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Biophysical characteristics of cells are attractive as potential diagnostic markers for cancer. Transformation of cell
state or phenotype and the accompanying epigenetic, nuclear, and cytoplasmic modifications lead to measureable
changes in cellular architecture. We recently introduced a technique called deformability cytometry (DC) that
enables rapid mechanophenotyping of single cells in suspension at rates of 1000 cells/s—a throughput that is com-
parable to traditional flow cytometry. We applied this technique to diagnose malignant pleural effusions, in which
disseminated tumor cells can be difficult to accurately identify by traditional cytology. An algorithmic diagnostic
scoring system was developed on the basis of quantitative features of two-dimensional distributions of single-
cell mechanophenotypes from 119 samples. The DC scoring system classified 63% of the samples into two
high-confidence regimes with 100% positive predictive value or 100% negative predictive value, and achieved
an area under the curve of 0.86. This performance is suitable for a prescreening role to focus cytopathologist anal-
ysis time on a smaller fraction of difficult samples. Diagnosis of samples that present a challenge to cytology
was also improved. Samples labeled as “atypical cells,” which require additional time and follow-up, were classi-
fied in high-confidence regimes in 8 of 15 cases. Further, 10 of 17 cytology-negative samples corresponding to
patients with concurrent cancer were correctly classified as malignant or negative, in agreement with 6-month
outcomes. This study lays the groundwork for broader validation of label-free quantitative biophysical markers
for clinical diagnoses of cancer and inflammation, which could help to reduce laboratory workload and improve
clinical decision-making.
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INTRODUCTION

Pleural effusions are valuable sources of diagnostic information. In a
healthy individual, the volume of pleural fluid—an acellular liquid—is
between 7 and 16 ml; however, systemic imbalances and disease may
lead to an abnormal accumulation of fluid containing disseminated
cells (up to 2 liters) (1, 2). Hence, pleural fluid samples can provide
insight into patient health, such as the status of infections, inflamma-
tory processes, and malignant diseases.

The examination of pleural effusions for malignancies in clinical
settings relies on cytological analysis as the gold standard. The cyto-
pathologist examines cells from cell smears and cell blocks and iden-
tifies features of cytoplasmic and nuclear morphology suggestive of
malignancy, including high nuclear-to-cytoplasmic ratios, hypochro-
matic cytoplasms, and dense, dark nuclei. Categories of diagnoses in-
clude negative for malignant cells (NMC), acute inflammation (AI),
chronic/mixed inflammation (CMI), atypical cells (ACs; equivocal for
malignancy), and malignant pleural effusions (MPEs). Determination
of disease pathology requires manual expert screening and confirmation
where the level of scrutiny depends on the complexity of the sample.
“Biological noise,” arising from the similar morphology of malignant
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cells and reactive mesothelial (RM) cells (cells derived from the meso-
thelium membrane) or a high density of leukocyte populations, can
mask possible epithelial or hematopoietic malignancies (3, 4). Hence,
the sensitivity for diagnosis of MPEs spans a wide range between 40
and 90%, depending on several factors including the source of the
malignancy and experience of the cytopathologist (5–8).

Conclusive diagnosis of pleural effusions often requires follow-up
molecular label–assisted techniques, such as analysis of immuno-
histochemical or biochemical markers characteristic of disease pheno-
type using flow cytometry and immunohistochemistry. However, even
with these drawbacks, cytological analysis of pleural fluids is important
considering the clinical value of the findings, in which a positive find-
ing of malignancy usually indicates late-stage disease processes and
calls for aggressive treatment. Conventional preparation of pleural ef-
fusions for cytological analysis involves numerous processing steps,
staining reagents, and prescreening reads by cytotechnologists before
the cytopathologist reading. Although many of these protocols are
now automated, sample preparation can take on the order of 1 to 2 hours
in batch and still requires some manual processes. Because most of
the pleural effusion samples are identified as negative for malignancies
(>80%), it is an inefficient and costly process to prepare and analyze
every sample at the same level of detail. Thus, a simple, quick, and au-
tomated prescreening tool to identify high-risk patients would maximize
the use of available resources, reduce sample processing burdens, reduce
chances of cross-contamination, and decrease the time to diagnosis.

An approach that reduces labor and costs associated with labeling
and sample preparation would be ideal to achieve this. Label-free
biomarkers, including the mechanical properties of single cells, or
“mechanophenotype,” have shown promise in clinical diagnostics
anslationalMedicine.org 20 November 2013 Vol 5 Issue 212 212ra163 1
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(6). For example, the mechanical properties of cancer cell lines differ
from their benign counterparts in culture. Although it has long been
known that tumors are stiffer than neighboring healthy tissue (7, 8),
individual cancer cells are typically softer, and this deformability (that
is, the ability to change shape under an applied load) may confer their
ability to migrate through tissue. Several methods have been devel-
oped or adapted to probe mechanical properties of cells, including
atomic force microscopy (AFM) (7, 9, 10), micropipette aspiration
(11, 12), cell transit analysis (13–18), microfluidic optical stretching
(8, 19), and hydrodynamic forces (20, 21). Yet, previous technology
was limited to interrogating a few cells in small clinical studies owing
to the technological complexity. For example, AFM analysis of malig-
nant cells isolated from pleural fluids demonstrated that these sub-
populations are mechanically softer than the native cells (7), but the
technological complexity requiring user intervention to preselect mor-
phologically malignant cells limited the system throughput. Neverthe-
less, this initial work provided evidence that biophysical properties
may be useful as a diagnostic marker.

