
NeuroResource
Mapping Sub-Second Stru
cture in Mouse Behavior
Highlights
d Computational modeling reveals structure in mouse behavior

without observer bias

d Mouse behavior appears to be composed of stereotyped,

sub-second modules

d From this perspective, new behaviors result from altering

both modules and transitions

d Unsupervised analysis reveals how genes and neural activity

impact behavior
Wiltschko et al., 2015, Neuron 88, 1121–1135
December 16, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.neuron.2015.11.031
Authors

Alexander B. Wiltschko,

Matthew J. Johnson, Giuliano Iurilli, ...,

Victoria E. Abraira, Ryan P. Adams,

Sandeep Robert Datta

Correspondence
srdatta@hms.harvard.edu

In Brief

Mouse behavior appears inherently

divided into brief modules of 3D motion.

This sub-second structure reveals the

influence of the environment, genes and

neural activity on action.

mailto:srdatta@hms.harvard.edu
http://dx.doi.org/10.1016/j.neuron.2015.11.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2015.11.031&domain=pdf


Neuron

NeuroResource
Mapping Sub-Second Structure in Mouse Behavior
Alexander B. Wiltschko,1,2 Matthew J. Johnson,1,2 Giuliano Iurilli,1 Ralph E. Peterson,1 Jesse M. Katon,1

Stan L. Pashkovski,1 Victoria E. Abraira,1 Ryan P. Adams,2 and Sandeep Robert Datta1,*
1Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
*Correspondence: srdatta@hms.harvard.edu

http://dx.doi.org/10.1016/j.neuron.2015.11.031
SUMMARY

Complex animal behaviors are likely built from
simpler modules, but their systematic identification
in mammals remains a significant challenge. Here
we use depth imaging to show that 3D mouse pose
dynamics are structured at the sub-second time-
scale. Computational modeling of these fast dy-
namics effectively describes mouse behavior as a
series of reused and stereotyped modules with
defined transition probabilities. We demonstrate
this combined 3D imaging and machine learning
method can be used to unmask potential strategies
employed by the brain to adapt to the environment,
to capture both predicted and previously hidden
phenotypes caused by genetic or neural manipula-
tions, and to systematically expose the global struc-
ture of behavior within an experiment. This work
reveals that mouse body language is built from iden-
tifiable components and is organized in a predictable
fashion; deciphering this language establishes an
objective framework for characterizing the influence
of environmental cues, genes and neural activity on
behavior.

INTRODUCTION

Innate behaviors are sculpted by evolution into stereotyped

forms that enable animals to accomplish particular goals (such

as exploring or avoiding a predator). Ultimately understanding

how neural circuits create these patterned behaviors requires a

clear framework for characterizing how behavior is organized

and evolves over time. One conceptual approach to addressing

this challenge arises from ethology, which proposes that the

brain builds coherent behaviors by expressing stereotypedmod-

ules of simpler action in specific sequences (Tinbergen, 1951).

Although behavioral modules have traditionally been identi-

fied, one at a time, through careful human observation, recent

technical advances have enabled more comprehensive charac-

terization of the components of behavior. For example, in inver-

tebrates, behavioral modules and their associated transition

probabilities can now be discovered systematically through

automated machine vision, clustering, and classification algo-

rithms (Berman et al., 2014; Croll, 1975; Garrity et al., 2010; Ste-
Ne
phens et al., 2008, 2010; Vogelstein et al., 2014). Furthermore,

identifying behavioral modules and transition probabilities has

uncovered context-specific strategies used by invertebrate

brains to adapt behavior to changes in the environment, which

include both the emission of new behavioral modules (such as

when the animal switches from ‘‘exploring’’ to ‘‘mating’’) and

the generation of new behaviors through re-sequencing existing

modules. InC. elegans, for example, neural circuits that respond

to appetitive cues alter transition probabilities between a core

set of locomotor-related behavioral modules, thereby creating

new behavioral sequences that enable taxis toward attractive

odorants (Gray et al., 2005; Pierce-Shimomura et al., 1999).

Similar observations have been made for sensory-driven behav-

iors in fly larvae (Garrity et al., 2010).

Comparable systematic approaches to discovering behavioral

modules have not yet been implemented in mice. Instead, tradi-

tional behavioral classification approaches have been instanti-

ated in silico, enabling machine vision algorithms to replace

tedious and unreliable human scoring of videotaped behavior

(de Chaumont et al., 2012; Jhuang et al., 2010; Kabra et al.,

2013; Weissbrod et al., 2013). These approaches are powerful

and have been successfully used to quantify components of

innate exploratory, grooming, approach, aggressive, and repro-

ductive behaviors. However, because they depend upon the

prior specification, by human observers, of what constitutes a

meaningful behavioral module, the insight from these methods

is bounded by human perception and intuition. Currently avail-

able approaches therefore focus on identifying a small number

of pre-specified modules within a given experiment, rather

than on discovering new behavioral modules (which potentially

encapsulate novel patterns of action), describing the global

structure of behavior, or predicting future actions based upon

those in the past.

Systematically describing the structure of behavior in mice—

and understanding how the brain alters that structure to enable

adaptation—requires overcoming three challenges. First, it is

not clear which features are important to measure when identi-

fying candidate behavioral modules. Mice interact with the world

by expressing complex 3D pose dynamics, but because these

are difficult to capture, most current methods track 2D parame-

ters such as the position, velocity, or 2D contour of the mouse

(de Chaumont et al., 2012; Gomez-Marin et al., 2012; Jhuang

et al., 2010; Kabra et al., 2013; Spink et al., 2001; but see Ou-

Yang et al., 2011). Second, given that behavior evolves on

many timescales in parallel, it is not clear how to objectively iden-

tify the relevant spatiotemporal scales at which to modularize

behavior. Finally, even stereotyped modules of behavior exhibit
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moment-to-moment and animal-to-animal variability (Colgan,

1978). This variability raises significant challenges for identifying

the number and content of behavioral modules, and with associ-

ating observed actions with specific behavioral modules.

Here we describe a novel method, based upon recent ad-

vances in machine vision and learning, that identifies behavioral

modules and their associated transition probabilities without hu-

man supervision. This approach uses 3D imaging to capture the

pose dynamics of mice as they freely behave in a variety of

experimental contexts; these data reveal a surprising regularity

that appears to divide mouse behavior into recognizable behav-

ioral motifs that are organized at the sub-second timescale.

A computational model then takes advantage of the observed

fast temporal structure to describe mouse behavior as a series

of reused modules, each a brief and stereotyped 3D trajectory

through pose space that is connected in time to other modules

through predictable transitions. We use this combined 3D imag-

ing/modeling approach to explore how the underlying structure

of behavior is altered after distinct environmental, genetic, or

neural manipulations and show that this method can detect

both predicted changes in action and new features of behavior

that had not been previously described. This work reveals that

defining behavioral modules based upon structure in the 3D

behavioral data itself—rather than using a priori definitions for

what should constitute a measurable unit of action—can yield

key information about the elements of behavior, offer insight

into adaptive behavioral strategies used bymice, and enable dis-

covery of subtle alterations in patterned action.

RESULTS

3D Imaging Captures Inherent Structure in Mouse Pose
Dynamics
We wished to develop a method that would allow unsupervised

phenotyping of mice based upon patterns of 3D movement.

