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1. Introduction

In machine learning, the term “training” is used to describe the procedure of fitting a model to data.
In many popular models, this fitting procedure is framed as an optimization problem, in which a loss is
minimized as a function of the parameters. In all but the simplest machine learning models, this minimization
must be performed with an iterative algorithm such as stochastic gradient descent or the nonlinear conjugate
gradient method.

Another aspect of training involves fitting model “hyperparameters.” These are parameters that in some
way govern the model space or fitting procedure; in both cases they are typically difficult to minimize
directly in terms of the training loss and are usually evaluated in terms of generalization performance via
held-out data. Hyperparameters are often regularization penalties such as `p norms on model parameters, but
can also capture model capacity as in the number of hidden units in a neural network. These hyperparameters
help determine the appropriate bias-variance tradeoff for a given model family and data set. On the other
hand, hyperparameters of the fitting procedure govern algorithmic aspects of training, such as the learning
rate schedule of stochastic gradient descent, or the width of a Monte Carlo proposal distribution. The goal
of fitting both kinds of hyperparameters is to identify a model and an optimization procedure in which
successful minimization of training loss is likely to result in good generalization performance. When a held-
out validation set is used to evaluate the quality of hyperparameters, the overall optimization proceeds as a
double loop, where the outer loop sets the hyperparameters and the inner loop applies an iterative training
procedure to fit the model to data.

Often this outer hyperparameter optimization is performed by hand, which—even if rigorously systematized—
can be a difficult and laborious process. Simple alternatives include the application of heuristics and intu-
ition, grid search, which scales poorly with dimension, or random search [1], which is computationally
expensive due to the need to train many models. In light of this, Bayesian optimization [2] has recently been
proposed as an effective method for systematically and intelligently setting the hyperparameters of machine
learning models [3, 4]. Using a principled characterization of model uncertainty, Bayesian optimization
attempts to find the best hyperparameter settings with as few model evaluations as possible.

One issue with previously proposed approaches to Bayesian optimization for machine learning is that
a model must be fully trained before the quality of its hyperparameters can be assessed. Human experts,
however, appear to be able to rapidly assess whether or not a model is likely to eventually be useful, even
when the inner-loop training is only partially completed. When such an assessment can be made accurately,
it is possible to explore the hyperparameter space more effectively by aborting model fits that are likely to
be low quality. The goal of this paper is to take advantage of the partial information provided by iterative
training procedures, within the Bayesian optimization framework for hyperparameter search. We propose a
new technique that makes it possible to estimate when to pause the training of one model in favor of starting
a new one with different hyperparameters, or resuming a partially-completed training procedure from an
old model. We refer to our approach as freeze-thaw Bayesian optimization, as the algorithm maintains a set
of “frozen” (partially completed but not being actively trained) models and uses an information-theoretic
criterion to determine which ones to “thaw” and continue training.
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Our approach hinges on the assumption that, for many models, the training loss during the fitting proce-
dure roughly follows an exponential decay towards an unknown final value. We build a Bayesian nonpara-
metric prior around this assumption by developing a new kernel that is an infinite mixture of exponentially-
decaying basis functions, with the goal of characterizing these training curves. Using this kernel with a novel
and efficient temporal Gaussian process prior, we are able to forecast the final result of partially trained mod-
els and use this during Bayesian optimization to determine the most promising action. We demonstrate that
freeze-thaw Bayesian optimization can find good hyperparameter settings for many different models in con-
siderably less time than ordinary Bayesian optimization.

2. Background

2.1. Gaussian Processes A Gaussian process (GP) is a probability distribution over the space of func-
tions f : X 7→ R. It is fully specified by a kernel function k(x,x′) : X × X 7→ R and a mean function
m(x) : X 7→ R. The input space X can be anything for which there exists a positive definite kernel. Gaus-
sian processes are often used as prior distributions over functions. Given input/output pairs {(xn, yn)}Nn=1,
we can express the GP posterior predictive distribution at a new input x∗ by

P (f∗; {(x,y)}Nn=1,x∗) = N (f∗;µ∗, v∗),

µ∗ = m(x∗) + K∗K−1(y −m),(1)

v∗ = K∗∗ −K∗K−1K>∗ .(2)

Here K is the Gram matrix formed by applying the kernel function to every point in the dataset, K∗ is a
vector formed by computing k(x∗,xn) for all n in the dataset, K∗∗ = k(x∗,x∗) and m is the vector formed
by applying the mean function to all inputs in the dataset.