Here, we evaluated the use of a technique for high-throughput single-
cell mechanical analysis, previously developed by our group, called de-
formability cytometry (DC) (21), for diagnosing MPEs (Fig. 1). Because
this technique screens cells at throughputs comparable to flow cytom-
etry, we could quantify the biophysical characteristics of the cell popu-
lation. In this study of 119 patients with pleural effusions of benign or
malignant origin, we obtained more than 3000 single-cell biophysical
measurements in each specimen assayed. This provided confidence
in sampling heterogeneous populations and in establishing common
outcome profiles. As a complementary method to slide-based cytology
and follow-up techniques, DC has the capability to increase diagnostic
accuracy and decrease healthcare costs.
www.ScienceTr
RESULTS

Biophysical profile of negative for malignancy specimens
For this proof-of-concept clinical study, we applied DC (21) for diag-
nosing MPEs (Fig. 1). Briefly, a cell population obtained from the pleural
cavity around the lungs and devoid of erythrocytes was accelerated
through microfluidic channels and then rapidly decelerated by an
opposing wall of fluid, experiencing hydrodynamic forces (Fig. 1, A
to D). Quantitative metrics of cell deformability [D = maximum ratio
of major (a) over minor (b) axis of the deforming cell] and initial size
(d, diameter) were extracted from high-speed videos (Fig. 1E). By group-
ing biophysical profiles according to cytological diagnosis and vali-
dating these groups with separate data sets, we found unique profiles
indicative of negative and malignant diagnoses. In samples diagnosed
as NMC—without confounding inflammatory processes—the cellular
composition was predominantly composed of nonactivated immune
cells and benign mesothelial cells. Comparative analysis of these
samples by DC revealed that the major feature of the NMC profile
was a high-density population with small size (d = 8 to 12 mm), rigid
deformability (D < 1.4), and a limited variability in both size and de-
formability {[median d = 10.3 mm; quartile 1 (Q1): 9.2, Q3: 11.5],
(median D = 1.32; Q1: 1.15, Q3: 1.41)}.

The quantitative biophysical metrics enabled grading based on com-
mon two-dimensional (2D) profile features associated with known
clinical outcomes of NMC, AI, or CMI (Fig. 1F and fig. S1). Each
sample’s profile score was calculated using threshold-based decision
classifiers to maximize accuracy of detecting malignancy, where the
decision classifiers were trained on subsets of training data. The scores
for each sample correlated with the probability of malignancy in rank
order (1 to 10), where the higher the score, the increased likelihood of
anslationalMedicine.org 20 No
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malignant disease. Characteristic DC pro-
files of NMC patients 1 to 4 are shown in
Fig. 2 (scores were typically 1 or 2). The
biophysical properties of this population
closely resembled those measured when
evaluating healthy leukocytes from periph-
eral blood (21).

Notably, in samples that were deter-
mined by cytology to contain an abundance
of mesothelial cells, a defining feature was
a distinct population of larger and stiffer
cells. For example, in NMC patients 4 and
8 (Fig. 2), the DC profile showed a sub-
stantial population of cells with a diameter
ranging from 15 to 20 mm and a deform-
ability of <1.4. This feature appeared com-
monly in specimenswith the RMcytology
outcome—an outcome that is clinically im-
portant to distinguish from adenocarcino-
ma or malignant mesothelioma.

Biophysical profile of specimens
with increased leukocyte activation
Samples negative for malignancy, but also
associated with inflammatory processes,
categorized as AI and CMI by cytology,
had profiles distinct from each other as
well as from NMC samples. Using our
Pleural effusion
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Fig. 1. DC: Mechanical phenotyping of pleural effusions. (A) Pleural effusions are drained from the
pleural cavity around the lungs. (B) Erythrocytes are lysed off-chip to isolate nucleated cells before

assay. (C) Cells are introduced into the polydimethylsiloxane (PDMS) microfluidic channel and then
positioned and stretched under continuous flow. Stretching cells are imaged by a high-speed com-
plementary metal-oxide semiconductor (CMOS) camera. (D) Cells are subjected to compressive (Fc)
and shear (Fs) forces in the microchannel. (E) Initial diameter (d) and maximum aspect ratio (D) of the
cell upon deformation are extracted from the sequences of images. (F) An example 2D biophysical
profile plot of an MPE reveals two cell populations using diameter and deformability metrics.
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DC approach, AI cases resulted in distinct profiles that consisted of a
smaller-sized cell (8 to 12 mm) population with a subpopulation of
highly deformable cells. The proportion of cells with D > 1.4 in AI cases
was 16.6%, which was higher than that of NMC outcomes (1.4%). The
median deformability of AI specimens was 1.56 and ranged from 1.45
to 1.67 (n = 37 patients). Representative DC profiles of AI patients 5 to
7 are shown in Fig. 2. This transformation, from rigid, resting leu-
kocytes to a more deformable, activated state, agrees with what has
been observed with this technique in vitro for neutrophil activation
by N-formyl-Met-Leu-Phe (21).