However, it is not clear whether spontaneous behaviors ex-

hibited by mice have a definable underlying structure that can

be used to characterize action as it evolves over time. To ask

whether such a structure might exist, we measured how the

shape of a mouse’s body changes as it freely explores a circular

open field (Experimental Procedures). We used a single depth

camera placed above the arena to capture these 3D pose dy-

namics and then extracted the image of the mouse from the

arena; corrected imaging artifacts due to parallax effects;

centered, and aligned the mouse along the inferred axis of its

spine; and then quantified how the mouse’s pose changed

over time (Figures 1A and S1; Movie S1).

Plotting these 3D data over time revealed that mouse behavior

is characterized by periods during which pose dynamics evolve

slowly, punctuated by fast transitions that separate these pe-

riods; this pattern appears to divide the behavioral imaging

data into blocks typically lasting 200–900 ms (Figures 1B and

S2A). This temporal structure is apparent in the raw imaging

pixels (Figure 1B, top), in the inferred shape of the mouse’s spine

(Figure 1B, middle), and in dimensionally reduced data that

randomly samples from the depth images on the sensor (Fig-

ure 1B, bottom; see Supplemental Experimental Procedures).

This structure is absent in data acquired from anesthetized or
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dead mice but is present for the entire duration of each experi-

ment in the pose dynamics data of mice exploring behavioral

arenas of different shapes and after exposure to a wide variety

of sensory cues, suggesting that it is a fundamental and ubiqui-

tous feature of mouse behavior (data not shown; Figure S2).

To characterize this fast temporal structure, we performed

three separate quantitative analyses. First, approximate bound-

aries between blocks in the behavioral imaging data were identi-

fied by a changepoints algorithm, which revealed that the mean

block duration was about 350 ms, roughly matching the time-

scale of the blocks apparent upon visual inspection (Figures 1B

and 1C; Supplemental Experimental Procedures). Second, we

performed temporal autocorrelation analysis on the pose dy-

namics data, which demonstrated that autocorrelation in the

mouse’s pose largely dissipated after 400 ms (tau = 340 ±

58 ms, Figures 1C and S2B). This pattern of autocorrelation re-

flects specific behavioral dynamics organized at sub-second

timescales, as it was destroyed by shuffling the behavioral data

at timescales of 500msor less, andwasnot observed in synthetic

mouse behavioral data designed to evolve with either random

walk or Levy flight characteristics (Figures 1C and S2C). Third,

we used a Wiener filter analysis to compare power spectral den-

sities taken from live and dead mice; this approach identifies fre-

quencies that must be changed in imaging data taken from a

deadmouse tomatch thepower spectrumof a livemouse.Nearly

all of the frequency content differentiating behaving from dead

mice was concentrated between 1 and 6 Hz (measured by spec-

trum ratio, mean 3.75 ± 0.56 Hz, Figures 1C and S2B). Taken

together, the qualitative appearance of block structure in the

pose dynamics data, along with the convergent results obtained

with these three quantitative analyses, demonstrate that mouse

pose dynamics exhibit structure at the sub-second timescale.

The observed temporal structure within the pose dynamics

data suggests a timescale at which continuous behavior may

be naturally segmented into meaningful components, as visual

inspection of 3D movies revealed that each of the sub-second

blocks of behavior appears to encode a recognizable action

(e.g., a dart, a pause, the first half of a rear; see Movie S2). To

explore the possibility that these sub-second actions are stereo-

typed (and therefore reproducibly performed at different times

during an experiment), the 3D mouse imaging data was sub-

jected to wavelet decomposition followed by principal-compo-

nent analysis (PCA), which transformed each block in the pose

dynamics data into a continuous trajectory through principal

component (PC) space (Figures 1D). By scanning the behavioral

data using a template matching method (using Euclidean dis-

tance among the first 10 PCs, which explain 88%of the data vari-

ance) (Figure S2D), additional instances were identified in which

each template action was reused (Figure 1D; Supplemental

Experimental Procedures; see Figure S3 for additional exam-

ples). These anecdotal observations suggest that mice create

complex behaviors through the serial expression of stereotyped

and reused behavioral modules (Tinbergen, 1951).

Mouse Behavior Can Be Described and Predicted with
Modules and Transitions
Although our analysis suggests a timescale at which behavioral

modules might exist, and qualitative inspection of 3D video
.
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Figure 1. Depth Imaging Reveals Block Structure in 3D Mouse Pose Dynamics Data

(A) Mouse imaged in the circular open field with a standard RGB (top) and 3D depth camera (bottom, mm = mm above floor). Arrow indicates the inferred axis of

the animal’s spine.

(B) Raw pixels of the extracted and aligned 3Dmouse image (top panel, sorted bymean height), compressed data (bottom panel, 300 dimensions compressed via

random projections arrayed on the y axis, pixel brightness proportional to its value), and height at each inferred position of the mouse’s spine (middle panel,

‘‘spine’’ data extracted from the mouse as indicated on the right, mm = mm above floor) each reveal sporadic, sharp transitions in the pose data over time. Note

that the cross-sectional profile of the spine with respect to the camera varies depending upon the morphology of the mouse; when reared, this profile becomes

smaller, and when on all fours, it becomes larger. Changepoints analysis (bottom panel, blue trace = normalized changepoint probability) identifies approximate

boundaries between blocks. Blocks encode a variety of behaviors including locomotion (1), a pointing rear with the mouse’s body elongated with respect to the

sensor (2), and a true rear (3).

(C) Upper left: Autocorrelation analysis performed on the top ten principal components (PCs) of the pose dynamics data reveals that temporal correlation in the

mouse’s pose stabilizes after about 400 ms (tau = 340 ± 58 ms).

(C) Lower left: Shuffling behavioral data in blocks of 500 ms or shorter destroys autocorrelation structure (shuffle block size indicated).

(C) Upper right: Spectral power ratio between behaving and dead mice (mean plotted in black, individual mice plotted in gray) reveals most frequency content is

represented between 1 and 6 Hz (mean = 3.75 ± 0.56 Hz).

(C) Lower right: Changepoints-identified block duration distribution (mean = 358 ms, SD 495 ms, mean plotted in black, individual mice in gray, n = 25 mice, 500

total min imaging).

(D) Projectingmouse pose data (top panels, random projections and spine data depicted as in [B] into PC space [bottom]) reveals that blocks of pose data encode

reused trajectories (density of all recorded poses colormapped behind trajectories). Tracing out the path associated with a block highlighted by changepoint

detection (top) identifies a trajectory through PC space (white). Similar trajectories identified through template matching (time indicated as progression from blue

to red) are superimposed. Note that this procedure uses the first ten PCs to identify matched trajectories, although only the first two PCs are depicted here.
and PCA trajectories is consistent with the possibility that sub-

second blocks of behavior correspond to reused modules, cur-

rent methods do not allow for the systematic identification of
Ne
candidate behavioral modules in mice. Indeed, available ap-

proaches neither reveal whether dividing behavior into modules

actually helps to explain the overall structure of behavior nor
uron 88, 1121–1135, December 16, 2015 ª2015 Elsevier Inc. 1123
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Figure 2. Reused Behavioral Modules within Mouse Pose Dynamics Data

(A) Predictive performance comparison of computational models describing possible structures for behavior (details of each model and the comparison

metric provided in Supplemental Experimental Procedures). Models range from a Gaussian model (which proposes that mouse behavior is built from modules,

each a single Gaussian in pose space) to an AR-HMM (which proposes that mouse behavior is built from modules, each of which encodes an autoregressive

trajectory through pose space, and which transition from one to another with definable transition statistics; AR-MM, autoregressive mixture model; AR,

autoregressive model; GMM, Gaussian mixture model; GMM-HMM, GMM hidden Markov model; Gaussian HMM, Gaussian hidden Markov model). Model

performance plotted as the log likelihood (y axis) ascribed to held-out test data at some time lag (x axis) into the future (after subtracting Gaussian model

performance).

