu-

lation, which is the cornerstone for the proposed amortized finite element analysis

(AmorFEA).

Figure 5.8: FEA roadmap.
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The strong formulation of the Poisson’s equation reads as

−∆u = λ in Ω,

u = 0 on Γ. (5.30)

For simplicity, we have assumed homogenous Dirichlet boundary conditions. In-

stead of heuristically approximating the differential operator like the Finite Differ-

ence Method (FDM), FEA employs a more systematic approach by searching the best

possible solution over a constructed finite-dimensional function space.

First, let us multiply a test function v for both sides of the PDE in Eq. 5.30,

integrate over Ω, and use integration by parts to obtain the weak formulation:

find u ∈ V := {v sufficiently smooth
∣∣ v|Γ = 0} such that

a(u, v) = l(λ, v), for all v ∈ V, (5.31)

where

a(u, v) =

∫
Ω

∇u · ∇v dx, l(λ, v) =

∫
Ω

λv dx. (5.32)

Second, we construct a finite-dimensional subspace Vh ⊂ V and Vh = span{φ1, ..., φn}

is the piece-wise polynomial function space. Note that for any function v ∈ Vh, there

is a unique representation v =
∑n

i=1 viφi. We thus can define an isomorphism Vh
∼= Rn

by v =
∑n

i=1 viφi ↔ b = (v1, ..., vn)>.

The Galerkin weak formulation yields an approximation to Eq. 5.31 by solving

the following system of linear equations:

Au = f , (5.33)
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where A ∈ Rn×n is the stiffness matrix with Aij = a(φi, φj), u ∈ Rn is the solution

vector and f ∈ Rn is the source vector with fi = l(φi, λ). As a remark, if λ is also

represented by piece-wise polynomial basis functions, we could further write f = Bλ

with B ∈ Rn×m and Bij = l(φi, φj). It is not difficult to verify that A is symmetric

and positive definite. By solving Eq. 5.33, the FEM gives the best possible solution

we can find in Vh.

The minimization formulation states that

min
u∈V
L(u), (5.34)

where

L(u) =
1

2

∫
Ω

∇u · ∇u dx−
∫

Ω

λu dx. (5.35)

By setting the functional derivative to be zero, we recover the weak formulation.

Finally, we introduce the Galerkin minimization formulation, which is the dis-

cretized version of the minimization formulation above. Replace u ∈ V in Eq. 5.34

with u =
∑n

i=1 uiφi ∈ Vh, we get the following finite-dimensional optimization prob-

lem:

min
u∈Rn

L(u), (5.36)

where

L(u) =
1

2
u>Au− f>u. (5.37)

The quadratic programming problem yields the same solution as Eq. 5.33. AmorFEA

is based on the Galerkin minimization formulation. Note that for a nonlinear problem,
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we may have a more complicated nonlinear optimization problem rather than the

quadratic programming.

For further details regarding FEA and its variational formulation, we refer readers

to [202].

Appendix B Proofs

Lemma 1. A function f : Rn → R is convex if and only if the function g : R→ R

given by g(t) = f(x+ ty) is convex (as a univariate function) for all x in domain of

f and all y ∈ Rn. (The domain of g here is all t for which x+ ty is in the domain

of f .)

Proof. This is straightforward from the definition of convexity of multivariable func-

tions.

Proposition 3. The empirical loss function La(W ) of AmorFEA in the linear model

is convex.

Proof. We use Lemma 1 to show the function La : Rn×n → R is convex. For any

fixed W1 ∈ Rn×n and W2 ∈ Rn×n, let

g(t) =La(W1 + tW2)

=
1

K

K∑
k=1

(1

2

(
(W1 + tW2)fk

)>
A
(
(W1 + tW2)fk

)
− f>k

(
(W1 + tW2)fk

))
=
( 1

2K

K∑
k=1

f>k W
>
2 AW2fk

)
t2 −

( 1

2K

K∑
k=1

f>k W1fk
))

+
( 1

2K

K∑
k=1

(
f>k W

>
2 AW1fk + f>k W

>
1 AW2fk − 2f>k W2fk

))
t (5.38)
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Since A is symmetric and positive definite, the coefficient of the quadratic term is

always positive:

1

2K

K∑
k=1

f>k W
>
2 AW2fk =

1

2K

K∑
k=1

‖A
1
2W2fk‖2

2 ≥ 0. (5.39)

This shows that g(t) is always convex.