CMI cases had a slightly larger size than AI (8 to 15 mm) and a larger
distribution of D (1.0 to 3.0) around a median of 2.0. Pooling all CMI
samples (n = 33), the proportion of cells with D > 1.4 was 24.7%. This
represented an 18- and 1.5-fold increase in deformable cells compared to
NMC and AI samples, respectively. Characteristic DC profiles of CMI
patients 8 to 10 are shown in Fig. 2. In vitro activation of peripheral blood
mononuclear cells by phytohemagglutinin has shown a similar bio-
physical response in our measurement system as for CMI cases (21).
www.ScienceTr
Biophysical profile features unique to MPEs
Samples obtained from patients with MPEs typically contained a sub-
population of cells residing in the upper right DC quadrant: large
(>17 mm) and highly deformable (D > 1.4) (Fig. 2, patients 11 to 20).
MPE cases had more varied size and deformability cell clusters from
patient to patient when compared to NMC, AI, and CMI cases, pre-
sumably owing to the wide range of origins of malignancy that
accumulate in pleural fluids. The 29 MPE cases included breast adeno-
carcinoma (n = 4), ovarian adenocarcinoma (n = 3), mesothelioma
(n = 2), soft tissue sarcoma (n = 1), pancreatic adenocarcinoma (n = 1),
non–small cell lung carcinoma (n = 1), gastrointestinal carcinoma
(n = 7), lymphoma (n = 1), leukemia (n = 4), prostate adenocarcino-
ma (n = 1), and cancers of unknown primary origin (n = 4). In most
of these cases, DC profiles indicated features of AI or CMI concurrently
with an increased percentage of large and deformable cells reflectingMPE
(Fig. 2). Seldom noted in cytology diagnoses, these data may be able to
provide valuable additional information regarding a patient’s physio-
logical state.
anslationalMedicine.org 20 No
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Algorithmic scoring using
characteristic profile features
We next developed a quantitative classi-
fication system that provided a score for
each sample representing the likelihood
of malignant disease, using DC profile
features associated with negative and
malignant pleural fluids (fig. S1). We
pooled DC profiles from each clinically
negative outcome (10 each from NMC,
AI, and CMI) to create a generalized neg-
ative profile (Fig. 3A). We then defined
11 profile features, including the percent-
age of cells within the large (>17 mm)
and deformable (D > 1.4) quadrant and
the root mean square error (RMSE), de-
scribing deviation from fits of AI or CMI
pooled data sets (see all 11 features in
Table 1). A detailed description of the
creation of these profile features can
be found in Materials and Methods.
We iteratively determined thresholds
and weights for the 11 profile features
that best classified the 119 patient sam-
ples. The thresholds and weights were,
in turn, used to score each sample from
1 to 10 (1: least likely to be malignant,
10: most likely to be malignant). The
distribution of scores for 119 samples
(Fig. 3B) showed regions of high posi-
tive predictive value (PPV) of 100% for
scores in the 9 and 10 range and high
negative predictive value (NPV) of 100%
for scores in the 1 to 6 range. In all, these
high-confidence regions covered 63.0%
of patient samples (n = 75). The remain-
ing patient samples had equivocal pro-
file scores of 7 and 8, where confounding
factors were present such as profiles with
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Fig. 2. Example cases of NMC, AI, CMI, andMPEs. Samples frompatients 1 to 10 exhibited characteristics
representingNMCoutcomes. In a subset of patients (samples 5 to 7), AIwas indicated, whereas for patients 8

to 10, CMI was noted. Patients 11 to 20 represented samples collected fromMPE; some MPE cases also had
populations of cells reflecting AI and CMI. RM indicates that RM cells were present. The algorithm-based DC
score (from 1 to 10) assigned a level of suspicion to each sample, where the higher the number, the
increased likelihood of malignant cells.
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CMI-like features overlapping with moderate proportions of large and
highly deformable malignant cells. Hence, 22.7% of samples with these
scores were malignant samples, representing 34.5% of all malignant
biopsies assayed.

By systematically changing the cutoff to classify a benign sample as
malignant (from 1 to 10), we obtained varying sensitivity and speci-
ficity and generated an ROC, yielding an area under the curve (AUC)
of 0.86 (Fig. 3C). Understanding that the thresholds and weights could
be biased by defining the training and test sets in this manner, we per-
formed a K-fold cross-validation (resampling method) to generate ran-
domized test and validation subsets. Overall, validation of a K-fold
(K = 5) population subset produced an average AUC of 0.90 (Fig. 3D).
The scores reported throughout the main text made use of feature
www.ScienceTr
thresholds and weights from the training set that yielded the highest
performing validation subset (AUC 1.00) (Fig. 3D, bin 1). These thresh-
olds and weights are provided in Table 1.