(B) The AR-HMM parses behavioral data into identifiable modules (top panels—marked ‘‘labels,’’ each module is uniquely color coded). Multiple data instances

associatedwith a single behavioral module (encoding a rear) each take a stereotyped trajectory through PC space (bottom left, trajectories progress fromwhite to

green over time, see Movie S4); multiple trajectories define behavioral sequences (bottom center, see Movie S6). Each trajectory within a sequence encodes a

different elemental action (side-on view of the mouse calculated from depth data, bottom right, time indicated as increasingly darker lines, from module start

to end).

(legend continued on next page)
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identify the most likely number of modules expressed within any

given dataset, or the content and durations of those modules.

To address these issues, we built a family of computational

models, each of which proposes a unique underlying structure

for behavior, and asked which of these models best predicts

the pose dynamics of freely behaving mice (Figures 2A and

S4); we reasoned that the model that most closely fit behavioral

data (to which the model had not been exposed) would reveal

key features of the underlying organization of behavior and could

be used to characterize its components. After pre-processing

the imaging data, the top ten PCs of the data (Figure S4E)

were used to fit each model; this use of PCs (which directly

reflect the pixel data) as a basis for modeling minimized potential

biases from feature engineering. Models were fit using Bayesian

nonparametric and Markov Chain Monte Carlo techniques that

can automatically identify structure within large datasets,

including the optimal state number for a given dataset andmodel

(see Supplemental Experimental Procedures; Figure S4). Each

model was trained on one set of pose dynamics data and then

tested for its ability to explain a separate set of held-out data,

a metric canonically used to compare unsupervised learning

models (Hastie et al., 2009).

Our simplest model proposed that each behavioral module is a

single fixed pose with no defined transition probabilities between

the modules. We iteratively added structure to build increasingly

complex models, which incorporated modules with more elabo-

rate internal structures (ranging from mixtures of poses to

smooth pose trajectories), allowed predictable transitions be-

tween specific modules (by embedding the modules within a

Markov model), or both (Figure S4). Where relevant, the fitting

procedures were explicitly focused to search for behavioral

modules at the sub-second timescale matching the temporal

structure identified using our model-free methods; this approach

provided an important—and previously unavailable—constraint,

given the multiple possible timescales upon which behavior

evolves simultaneously.

The model that best fit previously unseen behavioral data de-

scribes mouse behavior as a sequence of modules (each

capturing a brief motif of 3D body motion) that switch from one

to another at the sub-second timescale identified by our

model-free analysis of pose dynamics (Figures 2A and S4D;

Supplemental Experimental Procedures). We refer to this model

as an AR-HMM, as each behavioral module was modeled as a

vector autoregressive (AR) process capturing a stereotyped tra-

jectory through pose space, and the switching dynamics be-

tween different modules were modeled using a hidden Markov

model (HMM). In other words, the model is a hierarchical

description of behavior, with the ‘‘internals’’ of each module re-

flecting the mouse’s pose dynamics over short timescales, and

the longer-timescale relationships between behavioral modules

(i.e., the possible module sequences) governed by the transition

probabilities specified by an HMM (Figures S4B and S4C). The

observation that the AR-HMM outperforms alternative models
(C) Isometric-view illustrations of the 3D imaging data associated with walk, pau

(D) Cross-likelihood analysis depicting the likelihood that a data instance assigne

were computed for the open field dataset (above, see Supplemental Experimenta

free synthetic data whose autocorrelation structure matches actual mouse data

Ne
(Figure 2A) demonstrates that modularity and transition structure

at fast timescales are critical for describing mouse behavior, a

key prediction from ethology.

Model-Identified Behavioral Modules Are Stereotyped
and Distinct
The AR-HMM systematically identifies modules and their

transition probabilities from behavioral data without human

supervision; this suggests that the AR-HMM can be used to

identify behavioral modules and their associated transition prob-

abilities—and thereby expose the underlying structure of

behavior—in a wide variety of experimental contexts. We there-

fore performed a series of control analyses to establish whether

the AR-HMM can indeed reliably identify behavioral modules

encoding repeatedly used and stereotypedmotifs of distinguish-

able behavior that are organized at sub-second timescales.

Although the AR-HMM is tuned to identify modules at a partic-

ular timescale, it is possible that after training themodel could fail

to effectively capture temporal structure in behavior. However,

the AR-HMM successfully identified modules at the fast behav-

ioral timescale defined by the model-free methods, as the

distribution of module durations was similar to the duration dis-

tribution for changepoints-identified blocks (Figure S5A). Impor-

tantly, the ability of the AR-HMM to identify behavioral modules

depended upon the inherent sub-second organization of mouse

pose data, as shuffling the behavioral data in small chunks (i.e.,

<500 ms) substantially degraded model performance, whereas

shuffling the data in bigger chunks had little effect (Figure S5B).

We then asked whether model-identified modules encode

repeatedly used and stereotyped motifs of behavior. The pose

trajectories associated with a specific model-identified behav-

ioral module took similar paths through PC space, and visual in-

spection of the 3D movies associated with multiple instances of

this module revealed they all encoded a stereotyped rearing

behavior (Figure 2B and 2C; Movie S3). In contrast, data in-

stances drawn from different behavioral modules traced distinct

(and stereotyped) paths through PC space (Figure 2B; see Fig-

ure S5C for additional examples). Furthermore, visual inspection

of the 3Dmovies assigned to different modules reveals that each

encoded a coherent pattern of 3D motion that post hoc can be

distinguished and labeled with descriptors (see Movie S4 for

‘‘walk,’’ ‘‘pause,’’ and ‘‘low rear’’ modules depicted in Figure 2C,

as well as additional examples).

The modules identified by the AR-HMM are distinct from each

other, as a cross-likelihood analysis demonstrated that the imag-

ing data associated with a given module are best assigned to

that module, and not to any of the other behavioral modules (Fig-

ure 2D; Supplemental Experimental Procedures). In contrast, the

AR-HMM failed to identify any well-separated modules in a

synthetic mouse behavioral dataset that lacks modularity but

otherwise matches all multidimensional and intertemporal corre-

lations of the real data, demonstrating that the AR-HMM does

not discover modularity where none exists (Figure 2D).
se, and low rear modules (also see Movie S4).

d to a particular module is well-modeled by another module. Cross-likelihoods

l Procedures, units are nats, where enats is the likelihood ratio) and for module-

(below).
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Figure 3. The Physical Environment Influences Module Usage and Spatial Pattern of Expression

(A) Modules identified by the AR-HMM, sorted by usage (n = 25 mice, 20 min per mouse, data from circular open field, error bars are SEs calculated using

bootstrap estimation, n = 100 bootstrap estimates, see Figure S5E for Bayesian credible intervals).