Proposition 4. The empirical loss function Ls(W ) of supervised learning in the

linear model is convex.

Proof. We use Lemma 1 to show the function Ls : Rn×n → R is convex. For any

fixed W1 ∈ Rn×n and W2 ∈ Rn×n, let

g(t) =Ls(W1 + tW2)

=
1

K

K∑
k=1

(1

2

(
(W1 + tW2)fk −A−1fk

)>(
(W1 + tW2)fk −A−1fk

))
=
( 1

2K

K∑
k=1

f>k W
>
2 W2fk

)
t2 +

( 1

2K

K∑
k=1

f>k (W1 −A−1)>(W1 −A−1)fk
))

−
( 1

2K

K∑
k=1

(
f>k (W1 −A−1)>W2fk + f>k W

>
2 (W1 −A−1)fk

))
t (5.40)

The coefficient of the quadratic term is always positive:

1

2K

K∑
k=1

f>k W
>
2 W2fk =

1

2K

K∑
k=1

‖W2fk‖2
2 ≥ 0. (5.41)

This shows that g(t) is always convex.
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Appendix C Detailed Formulations

Source Field Finding The potential energy is

L(u, λ) =
1

2

∫
Ω

‖∇u‖2
2dx+

1

2

∫
Ω

(10u2 + 5u4)dx−
∫

Ω

λudx. (5.42)

The governing PDE (Eq. 5.25) can be derived by minimizing Eq. 5.42.

We set λ(x) = 100exp(
‖x−(0.1,0.1)‖22

0.02
), solve the governing PDE by FEA and set the

solution to be the desired field ud(x) for Eq. 5.24.

Inverse Kinematics of a Soft Robot We model the soft robot with a neo-

Hookean hyperelastic solid [203]. The total potential energy is

L(u, λ) =

∫
Ω

Wdx, (5.43)

where the energy density W is defined for material bulk and shear moduli µ and κ

as:

W =
µ

2

(
(detF )−2/3tr(FF T )− 3

)
+
κ

2
(detF − 1)2, (5.44)

and F is the deformation gradient,

F = ∇u+ I. (5.45)

Since our problem is in 2d, we have assumed plain strain condition. The govern-

ing PDE (Eq. 5.29) can be derived by minimization Eq. 5.43. The stress tensor P

in Eq. 5.29 is known as the first Piola-Kirchoff stress and can be obtained by

P =
∂W

∂F
. (5.46)
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The boundary constraint r(u, λ) in Eq. 5.29 is expressed over the bottom side

boundary Γb, top side boundary Γt and the side boundaries Γs respectively as

u = 0 on Γb, (5.47)

P ·N = 0 on Γt, (5.48)

Λ = h(λ) on Γs, (5.49)

where N is the normal vector to the boundary, Λ is the stretch ratio (see definition

in [204]) and h(λ) = 1
1+e−λ

+ 1
2

forces the range of Λ to (0.5, 1.5) in order to avoid

extreme and unrealistic deformations.

116



Chapter 6

Concluding Remarks

The dissertation studied several different kinds of mechanical metamaterials with a

computational approach. We focused on both modeling and design aspects of these

metamaterials, and successfully used machine learning techniques to achieve the goals

of both forward simulations and inverse designs.

To provide efficient solutions to forward simulation problems, we first introduced

a neural network based computational homogenization scheme to accelerate the for-

ward simulation of cellular mechanical metamaterials. We used a neural network

to approximate the effective strain energy density as a function of cellular geometry

and overall deformation. The network was constructed by “learning” from the data

generated by finite element calculation of a set of representative volume elements

at cellular scales. This effective strain energy density was then used to predict the

mechanical responses of cellular materials at larger scales. Compared with direct

numerical simulation, the proposed scheme could greatly reduce the computational

cost.

We studied the same cellular mechanical metamaterials, concentrating on the de-

sign aspects. An efficient and robust shape optimization method was introduced to

compute optimal geometric pore structures. The proposed method adopted a fixed
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referential configuration, so that shape optimization was accomplished without ac-

tually modifying the shape of computational domain. Three important numerical

examples were used to demonstrate the advantages of the method, namely, optimiz-

ing negative Poisson’s ratio, precise control of the onset of instability, and arbitrary

tuning of band gaps for phononic structures. These examples cover a broad range of

important engineering applications of cellular mechanical metamaterials.