Separately, we performed independent analysis by machine-learning
(ML) classifiers including logistic regression (fig. S2A), linear discrim-
inant analysis (fig. S2B), and support vector machines (SVMs) based on
summary statistics (means and SDs) (fig. S2, C to E) with fivefold cross-
validation. These methods did not have access to the hand-engineered
features discussed previously and so provided an indication of the gen-
eralizable signal present in the samples. The highest average AUC (0.79)
was achieved using an SVM classifier with a quadratic kernel (fig. S2E).
This indicates that the 11 selected profile features provide additional val-
ue over summary statistics in improving classification.
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Fig. 3. Performance of scoring method using DC profile features.
(A) Pooled profiles of NMC, AI, CMI, and malignant outcomes. N is the

operating characteristics (ROCs) for using threshold and weights identi-
fied in Table 1. (D) ROC for K-fold cross-validation of feature scoring
number of single cells. (B) Distribution of DC profile scores versus clin-
ical outcome of malignancy, where n is the number of patient samples
that are true positive (TP) or true negative (TN). Inset graph shows regions
of the 2D DC profile associated with different outcomes. (C) Receiver
method (K = 5). Cross-validation with five bins showing ROCs for the
training and validation subsets. (E and F) DC profile scores and final out-
comes for the subsets: ACs (E) and cytology-negative diagnosis but with
concurrent disease (CN:CD) (F).
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Biophysical profiles associated with AC specimens
Morphological ambiguity within cell smears and blocks can lead to a
cytological diagnosis of “atypical cells,” which necessitates one or more
adjunct follow-up processes, such as flow cytometry, immunohisto-
chemistry, fluorescence in situ hybridization (FISH), or invasive follow-
up biopsies, to reach a conclusive finding. We asked the question of
whether these cases also corresponded to samples in which DC gave
equivocal scores (7 or 8), or whether they did not overlap and could
provide additional information. Using DC, 53% of n = 15 atypical
cases instead had profile scores with 100% predictive value (Fig. 3E).
This is likely due to uniform population-level DC profile features for
activated (reactive) leukocytes (Fig. 4, patients 23 to 25) and benign
(reactive) mesothelial cells (Fig. 4, patients 21 and 22), because both cell
populations can be cytomorphologically ambiguous compared to ma-
lignant cells (Fig. 4, patients 26 to 30).

Biophysical profiles of patients with concurrent
disease specimens
Owing to the variable sensitivity of cytology alone, we defined the gold
standard for a malignant outcome as the presence of disseminated dis-
ease, noted in the medical record within 6 months of the effusion. DC
scores were also predictive of these late-stage malignancies that were
cytology-negative but with concurrent disease (CN:CD) (Fig. 3F).
Here, we looked at a subset of patients with concurrent disease (primary
tumor or malignances) (n = 17), identified retroactively as having a ma-
lignancy at the time of sample collection or within the 6 months after
www.ScienceTr
sample collection. In this set of samples, true negatives corresponded
to cases where the patient had either local lesions (nonleukemic) or
ongoing chemotherapy treatments at the time of collection, where
the patient did not have measurable disease within 6 months after
thoracentesis. Notably, effusions from 5 of 10 patients with high-grade
cancers that were cytology-negative scored in regions with high PPV
for malignancy, and 5 of 7 patients with low-grade tumors (not me-
tastasized) had scores of 6 or less (high NPV) (Fig. 3F). These data
suggest that DC is predictive of malignancy and provides complemen-
tary information to traditional cytological analysis.
DISCUSSION