(B) Hinton diagram depicting the probability that any pair of modules is observed as an ordered pair (p values calculated via bootstrap estimation and color

coded); modules were sorted by spectral clustering to emphasize neighborhood structure.

(C) Module usage, sorted by context (with ‘‘circleness’’ on left, overall usages differ significantly, p < 10�15, Hotelling two-sample t-squared test, see Supple-

mental Experimental Procedures for sorting details). Mean usages across animals depicted with dark lines, with bootstrap estimates depicted in fainter lines

(n = 100). Marked modules discussed in main text and shown in (D): star, circular wall-hugging locomotion (‘‘thigmotaxis’’); triangle, outward-facing rears;

diamond, square thigmotaxis; cross, square dart; see Movie S7. Usage for all marked modules significantly modulated by context (indicated by asterisk, Wald

Test, Holm-Bonferroni adjusted p < 0.006 for square dart, otherwise p < 10�5).

(legend continued on next page)
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Furthermore, rerunning the AR-HMM training process from

random starting points generated highly similar behavioral

modules (R2 = 0.94 ± 0.03, n = 15 restarts, Supplemental Exper-

imental Procedures); in comparison, models with lower held-out

likelihood scores had lower consistency (R2 < 0.4), suggesting

that these alternatives fail to reliably identify underlying structure

in behavior. The AR-HMM output was also robust to the specific

training data used, as models created from subsets of a larger

dataset representing a single experiment were highly similar to

each other (R2 > 0.9). These findings demonstrate that the AR-

HMM converges on a consistent set of behavioral modules

regardless of the specific training data (within a given experi-

ment) or how the model is initialized.

Finally, the modules of behavior and the associated transition

probabilities identified by the AR-HMM appear to fully capture

the richness of mouse behavior, as a 3D movie of a behaving

mouse generated by a trained AR-HMM was qualitatively diffi-

cult to distinguish from a 3D movie of behavior exhibited by a

real animal (Movie S5; Figure S4E); in contrast, movies generated

by more poorly performing models appeared discontinuous and

were easily distinguished from actual mice (data not shown).

Taken together with our model-free and model-based analyses

and controls, the observation that after training our model can

synthesize a convincing replica of 3D mouse behavior from

learned modules and transition probabilities is consistent with

the hypothesis that mouse behavior is organized into distinct

sub-second modules that are combined to create coherent pat-

terns of action.

Using the AR-HMM to Characterize Baseline Patterns of
Behavior
The AR-HMM identifies two key features of mouse behavior

(from the perspective of 3D pose dynamics): which behavioral

modules are expressed during behavior and how those modules

transition into each other over time to create action. The AR-

HMM identified �60 reliably used behavioral modules from a

circular open field dataset, which is representative of normal

mouse exploratory behavior in the laboratory (51 modules ex-

plained 95 percent of imaging frames, and 65modules explained

99 percent of imaging frames) (Figures 3A, S5D, and S5E; sub-

jective categorization of the 51 most-used modules is shown in

Figure S6A). These modules were connected to each other

over time in a highly non-uniformmanner, with eachmodule pref-

erentially linked to somemodules and not others (Figures 3B and

S5F; average node degree after thresholding transitions that

occur with <5% probability, 4.08 ± 0.10). This specific transition

pattern among modules constrained the module sequences

observed in the dataset (�17,000/�75,000 possible sequences

of three modules [‘‘trigrams’’] given the total data size), demon-

strating that certain module sequences were favored over others

and that mouse behavior is therefore predictable (per frame en-
(D) Occupancy plot of mice in circular open field (left, n = 25, 500 min total) ind

depicting deployment of circular thigmotaxis module (middle, average orientation

facing rear module (right, orientation of individual animals indicated with arrows)

(E) Occupancy plot of mice in square box (left, n = 15, 300 min total) indicating cu

square-enriched thigmotaxis module (middle, average orientation across the ex

orientation of individual animals indicated with arrows).

Ne
tropy rate without self-transitions 3.78 ± 0.03 bits, with self-tran-

sitions 0.72 ± 0.01 bits, entropy rate in a uniform matrix 6.02

bits; average mutual information without self-transitions 1.92 ±

0.02 bits, with self-transitions 4.84 bits ± 0.03 bits; see Movie

S6 for multiple examples of the sequence of three modules de-

picted in Figure 2B). Note that while estimating coarse changes

in specific trigram frequencies is possible, accurately estimating

higher-order k-gram transition statistics is difficult, as the

amount of data required grows exponentially with k. We there-

fore focus our analysis on lower-order statistics such as module

usage frequencies and temporal interactions between pairs of

modules.

Using the AR-HMM to Characterize the Nature of
Behavioral Change
We tested whether the AR-HMM could effectively capture

changes in behavior (both predicted and unpredicted) elicited

by a range of simple experimental interventions designed to

probe the influence of the environment, genes, or neural circuit

activity on behavior. We first asked how mice behavior adapts

to changes in apparatus shape. We imaged mice within a small

square box and then co-trained our model with both the circular

open field and square box data, thereby enabling direct compar-

isons of modules and transitions under both conditions; the

modules identified by this co-training procedure did not errone-

ously lump together data that would otherwise be distinguish-

able, as each behavioral module’s mean pose trajectory was

stereotyped across the different experimental arenas (data not

shown). Although mice tended to explore the corners of the

square box and the walls of the circular open field, the overall us-

age of most modules was similar between these apparatuses,

consistent with exploratory behavior sharing many common fea-

tures across arenas (Figure 3C).

However, the AR-HMM also identified a small number of

behavioral modules that were deployed selectively in just one

context, suggesting that different physical environments drive

expression of new behavioral modules (Figure 3C). For example,

one circular arena-specific module encoded a behavior in which

mice walk near the arena wall with a body posture that matches

the curvature of the wall, while within the square box mice ex-

pressed a context-specific module that encodes a dart out of

the center of the square (Figures 3D and 3E). Several behavioral

modules were also differentially enriched (but not exclusively ex-

pressed) in one context or the other. In the circular arena, for

example, mice preferentially executed a rear characterized by

pointing outward while pausing near the center of the open field,

whereas in the smaller square box mice preferentially expressed

a high rear in the corners of the box (Figure 3D; data not shown).

These results demonstrate that the AR-HMM can effectively

capture predictable changes in behavior resulting from altering

the physical environment (like walking along a curved wall or
icating cumulative spatial positions across all experiments. Occupancy plot

across the experiment indicated as arrow field) and circle-enriched outward-

.

mulative spatial positions across all experiments. Occupancy plot depicting a

periment indicated as arrow field) and square-specific darting module (right,
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rearing in a corner). Importantly, these results also demonstrate

that the AR-HMM can unmask arena-specific patterns of

behavior that are expressed in the center of both arenas, away

from the physically constraining walls (like the darting across

the center of the square box and the outward pointing behavior

expressed in the circle); this surprisingly suggests that arena

shape influences mouse behavior in a manner that extends

significantly beyond the predictable changes in action at the

walls themselves. Taken together, these experiments reveal

that the AR-HMM can suggest strategies used by the mouse

brain to adapt to new physical environments: in the case of a

change in environmental geometry, this strategy includes the

recruitment of a limited set of context-specific behavioral mod-

ules into baseline patterns of action, and a broad rewriting of

where in space modules are expressed with respect to the arena

boundaries.