Besides cellular mechanical metamaterials, we proposed an optimization frame-

work that automates the design flow of composite mechanical metamaterials. Using

generative models in machine learning, we successfully designed metamaterials with

arbitrarily tunable macroscopic elastic moduli. The optimal samples were fabricated

with advanced multi-material additive manufacturing techniques, and were tested by

standard mechanical experiments for validation of the method.

Thinking beyond the design problems, we focused our attention on general PDE-

constrained optimization problems. We proposed amortized finite element analysis

(AmorFEA), in which a neural network learns to produce accurate PDE solutions.

This network was trained to directly minimize the potential energy from which the

PDE and finite element method are derived, avoiding the need to generate costly

supervised training data by solving PDEs with traditional numerical methods. As

FEA is a variational procedure, AmorFEA is a direct analogue to popular amortized

inference approaches in latent variable models, with the finite element basis acting

as the variational family. AmorFEA could perform PDE-CO without the need to

repeatedly solve the associated PDE, accelerating optimization when compared to a

traditional workflow using FEA and the adjoint method.

Finally, we point out some promising future directions for considerations. From

the forward modeling perspective, other than simple feed forward neural networks

used in this dissertation, we may adjust to more advanced network architectures for

specific purposes of mechanical metamaterials. For example, the porous structure
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of cellular mechanical materials naturally forms a graph, which prompts the use of

a graph-based neural network architecture for modeling. As for the inverse design

part, we anticipate the role of automatic differentiation to be more significant in the

optimization problems of mechanical metamaterials.
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[99] P. P. Castañeda, “Exact second-order estimates for the effective mechanical
properties of nonlinear composite materials,” Journal of the Mechanics and
Physics of Solids, vol. 44, no. 6, pp. 827–862, 1996.

[100] J. Segurado, R. A. Lebensohn, and J. LLorca, “Computational homogenization
of polycrystals,” in Advances in Applied Mechanics, vol. 51, pp. 1–114, Elsevier,
2018.

[101] M. G. Geers, V. G. Kouznetsova, and W. Brekelmans, “Multi-scale computa-
tional homogenization: Trends and challenges,” Journal of computational and
applied mathematics, vol. 234, no. 7, pp. 2175–2182, 2010.

[102] V. P. Nguyen, M. Stroeven, and L. J. Sluys, “Multiscale continuous and discon-
tinuous modeling of heterogeneous materials: a review on recent developments,”
Journal of Multiscale Modelling, vol. 3, no. 04, pp. 229–270, 2011.

[103] S. Saeb, P. Steinmann, and A. Javili, “Aspects of computational homogeniza-
tion at finite deformations: a unifying review from reuss’ to voigt’s bound,”
Applied Mechanics Reviews, vol. 68, no. 5, p. 050801, 2016.

[104] F. Feyel and J.-L. Chaboche, “Fe2 multiscale approach for modelling the elas-
toviscoplastic behaviour of long fibre sic/ti composite materials,” Computer
Methods in Applied Mechanics and Engineering, vol. 183, no. 3-4, pp. 309–330,
2000.

[105] S. Ghosh, K. Lee, and P. Raghavan, “A multi-level computational model for
multi-scale damage analysis in composite and porous materials,” International
Journal of Solids and Structures, vol. 38, no. 14, pp. 2335–2385, 2001.

[106] K. Terada and N. Kikuchi, “A class of general algorithms for multi-scale anal-
yses of heterogeneous media,” Computer methods in applied mechanics and
engineering, vol. 190, no. 40-41, pp. 5427–5464, 2001.

[107] V. Kouznetsova, M. G. Geers, and W. Brekelmans, “Multi-scale second-order
computational homogenization of multi-phase materials: a nested finite element
solution strategy,” Computer Methods in Applied Mechanics and Engineering,
vol. 193, no. 48-51, pp. 5525–5550, 2004.

[108] J. Yvonnet and Q.-C. He, “The reduced model multiscale method (r3m) for the
non-linear homogenization of hyperelastic media at finite strains,” Journal of
Computational Physics, vol. 223, no. 1, pp. 341–368, 2007.

[109] H. Moulinec and P. Suquet, “A fast numerical method for computing the lin-
ear and nonlinear mechanical properties of composites,” Comptes rendus de
l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie,
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verwendung von teilräumen, die keinen randbedingungen unterworfen sind,”
in Abhandlungen aus dem mathematischen Seminar der Universität Hamburg,
vol. 36, pp. 9–15, Springer, 1971.