Thoracentesis procedures are performed at a rate of greater than
1.5 million per year in the United States (22). Malignant pleural fluids
are drained to relieve patients of discomfort and also have clinical value
in deducing etiology, diagnosing progression of malignant diseases, and
monitoring patient relapse. Conventionally, pleural fluid samples are
analyzed by cytology with adjunct procedures including flow cytome-
try, immunohistochemistry, and further biopsies, as required to reach a
diagnosis. The burden of follow-up procedures and biopsies is a signif-
icant cost to the healthcare system. An accurate, low-cost, automated
adjunct technique that limits the number of suspicious samples, which
require focused follow-up, has the potential to reduce healthcare costs
while providing better patient care.
Table 1. List of the 11 extracted profile features used in the scoring
algorithm. The threshold and weights used for the scores in the study
are shown along with the threshold ranges and weighting ranges
extracted from the fivefold cross-validation test. Positive weights were
connected to higher likelihood of malignancy, whereas negative
weights led to a reduced likelihood.
Feature name
 Feature description (type of identifier)
anslationalMedicine.org 20 Nove
Threshold (range)
mber 2013 Vol 5 Issue 2
Weight (range)
1. Upper right quadrant limit 1
 Threshold fraction of cells d > 17 mm and D > 1.4
(MPE suspicion identifier)
>0.13 (0.05–0.08)
 2 (1–2)
2. Upper right quadrant limit 2
 Threshold fraction of cells d > 17 mm and D > 1.4
(NMC identifier)
<0.06 (0.02–0.12)
 −1 (−2 to −1)
3. Lower left quadrant limit
 Threshold fraction of cells d < 12 mm and D < 1.4
(NMC identifier)
>0.70 (0.65–0.70)
 −3 (−4 to −3)
4. Deformability RMSE versus size-binned
CMI standard
Absolute deformability RMSE between sample and
CMI standard curve with 1-mm size bins
(MPE suspicion identifier)
>0.12 (0.11–0.14)
 1 (1–3)
5. Size RMSE versus deformability-binned
CMI standard
Absolute size RMSE between sample and CMI standard
curve with deformability bins of width = 0.5
(CMI identifier)
<0.50 (0.50–0.60)
 −3 (−8 to −1)
6. Frequency RMSE versus size-binned
CMI standard
Absolute frequency RMSE between sample and CMI
standard curve with 1-mm size bins (CMI identifier)
<0.02 (0.01–0.03)
 −3 (−3 to −1)
7. Deformability RMSE versus size-binned
AI standard
Absolute deformability RMSE between sample and
AI standard curve with 1-mm size bins (AI identifier)
<0.45 (0.05–0.45)
 −2 (−3 to −1)
8. Size RMSE versus deformability-binned
AI standard
Absolute size RMSE between sample and AI standard curve
with deformability bins of width = 0.5 (AI identifier)
<0.06 (0.02–0.05)
 −1 (−3 to −1)
9. Frequency RMSE versus size-binned
AI standard
Absolute frequency RMSE between sample and AI standard
curve with 1-mm size bins (AI identifier)
<0.06 (0.06–0.10)
 −1 (−2 to −1)
10. Total RMSE
 Sums AI and CMI RMSE to identify NMC that do not fit
AI or CMI profiles (MPE suspicion identifier)
>0.40 (0.35–0.70)
 2 (2–3)
11. Frequency RMSE versus size-binned
NMC standard
Absolute frequency RMSE between sample and NMC
standard curve based on frequency on the size axis
(MPE suspicion identifier)
>0.13 (0.12–0.20)
 2 (1–2)
12 212ra163 5
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Patients with inflammatory processes often yield suspicious samples
that require additional time and analysis procedures to rule out malig-
nancy. In AI, the response to infections is characterized by activation of
the neutrophil population. Activated neutrophils are known to undergo
physical changes as a result of extracellular stimuli resulting in more
open chromatin and disintegration of the nuclear membrane (23–26).
Cells undergoing these changes resemble hematological malignancies
(27), making it difficult to reach a diagnosis based on conventional cell
smears and cell blocks alone. Thus, specific immunolabels are often
needed to confirm diagnoses using conventionalmethods. In CMI,mono-
nuclear cells such as lymphocytes and macrophages are often the main
cellular constituent of the effusion. Activated lymphocytes are iden-
tified by observation of increased size, globular nuclei, and other
morphological changes (28). However, as with AI cases, conventional
cell smears and cell blocks are often insufficient for ruling out malig-
nancy owing to the CMI background, and these cases frequently re-
quire adjunct procedures to confirm diagnoses. Here, DC was able to
classify 28 of 57 inflammation samples without concurrent malignant
www.ScienceTr
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cells with 100% NPV, suggesting the ability to avoid detailed follow-up
in these cases.

DC could be implemented in the clinical workflow as an adjunct to
traditional cytology or as a prescreening tool for identification of sam-
ples requiring the most detailed analysis. Implementing DC as an
adjunct to cytological analysis can reduce cytology and follow-up work-
load. For example, the cytopathologist could make use of scores with
high NPV (that is, scores ≤6) in a prescreening role and reduce anal-
ysis time spent on these samples. Overall, here, 56 samples fell within
this high negative likelihood regime. Used in this manner, DC would have
reduced the workload of cytological analysis by 47.1% (56 of 119).
Furthermore, within this group of 56 negative samples, 25 follow-up
requests that were ordered could have potentially been eliminated, re-
ducing the total number of follow-up procedures by 45.5% (25 of 55
total requests from 119 patients).

Similarly, 19 of 29 MPE cases could have been rapidly identified be-
cause their scores of ≥9 indicated high likelihood of malignancy, thus
eliminating an additional 12 follow-up requests. In summary, the total
sample load for this study was 174 procedures (119 cell smear/block
slide reads and an additional 55 follow-up analyses). Using DC in this
manner, this load could be reduced by 112 analyses, or 64.3%: 56 high
NPVsamples, 25 highNPV follow-up procedures forgone, 19 highPPV
samples, and 12 high PPV follow-ups forgone. Effusions with scores in
an intermediate range would still be recommended for more detailed
cytological analysis. In addition to the prescreening role, the DC score
or the mechanophenotype profile may be used in adjunct with a cytol-
ogy smear/block to improve overall diagnostic accuracy. This potential
application, however, was not studied here.

The advantages of DC as a screening tool can be expected to have
even greater impact in hospitals with limited resources or in develop-
ing economies with a lack of trained cytopathologists. Images from a
smaller subset of the most suspicious samples (scores of 7 and 8) can
be consulted out for telepathology. There are also advantages over
conventional slide analysis with regard to archiving patient data. Cur-
rently, slides are rarely imaged and digitally archived because of the
large memory requirements for storing image data, whereas DC pro-
files are discrete representations of patient data in an interpretable,
information-rich, compact format that may be easily stored.