The small number of behavioral modules distinguishing the cir-

cular and square arenas suggests only modest differences in the

global pattern of behavior in these two experiments. To ask how

the AR-HMM captures changes in the underlying structure of

behavior after an overt change in behavioral state, we exposed

mice to an ethologically relevant olfactory cue, the aversive fox

odor trimethylthiazoline (TMT), which was delivered to one quad-

rant of the square box via an olfactometer. This odorant pro-

foundly changes mouse behavior, inducing odor investigation,

escape, and freezing behaviors that are accompanied by in-

creases in corticosteroid and endogenous opioid levels (Fendt

et al., 2005; Wallace and Rosen, 2000). Consistent with these

known effects, mice sniffed the odor-containing quadrant and

then avoided the quadrant containing the predator cue, display-

ing prolonged periods of immobility traditionally described as

freezing behavior (Figure 4A and S6B).

Given that TMT-induced behaviors are dramatically different

than those observed at baseline, one might predict that TMT

should induce new behavioral modules that underlie the genera-

tion of these new actions. Surprisingly, the AR-HMM revealed

that the TMT-induced suite of new behaviors was best explained

by the same set of behavioral modules that were expressed dur-

ing normal exploration; several modules were upregulated or

downregulated after TMT exposure, but new modules were not

introduced or eliminated relative to control (Figure 4B).

We therefore asked whether the changes in observed

behavior were the consequence of altered connections between

behavioral modules. Plotting the module transitions altered after

exposure to TMT defined two neighborhoods within the behav-

ioral statemap; the first included an expansive set of transitions

that was modestly downregulated by TMT, and the second

included a focused set of transitions that was upregulated by

TMT (Figure 4C). Many of these newly interconnected modules

encoded different forms of freezing behavior (average velocity

0.14 ± 0.54 mm/s, for other modules 34.7 ± 53 mm/s) (Movie

S8; Figure S6B). In addition, the TMT-initiated modulation of

transition probabilities altered the expression of specific behav-

ioral sequences; for example, the most commonly observed

sequence of three freezing modules was expressed 716 times

after TMT exposure (in 300 min of imaging), as opposed to just

17 times under control conditions (in 480 min of imaging). The

stimulus-evoked rewriting of transition probabilities was accom-
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panied by an increase in the overall predictability of mouse

behavior (per frame entropy rate fell from 3.92 ± 0.02 bits to

3.66 ± 0.08 bits without self-transitions, and from 0.82 ± 0.01

bits to 0.64 ± 0.02 bits with self-transitions) consistent with the

mouse enacting an avoidance strategy that was more determin-

istic in nature than locomotor exploration.

Proximity to the odor source also governed the usage of spe-

cific behavioral modules (Figures 4D and 4E). For example, a set

of freezing-related modules tended to be expressed in the quad-

rant most distant from the odor source, while the expression of

an investigatory rearing module (whose overall usage was not

altered by TMT) was specifically enriched within the odor quad-

rant (Figures 4D and 4E; Movie S9).

Although TMT is known to induce dramatic changes in

behavior, it has not been possible to systematically identify those

specific behavioral features altered in response to this odorant or

to place those altered features in context with normal patterns

of exploration. Analysis by the AR-HMM suggests that the strat-

egy used by the mouse brain to adapt to the presence of TMT

overlaps with—and yet is distinct from—that used to accommo-

date physical changes in the environment. As was true for a

changed physical environment, exposure to TMT alters the

spatial deployment of modules and sequences to support partic-

ular patterns of action; in contrast, the complete cohort of behav-

iors elicited by TMT, including seemingly ‘‘new’’ behaviors such

as freezing, are the consequence of altered transition structure

between individual modules. Behavioral modules are not, there-

fore, simply reused over time but instead act as flexibly inter-

linked components whose specific sequencing and deployment

in space has profound consequences for the generation of adap-

tive behavior.

Sub-Second Architecture of Behavior Reflects the
Influence of Genes and Neural Activity
As described above, the AR-HMM shows the fine-timescale

structure of behavior to be sensitive to persistent changes in

the physical or sensory environment. However, manipulation of

individual genes or neural circuits influences behavior across a

range of spatiotemporal scales and with variable penetrance

and reliability; these changes in behavior may or may not be

effectively captured by a classificationmethod designed to char-

acterize the sub-second structure of action. We therefore

directly asked whether the AR-HMM could systematically reveal

the behavioral consequences of manipulating the mouse

genome or activity within the nervous system.

To explore these possibilities, we first used the AR-HHM to

characterize the phenotype of mice mutant for the retinoid-

related orphan receptor 1b (Ror1b) gene, which is expressed in

neurons in the brain and spinal cord. This mouse was selected

for analysis because adult homozygous mutant animals perma-

nently exhibit abnormal gait, which would be expected to be

observed during a brief open-field experiment (André et al.,

1998; Eppig et al., 2015; Liu et al., 2013; Masana et al., 2007).

Analysis with the AR-HMM revealed that littermate control

mice are nearly indistinguishable from fully inbred C57/Bl6

mice, whereas homozygous mutant mice express a unique

behavioral module encoding a waddling gait (Figure 5A and

5C; Movie S10; see Supplemental Experimental Procedures for
.
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Figure 4. Odor-Driven Innate Avoidance Alters Transition Probabilities

(A) Occupancy plot of mice under control conditions (n = 24, 480 min total) and after exposure to the fox-derived odorant TMT (5% dilution, n = 15, 300 min total,

model co-trained on both conditions) in the lower left quadrant (arrow). Plots normalized such that maximum occupancy = 1.

(B) Module usage plot sorted by ‘‘TMT-ness’’ (dark lines depict mean usages, bootstrap estimates depicted in fainter lines, sorting as in Figure 3). Marked

modules discussed in main text and (E): cross, sniff in TMT quadrant; diamond, freeze away from TMT. See Movies S8 and S9. Blue stars indicate freezing

modules. Asterisk indicates statistically significant regulation (Wald test, Holm-Bonferroni corrected, p < 10�4).

(C) Left and middle: Behavioral state maps for mice exploring a square box before and after TMT exposure, with modules depicted as nodes (usage proportional

to the diameter of each node), and bigram transition probabilities depicted as directional edges. Graph layout minimizes the length of edges and is seeded by

spectral clustering to emphasize local structure.

(C) Right: Statemap depiction of the difference between blank and TMT. Usage differences are indicated by the newly sized colored circles (upregulation

indicated in blue, downregulation indicated in red, previous usages in control conditions indicated in black). Altered bigram transition probabilities are indicated in

the same color code; only those significant transition probabilities (p < 0.01) are depicted.