[136] P. Hansbo, “Nitsche’s method for interface problems in computational mechan-
ics,” GAMM-Mitteilungen, vol. 28, no. 2, pp. 183–206, 2005.

130



[137] T. Belytschko and T. J. Hughes, “Computational methods for transient analy-
sis,” Amsterdam, North-Holland(Computational Methods in Mechanics., vol. 1,
1983.

[138] E. Riks, “An incremental approach to the solution of snapping and buckling
problems,” International journal of solids and structures, vol. 15, no. 7, pp. 529–
551, 1979.

[139] D. J. Luet, Bounding volume hierarchy and non-uniform rational B-splines for
contact enforcement in large deformation finite element analysis of sheet metal
forming. PhD thesis, Princeton University, 2016.

[140] S. K. Mitusch, S. W. Funke, and J. S. Dokken, “dolfin-adjoint 2018.1: au-
tomated adjoints for fenics and firedrake,” Journal of Open Source Software,
vol. 4, no. 38, p. 1292, 2019.

[141] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM Journal on scientific computing,
vol. 16, no. 5, pp. 1190–1208, 1995.

[142] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b: For-
tran subroutines for large-scale bound-constrained optimization,” ACM Trans-
actions on mathematical software (TOMS), vol. 23, no. 4, pp. 550–560, 1997.

[143] V. Hernandez, J. E. Roman, and V. Vidal, “Slepc: A scalable and flexible toolkit
for the solution of eigenvalue problems,” ACM Transactions on Mathematical
Software (TOMS), vol. 31, no. 3, pp. 351–362, 2005.

[144] P. Lancaster, “On eigenvalues of matrices dependent on a parameter,” Nu-
merische Mathematik, vol. 6, no. 1, pp. 377–387, 1964.

[145] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic
band structure of periodic elastic composites,” Physical review letters, vol. 71,
no. 13, p. 2022, 1993.

[146] B. Merheb, P. A. Deymier, M. Jain, M. Aloshyna-Lesuffleur, S. Mohanty,
A. Berker, and R. Greger, “Elastic and viscoelastic effects in rubber/air acoustic
band gap structures: A theoretical and experimental study,” Journal of Applied
Physics, vol. 104, no. 6, p. 064913, 2008.

[147] M. Ruzzene and F. Scarpa, “Directional and band-gap behavior of periodic
auxetic lattices,” physica status solidi (b), vol. 242, no. 3, pp. 665–680, 2005.

[148] W. Cheng, J. Wang, U. Jonas, G. Fytas, and N. Stefanou, “Observation and
tuning of hypersonic bandgaps in colloidal crystals,” Nature materials, vol. 5,
no. 10, pp. 830–836, 2006.

131



[149] F. Casadei, L. Dozio, M. Ruzzene, and K. A. Cunefare, “Periodic shunted
arrays for the control of noise radiation in an enclosure,” Journal of sound and
vibration, vol. 329, no. 18, pp. 3632–3646, 2010.

[150] F. Casadei, B. S. Beck, K. A. Cunefare, and M. Ruzzene, “Vibration control of
plates through hybrid configurations of periodic piezoelectric shunts,” Journal
of Intelligent Material Systems and Structures, vol. 23, no. 10, pp. 1169–1177,
2012.

[151] F. Javid, P. Wang, A. Shanian, and K. Bertoldi, “Architected materials with
ultra-low porosity for vibration control,” Advanced materials, vol. 28, no. 28,
pp. 5943–5948, 2016.

[152] P. Wang, J. Shim, and K. Bertoldi, “Effects of geometric and material non-
linearities on tunable band gaps and low-frequency directionality of phononic
crystals,” Physical Review B, vol. 88, no. 1, p. 014304, 2013.

[153] K. Bertoldi and M. C. Boyce, “Wave propagation and instabilities in mono-
lithic and periodically structured elastomeric materials undergoing large defor-
mations,” Physical Review B, vol. 78, no. 18, p. 184107, 2008.

[154] G. Geymonat, S. Müller, and N. Triantafyllidis, “Homogenization of nonlin-
early elastic materials, microscopic bifurcation and macroscopic loss of rank-
one convexity,” Archive for rational mechanics and analysis, vol. 122, no. 3,
pp. 231–290, 1993.
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