Nevertheless, there are limitations with our pilot study that require
additional research to overcome. First, for malignant samples, it is often
important to determine the cancer origin; however, with our current
sample size, only a few samples from each cancer type were available,
and it is unclear if we can distinguish between types of malignancy.
Larger clinical studies will be necessary to determine whether DC can
subclassify by cancer type. In addition, our current system is not com-
pletely automated, requiring an off-chip red blood cell lysis step, which
should be avoided to reduce human intervention and variability.

These caveats in mind, combined with established label-based
methods, label-free DC has the potential to improve the speed and accu-
racy of cancer diagnosiswhile simultaneously reducing costs to the health-
care system. Still, further work is needed before the technology and results
of this study can impact patient care, including commercial instrument
and cartridge development with integrated red blood cell lysis, followed
by larger clinical studies to develop training and validation sets that cover
a broader range of cancer types with larger sample size for, especially, rare
cancers. Following these advances, initial use in a prescreening role in cost-
sensitive environments, such as managed or universal care, could spur
adoption with simultaneous improvements in diagnostic accuracy of
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Fig. 4. DC profiles for pleural effusions that were diagnosed by cytology
as containing ACs. Initial cytology readings were inconclusive, noting

mesothelial reactive changes, reactive leukocytes, or atypia of cells. To
achieve a final clinical outcome, adjunct follow-up procedures including
flow cytometry, immunohistochemistry, FISH, and biopsies are typically
used. The DC profile scores obtained in parallel to these adjunct proce-
dures were predictive of the final clinical outcome.
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malignancy. The DC platform should have broad use in many areas
of biomedicine beyond cancer diagnostics, including immunology,
regenerative medicine therapy, and drug-screening applications, where
changes in cell state are accompanied by biophysical changes in cellular
architecture.
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MATERIALS AND METHODS

Study design
This pilot study tested the ability to quantitatively score malignant and
NMC pleural effusions using DC with values correlated to 6-month
patient outcomes obtained from the medical record for potential me-
tastatic disease. All samples within a 24-hour cutoff from collection
were included in the study. Patient samples were initially collected
from the University of California, Los Angeles (UCLA) Cytopathology
Lab, having arrived from clinics including UCLA Ronald Reagan
Medical Center, UCLA Santa Monica Medical Center, and other re-
gional hospitals over an 18-month period. Samples provided by cyto-
pathology were remnants from thoracentesis after cytological examination
and usually consisted of 10 to 50 ml of cellular fluid. For each sample,
cell blocks and cell smears were prepared by conventional methods for
cytomorphological analysis. Samples were received for biophysical
analysis without receiving results of these conventional methods (that
is, the clinical outcome was blinded to the operator). Subsequently,
outcomes were later connected to the collected data without knowledge
of the DC score. The design of both threshold classifier and support
vector classifier was performed in a supervised fashion to arrive at
the DC score.

One hundred nineteen patient samples were analyzed, in which a
single sample was collected per patient and processed to obtain two to
three videos. Quality control on collected videos included focal plane
matching, cellularity checks, and cell velocity checks. We omitted from
the analysis six consecutive malignant samples collected over a 5-week
span owing to specimen preparation error. We suspect that this was
due to sedimentation because larger cells were not observed in high
frequency in any of the confirmed malignant samples, differing from
the cytology cell smears. Additionally, 28 samples beyond a 24-hour
cutoff were omitted owing to sample degradation (fig. S3A). Sample
storage at room temperature or under 4°C refrigeration did not have
an effect on median cell deformability (fig. S3B).

Microfluidic device fabrication and device dimensions
Microfluidic devices were designed in AutoCAD (Autodesk) and printed
to transparency photomasks (CAD/Art Services Inc.). Transferring the
designs on the photomasks to a replica mold was conducted by spin-
ning negative photoresist, SU-8 50 (MicroChem), on a 4-inch silicon
wafer at 4000 rpm. The coated wafer was soft baked at 65°C for 5 min
and then at 95°C for 15 min. The wafer was then exposed under near
ultraviolet at 8.0 mW/cm2 for 30 s. A post-exposure bake of the wafer
was carried out at 65°C for 2 min and then at 95°C for 3.5 min. The un-
exposed photoresist was developed in SU-8 Developer (MicroChem)
until an isopropyl alcohol rinse produced no white film. The height of
the resulting features was characterized by a surface profiler. The
height and width immediately before the extensional flow junction were
28 and 67 mm, respectively. Devices were then cast with Sylgard 184
Silicone Elastomer (DowCorning), PDMS, mixed 10 parts base to 1 part
curing agent. The poured mold was degassed for 30 min followed by a
www.ScienceTr
3-hour curing at 65°C. Devices were then cut from the mold, input and
output ports were punched, and air plasma was cleaned for 30 s and
bonded to plasma-activated glass slides. Devices were then placed in the
65°C oven for 3 hours before use.