(D) Mountain plot depicting the joint probability of module expression and spatial position, plotted with respect to the TMT corner (x axis); note that the ‘‘bump’’

two-thirds of the way across the graph occurs due to the two corners equidistant from the odor source (see inset for approximate position in square box, modules

are color coded).

(E) Occupancy plot (upper) indicating spatial position at which mice after TMT exposure emit an investigatory sniffing module (left) or a pausing module (right, see

Movie S8). Mountain plot (lower) indicating the differential deployment of these two modules (purple, green; other modules in gray) with respect to distance from

the odor source.
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Figure 5. The AR-HMM Disambiguates Wild-Type, Heterozygous,

and Homozygous Ror1b Mice

(A) Usage plot of modules exhibited by littermate Ror1bmice (n = 25 C57/BL6,

n = 3 +/+, n = 6 ±, n = 4�/�, open field assay, 20min trials), sorted by ‘‘mutant-

ness’’ (sorting and depiction as in Figure 3). Wild-type module usage is not

statistically different from C57 but differs significantly from homozygote and

heterozygote (Hotelling two-sample t-squared test, p < 10�15). Marked mod-

ules described in main text: diamond, waddle; triangle, normal locomotion;

cross, pause. Single asterisk indicates significant usage difference between

mutant and wild-type, p < 0.05; double asterisk indicates p < 0.01 under Wald

test, Holm-Bonferroni corrected.

(B) State map depiction of baseline OFA behavior for +/+ animals as in Fig-

ure 4C (left); difference state maps as in Figure 4C between the +/+ and +/�
genotype (middle) and +/+ and �/� genotype (right); all depicted transitions

that distinguish genotypes are statistically significant, p < .01.

(C) Illustration of the ‘‘waddle’’ module in which the hind limbs of the animal are

elevated during walking (see Movie S10).
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statistical details, data were co-trained with both circular open

field and TMT datasets to facilitate comparisons with C57 ani-

mals). Conversely, the expression of five behavioral modules en-

coding normal forward locomotion in wild-type and C57 mice

was downregulated in Ror1b mutants (Figure 5A, average dur-

ing-module velocity = 114.6 ± 76.3 mm/s).

Previously unobserved phenotypes in the Ror1b mutant mice

were also uncovered by the AR-HMM, as the expression of a set

of four modules that encoded brief pauses and headbobs was

upregulated in mutant mice (Figure 5A, average during-module

velocity = 8.8 ± 25.3 mm/s); this pausing phenotype had not

been previously reported in the literature. Furthermore, heterozy-

gous mice—which have no reported phenotype (André et al.,

1998; Eppig et al., 2015; Liu et al., 2013; Masana et al., 2007),

exhibit wild-type running wheel behavior (Masana et al., 2007),

and appear normal by eye—were also found to express a fully

penetrant mutant phenotype: they overexpressed the same set

of pausing modules that were upregulated in the full Ror1b mu-

tants while failing to express themore dramatic waddling pheno-

type (Figure 5A). Differences between wild-type animals and

both heterozygotes andmutants were also observed in transition

probabilities associated with these pausing modules (Figure 5B).

The AR-HMM therefore describes the pathological behavior of

Ror1bmice as the combination of a single neomorphic waddling

module, decreased expression of normal locomotion modules,

and increased expression of a small group of physiological mod-

ules encoding pausing behaviors; heterozygous mice express a

defined subset of these behavioral abnormalities, whose pene-

trance is not intermediate but equals that observed in themutant.

These results suggest that the sensitivity of the AR-HMM allows

fractionation of severe and subtle behavioral abnormalities

within the same litter of animals, facilitates comparisons among

genotypes and enables discovery of new phenotypes.

In the case of the Ror1b animals, a permanent alteration in

DNA sequence is translated into an ongoing change in the overall

sub-second statistical structure of behavior, one that is ex-

pressed continuously over the lifetime of the animal. We also

wished to characterize how transient changes in activity in spe-

cific neural circuits influence the moment-to-moment structure

of behavior; furthermore, given that the relationship between

neural circuit activity and behavior can vary on a trial-to-trial

basis, we wanted to probe the ability of the AR-HMM to afford

insight into the probabilistic relationships between neural circuit

activity and behavior.

To address these questions, we unilaterally expressed the

light-gated ion channel Channelrhodopsin-2 in a subset of layer

5 corticostriatal neurons in the right hemisphere and assessed

behavioral responses before, during, and after 2 s of light-medi-

ated activation of motor cortex (Glickfeld et al., 2013). At negli-

gible power levels, no light-induced changes in behavior were

observed, whereas at the highest power levels, the AR-HMM

identified two behavioral modules whose expression was reliably

induced by the light, as on nearly every trial either one or the

other module was expressed (Figure 6A). As would be expected,

both of these modules encode forms of spinning-to-the-left

behavior, and neither of these modules was expressed during

normal mouse locomotion (Figure 6B; Movie S11). In addition,

we noted that approximately 40 percent of the time the overall
.



Figure 6. Optogenetic Perturbation of Motor Cortex Yields Both

Neomorphic and Physiological Modules

(A) Mountain plot depicting the probability of expression of each behavioral

module (assigned a unique color on the y axis) over time (x axis), with light

stimulation indicated by dashed vertical lines (each plot is the average of 50

trials). Note that modest variations in the baseline pattern of behavior, due to

trial structure, are captured before light onset. Stars indicate two modules

expressed during baseline conditions that are also upregulated at intermediate

powers (11 mW) but not high powers (32 mW, Wald test, Holm-Bonferroni

adjusted p < 10�5); cross indicates pausing module upregulated at light offset

(Wald test, Holm-Bonferroni adjusted, p < 10�5).

(B) Average position of example mice (with arrows indicating orientation over

time) of the twomodules induced under the highest stimulation conditions (see

Movie S11). Note that (A) and (B) are generated from one animal and that the

observed modulations are representative of the complete dataset (n = 4 mice,

model was trained separately from previous experiments).
pattern of behavior did not return to baseline for several seconds

after the end of optogenetic stimulation. This deviation from

baseline was not due to continued expression of the same spin-

ning modules that were triggered at light onset; instead, mice

often paradoxically expressed a pausing module at light offset

(average during-module velocity = 0.8 ± 7 mm/s, Figure 6A,

see cross).

The behavioral changes induced by high-intensity optogenetic

stimulation were reliable, as on nearly every trial the animal

emitted one of the two spinning modules. To ask whether the

AR-HMM could characterize the pattern of behavior observed

when behavioral modules are generated more probabilistically,

the levels of light stimulation were reduced; we identified condi-

tions underwhich one of the two spinningmoduleswas no longer

detected, and the other was expressed in only 25 percent of tri-

als. Under these conditions, the AR-HMM detected the upregu-

lation of a distinct set of behavioral modules, each of which was

expressed in a fraction of trials (Figure 6A, see stars). Unlike the

spinning modules triggered by high-intensity stimulation, these

modules were not neomorphic; rather, these modules were nor-

mally expressed during physiological exploration and encoded

distinct forms of forward locomotion behavior (data not shown).

Interestingly, although each of these individual light-regulated

modules was emitted probabilistically on any given trial, low-in-

tensity neural activation reliably influenced behavior across all

trials when the behavioral modules were considered in aggre-

gate (Figure 6A).

Thus, both low- and high-intensity optogenetic stimulation

dramatically alters behavior, but the identity of the induced be-

haviors and their relative probabilities of expression vary across

light levels. This effect would not have been apparent without the
Ne
ability of the AR-HMM to distinguish new from previously ex-

pressed behavioral modules and to identify the specific behav-

ioral module induced at light onset on each trial; indeed, under

low-light stimulation, the behavioral phenotype apparent by

eye on any given trial often appears to be an extension of normal

mouse exploratory behavior. Taken together, these data demon-

strate that the AR-HMM can identify and characterize both

obvious and subtle optogenetically induced phenotypes, distin-

guish ‘‘new’’ optogenetically induced behaviors from upregu-

lated expression of ‘‘old’’ behaviors, and reveal the trial-by-trial

relationships between neural activity and action.

DISCUSSION

It has been long hypothesized that innate behaviors are

composed of stereotyped modules and that specific sequences

of these modules encode coherent and adaptive patterns of ac-

tion (Bizzi et al., 2000; Brown, 1911; Drai et al., 2000; Lashley,

1967; Sherrington, 1907; Tinbergen, 1951). However, most ef-

forts to explore the underlying structure of mouse behavior

have relied on ad hoc definitions of what constitutes a behavioral

module and have focused on specific behaviors rather than sys-

tematically considering behavior as a whole. As a consequence,

we lack insight into the global organization of mouse behavior,

the relationships between currently expressed actions and

past or future behaviors, and the strategies used by the brain

to generate behavioral change. Furthermore, we lack a compre-

hensive framework for characterizing the influence of individual

genes or neural circuits on behavior.

Here we use 3D imaging to identify a sub-second spatiotem-

poral scale at which mouse behavior may be organized. Using

this finding as a constraint, we then built a family of computa-

tional models, each of which represents a different hypothesis

for the potential structure of behavior, and compared the ability

of thesemodels to predict and explain mouse behavior. The best

performingmodel (the AR-HMM) specifically searches for modu-

larity at sub-second timescales similar to those observed in the

pose dynamics data and quantitatively describes behavior as a

series of sub-second modules with defined transition probabili-

ties. This combined 3D imaging/modeling approach can be

used to automatically identify the behavioral modules expressed

during a variety of experiments and to systematically discover

how the architecture of behavior is altered as the mouse adapts

to a changing world.

The AR-HMM Automatically and Systematically
Captures Known and New Phenotypes
Our experiments reveal that the AR-HMM identifies both pre-

dicted changes in action and new features of behavior that had

not been previously described. The high sensitivity of the AR-

HMM—illustrated by the identification of a previously unde-

scribed phenotype in heterozygous Ror1b mice—raises the

possibility that the AR-HMM could be useful for extracting subtle

phenotypes from mouse models, including those in which single

gene alleles are mutated; such patterns of mutation are common

in human disease but are rarely explored in mouse models.

Furthermore, the ability of the AR-HMM to place changes in

behavior into context—illustrated by the ability of the AR-HMM
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to identify the modules expressed after modest optogenetic

stimulation on a trial-by-trial basis—suggests that the AR-

HMM may be useful for relating unreliable or noisy patterns of

neural activity to the probabilistic expression of specific actions.

The AR-HMM (or similar approaches based upon unsupervised

machine learning) may therefore be useful for discovering the

behavioral consequences of a wide variety of experimental ma-

nipulations, particularly those enabled by the ever-growing

toolbox of gene editing and optogenetic techniques.

The AR-HMM Identifies Possible Mechanisms for
Behavioral Change
The AR-HMM suggests three regulatory strategies that may

be used by the brain to implement behavioral adaptation.

First, behavioral modules and their transitions appear to be

selectively—and to some extent independently—vulnerable

to alteration. None of the physiological and pathological

deviations from baseline described here, from freezing to a

waddling gait, caused global changes in the underlying structure

of action; instead, new behaviors were well-described as

changes in a small number of specific modules or transitions.

This suggests that the brain can focally manipulate individual

modules or transitions to generate new behaviors, and further-

more that mice can accommodate pathological actions

(such as waddling) without catastrophic alterations in behavioral

patterning.

Second, dramatically new behaviors can be created by

altering the transitions statistics between modules alone—

without invoking new behavioral modules—as was observed in

animals exposed to TMT. This strategy has been shown to un-

derlie sensory-driven negative and positive taxis behaviors in

bacteria, worms, and flies (Berg and Brown, 1972; Garrity

et al., 2010; Gray et al., 2005; Pierce-Shimomura et al., 1999);

here we show that this strategy is conserved in mice and used

by vertebrate nervous systems to create complex patterns of ac-

tion in response to an external cue. In the specific case of the

TMT response, the induced behaviors extend beyond taxis to

adaptations like freezing, suggesting that the restructuring of

transition probabilities may be a general mechanism for creating

new patterns of action.

Third, we find that modulation of where in space behavioral

modules are expressed supports the generation of specific

adaptive behaviors. For example, the rearing module used by

mice to investigate TMT is not significantly upregulated or rese-

quenced relative to control, and yet its spatial pattern of

expression in the quadrant containing TMT facilitates detection

(and therefore avoidance) of the aversive odorant. Character-

izing where in space behavioral modules are expressed also re-

veals that changes in physical context—such as the difference

between a square and circular arena—elicit ‘‘state’’-like

changes in mouse behavior that extend beyond predictable

changes in action at apparatus boundaries. Because the

training data for the AR-HMM do not include any explicit allo-

centric parameters (such as the mouse’s spatial position within

the apparatus), the ability of the model to uncover meaningful

relationships between allocentric space and egocentric pose

dynamics is an important validation that its segmentation of

behavior is informative.
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Potential Neural Underpinnings for Modules and
Transitions
The observations generated by the AR-HMM lead to several pre-

dictions about the neural control of behavior. One such predic-

tion is that specific behavioral modules and their associated

transition probabilities will have explicit neural correlates, whose

pattern of activity should reflect the �2–5 Hz timescale at which

modules are expressed; it is tempting to speculate that neural

correlates representing transition probabilities between behav-

ioral modules will be encoded in higher-order neural circuits

tasked with behavioral sequencing, while neural correlates for

the behavioral modules themselves might be encoded in central

pattern generators or related circuit motifs in the brainstem or

spinal cord. The relevant neural circuits may include both evolu-

tionarily ancient regions of the brain involved in releasing innate

behaviors, such as the amygdala, hypothalamus, and brainstem,

as well as other areas, such as the striatum, that regulate fine-

timescale behavioral sequencing (Aldridge et al., 2004; Swan-

son, 2000). Testing these predictions will require simultaneous

characterization of neural activity and assessment of behavior;

future embellishments of the modeling approach described

here may allow for inference of joint structure between dense

neural and behavioral data, and therefore be useful for revealing

mechanistic relationships between the dynamics of neural activ-

ity and action.