Device operation
To prepare samples for DC mechanical phenotyping, they were first
processed to remove red blood cells and debris by a hypotonic lysis
buffer (Hoffman–La Roche). The samples were resuspended in a
phosphate-buffered saline buffer (requiring 10 min of sample preparation
time). At the optimal cell density between 200,000 and 300,000 cells/ml,
cell-to-cell collision events in the junction are minimized. The suspensions
were loaded into 3-ml plastic syringes (Becton Dickinson), connected
with a 25-gauge luer stub (Instech Laboratories Inc.), and terminated
with a short length of PEEK tubing (Upchurch Scientific) with an
inner diameter of 0.02 inches and an outer diameter of 0.0313 inches.
Equal tubing lengths were inserted into the outlets with free ends di-
rected into a waste receptacle. The syringe was loaded onto a PHD
2000 syringe pump (Harvard Apparatus) and set to inject at a flow
rate optimized for the device. A volumetric flow rate of 900 ml/min
was optimal for prepared pleural fluid samples. At this flow rate, cells
had more uniform trajectories when stretching in the extensional flow
junction, in which we observe a steady but complex flow (fig. S4) (29).
At the start of each run, devices were primed for 20 s with the same
cell solution at the operational flow rate to allow for the flow rate to
ramp to the set value considering the fluidic capacitance in the system.
A 1.1-s video was then recorded, checked for quality, and downloaded
to the computer (~30 s).

Data acquisition and processing
Video data were captured with a Vision Research Phantom v7.3 high-
speed camera at 140,000 frames per second, with a 1-ms exposure. Videos
were contrast-enhanced as part of the automated image analysis pro-
gram. The automated image analysis code was built with MATLAB
v2009a (MathWorks), and videos were processed on the UCLAHoffman
2 Cluster. We have previously described the image analysis process
(21) and graphics processing unit–based acceleration of image analysis
algorithms (30). Briefly, for each cell, the predeformation size was
extracted upon reaching the interrogation junction, and the maximum
aspect ratio was extracted as the deformability, D (Fig. 1). Diameters
of the cell are extracted by a polar to Cartesian coordinate transforma-
tion, where major and minor axes of the cells are extracted at 90 ± 30°
and 0 ± 30°, respectively. The deformability parameter reported here is
defined as the maximum ratio of major to minor axis calculated over
all the frames in which the cell occupies the junction. Postprocessing
scatter plots were created using dscatter function (creator: R. Henson,
MathWorks File Exchange). Processing a video with 2000 cells required
about 15 min to extract final DC plots and scores.

We targeted the collection of 3000 cell events per sample. Our
analysis showed that the analysis of fewer than 1200 cells resulted
in more variable scores that depended on which cells in the population
were sampled (fig. S5). The variability in the mean and spread in SD
was reduced for more than 1200 to 1500 cells per sample (P1 and P4).
However, in some cases, such as samples P2 and P3, there was signif-
icant profile feature ambiguity such that scores fluctuated further, even
up to 3000 cells in the sample, ultimately yielding equivocal seven and
eight scores. Further increases in the number of cells analyzed per
sample were limited by the memory size of the camera and additional
anslationalMedicine.org 20 November 2013 Vol 5 Issue 212 212ra163 7
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processing time, which can be overcome with hardware acceleration
approaches (30).

Classification approach and design
The scoring algorithm is based on a linear combination of hand-
crafted features, producing a linear decision boundary that is similar
to those produced by logistic regression, SVMs, and other classification
methods, including linear discriminant analysis. Scores were assigned
on the basis of thresholds that exceed conditions of normality (NMC,
AI, and CMI), where the score sum is connected to diagnostic accuracy
for positive (high score) or negative cases (low score) (fig. S1). First, a
simple gating of the upper right quadrant was created using the 95%
confidence interval of the mean on NMC cases (fig. S1A). Then, by
using a pooled analysis for characterization and development of stan-
dards for NMC, AI, and CMI, we further improve on specificity. Ten
patient samples, where 2000 cells were randomly chosen from each
sample, were used to generate pooled profiles. Each pooled profile
was then described algorithmically by binning size and deformability
at 1-mm and 0.2D intervals, respectively. The calculated median pa-
rameter of deformability or size with respect to each bin used the in-
ner 90th percentile to represent core profile characteristics (fig. S1B).
Last, we used the 90th percentile distribution of frequency of events in
both binned deformability and size metrics to further correlate to NMC,
AI, and CMI outcomes (fig. S1C).

The scoring system was trained on these parameters on the basis of
DC profile features to maximize sensitivity for malignant specimens.
A table of profile features and computationally optimized thresholds
and weights is found in Table 1. To test the generalization of this clas-
sificationmethod, we usedK-fold cross-validation.We trained the scoring
system (optimized thresholds and weights) on four of five subsamples,
and its performance was assessed on the unobserved fold. This process
was repeated a total of five times, covering every permutation of the
observed/unobserved folds.