Unsupervised Behavioral Characterization via Modeling
of 3D Data: Strengths, Caveats, and Future Directions
Although there are multiple possible approaches to acquiring 3D

pose dynamics data, we chose to implement our imaging system

using a single standard depth camera, because such cameras

are widely available, adaptable to a variety of different experi-

mental circumstances, and can characterize behavior under

most lighting conditions and in animals with any coat color

(due to the use of infrared light as an illumination source). The

‘‘unsupervised’’ modeling approach taken here is also trans-

parent, insofar as the assumptions of the model are explicitly

stated (with no constraints supplied by the researcher other

than the structure of the model and the specification of a single

parameter that acts as a tunable ‘‘lens’’ to focus the model on

behavior at a particular timescale). This makes clear the precise

bounds of human influence on the output of the AR-HMM and in-

sulates key aspects of that output from the vagaries of human

perception and intuition. Given that inter-observer reliability in

scoring even single mouse behaviors can be low (from 50 to 70

percent, with reliability falling as the number of scored behaviors

increases), developing methods free from observer bias is

essential for informatively characterizingmouse behavior (Garcia

et al., 2010).

In addition, the generative modeling and inferential fitting

methods described herein offer several practical advantages

over the approaches typically used to analyze mouse behavior

(Crawley, 2003), including the explicit time-series modeling of

behavioral data (as opposed to simple clustering of dimension-

ally reduced data); the ability to directly inspect and explore

each behavioral module; the flexible discovery of previously un-

observed behavioral modules (rather than characterization of

behavior from the perspective of ‘‘known’’ phenotypes); and
.



the ability to generate synthetic behavioral data, thereby allowing

quantitation of how well a given model predicts the structure of

behavior. This quantitative framework for comparing the perfor-

mance of different methods for dividing up and measuring

behavior is critical for advancing behavioral neuroscience, as it

enables objective evaluation of alternative models for behavior,

and assessment of future extensions that incorporate inevitable

improvements in camera resolution, model structure, and fitting

procedures.

On the other hand, the conclusions drawn here regarding the

underlying structure of behavior (including its timescale) are

limited by the simplicity of our experimental manipulations,

which were designed to expose differences in motor outputs.

Furthermore ‘‘mouse behavior’’ as described by the model is

restricted to the imaged pose dynamics of the mouse at a

particular spatiotemporal resolution and within a controlled lab-

oratory experiment. Because the AR-HMM directly models the

pixel data (after pre-processing), comparisons can only be

made between mice of roughly similar size and shape. In addi-

tion, there are clearly important physical features of mouse

behavior (operating at a variety of spatiotemporal scales) not

captured in the pose data and therefore not modeled—these

range from individual joint dynamics and paw position to sniff-

ing, whisking, and breathing. In the future, complementary

datastreams that capture different facets of behavior could

be integrated with 3D pose data to generate more comprehen-

sive behavioral models.

The modeling approach itself also has several important limi-

tations. The AR-HMMuses Bayesian nonparametric approaches

to identify the most likely number of modules that describe

behavior at a particular temporal scale. However, this insight

also comes at a cost: as the amount of data fed to the

algorithm increases, the number of discovered modules neces-

sarily rises. This challenge parallels the well-described phenom-

enon in ethology in which the number of discovered behaviors

increases in subjects that have been observed either more

frequently or for longer (Colgan, 1978). This monotonic (although

sublinear) relationship between data size and the number of

discovered modules limits comparisons of behavior across ex-

periments without co-training models, as was done here. One

potential approach to address this challenge could be the

incorporation of a ‘‘canonical’’ behavioral dataset against which

additional data could be compared; such a framework (in which

the ‘‘canonical’’ modules are either frozen or flexible) may enable

analysis of new behavioral experiments within a fixed frame of

reference.

Finally, the AR-HMMcannot explicitly disambiguate those fea-

tures of behavior that are the consequence of the biomechanics

of the mouse—for example, transitions between specific mod-

ules that are impossible due to physical constraints—from those

that are the consequence of the action of the nervous system.

Given that the nervous system and the body in which it is

embedded co-evolved to facilitate action, ultimately disentan-

gling the relative contributions of each to the organization of

behavior may be difficult (for discussion of this issue, see, for

example, Tresch and Jarc, 2009). However, changes in the

structure of behavior that are induced by experimental interven-

tion arise principally from the action of the nervous system; the
Ne
observed context-dependent flexibility of the transition statistics

betweenmodules, takenwith the ability of themouse to emit new

behavioral modules in response to internal or external cues,

together suggest that—at the spatiotemporal scale captured

by our methods—the nervous system plays a key role in regu-

lating the overall structure of behavior.

Mouse Body Language: Syllables and Grammar
Candidate behavioral modules have been recognized in a vari-

ety of different contexts and on a wide range of spatiotemporal

scales, and accordingly, researchers have given them a diverse

set of names, including motor primitives, behavioral motifs, mo-

tor synergies, prototypes, and movemes (Anderson and Per-

ona, 2014; Flash and Hochner, 2005; Tresch et al., 1999). The

behavioral modules identified by the AR-HMM here find their

origin in switching dynamics that are expressed on timescales

of hundreds to milliseconds. Mouse behavior is clearly also

organized at the varied and interdigitated timescales at which

internal state (e.g., neural activity, endocrine function and

development) and external state (e.g., daily, monthly, seasonal,

and annual variation in behavior) unfold. The behavioral

modules we have characterized therefore likely exist at an inter-

mediate hierarchical level within the overall structure of

behavior, albeit one that captures many of the behavioral

changes induced by experimental manipulations carried out

at both short and long timescales.

The modules identified by the AR-HMM do not exist in isola-

tion; instead, they are given behavioral meaning through a tran-

sition structure that governs their sequencing. The observation

of both modularity and transition structure within the pose dy-

namics of mice suggests strong analogies to birdsong, which

is also hierarchically organized and composed of identifiable

modules whose sequence is governed by definable transition

statistics; importantly, birdsong has also beenwell described us-

ing generative modeling and low-order Markov processes (Ber-

wick et al., 2011; Markowitz et al., 2013; Wohlgemuth et al.,

2010). By analogy to birdsong, we therefore propose to refer to

the modules we have identified as behavioral ‘‘syllables’’ and

the statistical interconnections between these syllables as

behavioral ‘‘grammar.’’ Such a grammatical structure has been

previously proposed for restricted subsets of mouse behavior

(such as grooming) in which behavioral modules were defined

on an ad hoc basis (Berridge et al., 1987; Fentress and Stilwell,

1973); through unsupervised identification of behavioral sylla-

bles, here we show that the notion of a regulatory grammar is

general and can be used to explain a wide variety of behavioral

phenotypes. As is true for birdsong, the grammar we describe

is highly restricted in nature (as only low-order interactions are

modeled) and lacks the richness and flexibility of context-depen-

dent grammars that have been explored in human language

(Berwick et al., 2011). Despite this limitation, the experiments

described herein expose an underlying structure for mouse

body language organized at the sub-second timescale; this

structure encapsulates mouse behavior (as detected by a depth

sensor) within a given experiment and reveals a balance between

stochasticity and determinism that is dynamically modulated as

the mouse varies its pattern of action to adapt to challenges in

the environment.
uron 88, 1121–1135, December 16, 2015 ª2015 Elsevier Inc. 1133



EXPERIMENTAL PROCEDURES

All errors bars indicated in the paper are SEM as determined by bootstrap

analysis unless noted otherwise. For complete details on methods used,

please consult Supplemental Experimental Procedures.
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