Definition of profile features
As stated above, 11 profile features with quantitative thresholds were
defined for this analysis. The descriptions of feature profiles are listed
in Table 1. These values are derived from the optimization of the clas-
sifier by fivefold cross-validation, and the threshold ranges listed are
the maximum and minimum values of the optimization process. If a
feature threshold described a particular sample, the score for that sam-
ple changes proportionally to the defined weight. For example, the
first two profile features were designed to account for the importance
of the fraction of cells within the large and deformable (upper right)
quadrant; these three profile features are then defined as the fraction
of cells within the large (>17 mm) and deformable (D > 1.4) quadrant,
and a sample may receive an adjustment to its profile score if the pro-
portion in the quadrant meets threshold criteria. Multiple conditions
can be met. The condition of the third profile feature is met if the
fraction of cells within the lower left quadrant exceeds 0.65 to 0.70.
Profile features 4 to 9 were defined as RMSEs, calculated for compar-
isons to AI and CMI cases. Three types of RMSE classifiers were de-
veloped. In the first type, cells are binned according to size with 1-mm
increments (in both the sample of interest and an aggregate of, for
example, pooled CMI cases); then, the RMSE between the mean de-
formability in each bin in the sample and the aggregate is calculated. If
the sample was different from the aggregate, the RMSE would have
been large; that is, a standard curve was generated for a pooled disease
www.ScienceTr
case, and the sample was compared to the standard. The second type
of RMSE comparison is the same except bins of similar deformability
and means of size are used. In the third type, the RMSE is calculated
for the difference in the fraction of cells in each size bin. Profile fea-
ture 10 is the sum of these RMSEs. Profile feature 11 is similar to the
third type of RMSE comparison, but between the sample and pooled
NMC cases.

We also built a model based on the summary statistics of each
sample using standard ML classifiers to identify the importance of
spatial profile features used in the scoring system and independently
validate our analysis. In the ML analysis, we studied the performance
and robustness of classifiers using the pleural fluid data set with an
emphasis on out-of-sample prediction and without access to hand-
crafted features. The inputs for the ML algorithms were the summary
statistics extracted from the population of patient cells. In this case,
each patient was summarized by maximum likelihood estimates of
the mean and variance of the Gaussian distributions of the deform-
ability and size of the patient cells. This resulted in a 4D feature rep-
resentation of the patients. Using the K-fold cross-validation method
described above, we implemented five widely used ML algorithms:
logistic regression, linear discriminant analysis, and three different SVMs.
The SVMs considered used linear, quadratic, and radial basis function
kernels. Generalization performance of these classifiers was assessed via
the ROC, summarized by the AUC metric (fig. S2).

This data set can be found in the Supplementary Materials. The file
(SummaryStatDataset.csv) is CSV comma-delimited format with headers
in row 1, final clinical outcomes in column 11, and scores using thresholds
and weights from Table 1 in column 12. Additionally, per-patient single-
cell data sets are provided (SingleCellDataset.mat). See the Supplementary
Materials for structure format. The data set is deidentified.

Summary statistics
Medians and standard interquartile deviations were used to summa-
rize single-cell population data. Data were not normally distributed
and often consisted of several subpopulations.
SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/5/212/212ra163/DC1
Fig. S1. Components of the profile scoring algorithm.
Fig. S2. ROCs of three ML classifiers using a K-fold cross-validation method (K = 5).
Fig. S3. Effect of time and temperature on DC measurements.
Fig. S4. Extensional flow characteristics and stability.
Fig. S5. Sample size effects on DC scores.
File SummaryStatDataset.csv (summary-level data used to assign profile scores)
File SingleCellDataset.mat (single-cell data for 119 patients for diameter and deformability
measurements)
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Editor's Summary

 
 
 

further clinical testing, DC should be useful as a quick screening tool to form an early diagnosis of MPEs.
patients with many different types of cancer. Nevertheless, owing to the ease of use and objective readout, with 

Using deformability as a marker of disease will require additional validation in pleural effusion samples from

early for MPE.
cytology-negative at sample collection scored high using DC. This suggests that the DC tool could be used to screen 
months later were diagnosed with disseminated disease. Five of 10 patients with high-grade cancers that were
looked at samples from patients that were cytology-negative with concurrent malignancy, such as a tumor, but 6 
these may be the types of samples where a cytopathologist's initial input would be necessary. Importantly, the authors
abilities in two high-confidence regimes: 1 to 6 and 9 to 10. Scores of 7 and 8 were more difficult to diagnose, so 

to develop a diagnostic scoring system on a scale of 1 to 10, with 1 being benign. DC showed the best predictive−−
cells (benign), acute inflammation, chronic/mixed inflammation, atypical cells, and malignant pleural effusions (MPEs)

 negative for malignant−−is. The authors took 119 pleural effusion samples from patients with known clinical outcomes
 . to quantify cellular squishing: the more deformable the cell, the more malignant itet althis intersection allowed Tse 

channels. This leads to cell deformation, changing them from sphere-like shapes to pancakes. High-speed video of
four-way intersection, the cells are rapidly decelerated as they encounter the opposing flow, and then exit out the side 

The authors' device accelerates effusion samples through two opposing microfluidic channels. At the channels'

samples as malignant, or not.
an approach that relies on microfluidic forces to diagnose pleural effusion−−. describe deformability cytometry (DC)al

ettime-intensive and requires an expert's eye. So, to quickly ''prescreen'' samples for malignancy (and follow-up), Tse 
taken from the lungs of patients suspected of having infections or cancer. This process is subjective and 

Is it benign, or malignant? That is the main concern of cytopathologists as they screen cells in pleural effusions,
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