GPs have become a mainstay of Bayesian nonparametric regression because of their simplicity, flexibility,
and ability to characterize uncertainty when making predictions. This comes at a computational cost that
grows as O(N3) due to the requirement of inverting the Gram matrix.

Implicit in the mean and kernel functions are GP hyperparameters θ (not to be confused with the hyperpa-
rameters we are optimizing) that characterize the overall behaviour of the GP. We follow the same procedure
as in [4], using a Matérn kernel, an inferred constant prior mean, and integrating out the hyperparameters
via slice sampling [5].

2.2. Bayesian Optimization Bayesian optimization is a methodology for the global optimization of ex-
pensive, noisy functions over a bounded domain; without loss of generality, we consider the domain X to
be the unit hypercube [0, 1]D. Bayesian optimization has received significant interest recently in machine
learning due in part to the maturing of methods for Bayesian nonparametric regression. Recent work has
developed compelling theoretical convergence guarantees [6, 7, 8], more rigorous methodologies [9, 10]
and methods tailored to specific applications such as hyperparameter optimization [11, 4, 3] and sensor set
selection [12]. Bayesian optimization (see [13, 14] for an in-depth explanation) proceeds by fitting a proba-
bilistic model to the data and then using this model as an inexpensive proxy in order to determine the most
promising location to evaluate next.

We assume that the goal is to minimize the objective. The choice of which point, x∗, to evaluate next
is determined by maximizing an acquisition function, x∗ = argmaxx a(x). This is a utility function that
determines the trade-off between exploring in regions the model is uncertain about, and exploiting in regions
that are likely to yield a good result.
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(a) Exponential Decay Basis (b) Samples (c) Training Curve Samples

Fig 1: Example functions from the exponential decay kernel. (a) Example functions from our basis set with α = 1.0
and β = 0.5. (b) Samples from a Gaussian process with this covariance function. (c) Samples from a Gaussian
process conditioned on the curves starting at a positive number and with an added Ornstein-Uhlenbeck kernel

to simulate natural training curves.

A popular and effective acquisition function is the expected improvement (EI) criterion [15, 16],

aEI(x) =
√
v(x)(γ(x)Φ(γ(x)) + φ(γ(x)), γ(x) =

f(xbest − µ(x)))√
v(x)

,(3)

where φ and Φ, respectively, are the probability density function and cumulative distribution function of the
standard normal distribution, xbest is the input corresponding to the minimum output observed so far and
µ(x) and v(x) are the posterior mean and variance of the probabilistic model evaluated at x.

While EI focuses on the value of the function, an alternative approach is to consider information gathered
about the location of the minimum. Given a posterior predictive distribution over the minimum, the entropy
search [17] approach at each step chooses the input that most reduces expected uncertainty over the location
of the minimum. Let Pmin represent the current estimated distribution over the minimum. The entropy search
acquisition function is given by

aES(x) =

∫
(H(P ymin)−H(Pmin))P (y | {(xn, yn)}Nn=1) dy.(4)

Here P ymin is an updated distribution over the location of the minimum given that point x yields the ob-
servation y. In other words, entropy search maximizes the expected information gain over the location of
the minimum from evaluating a point. In practice, we follow [18, 19] and use Monte Carlo simulation to
estimate Pmin on a discrete grid containing the points with the highest EI.

3. A Kernel for Training Curves

We develop here a positive definite covariance kernel designed to model iterative optimization curves.
Specifically, we develop a prior that strongly supports exponentially decaying functions of the form e−λt

for t, λ ≥ 0. Rather than assume a finite basis with a fixed set of λ terms, we integrate over infinite basis
functions parameterized by λ from 0 to ∞ with a mixing measure that allows us to weight regions of the
range. Thus the covariance function k(t, t′) between two inputs t and t′ is given by:

(5) k(t, t′) =

∫ ∞
0

e−λte−λt
′
ψ(dλ) ,

where ψ is a non-negative mixing measure on R+. It is particularly convenient to take ψ to have the form of
a gamma distribution with density ψ(λ) = βα

Γ(α)λ
α−1e−λβ , for parameters α, β > 0 and in which Γ(·) is the
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f(x1)

f(x2)N (m,Kx)

f(x3)

y11 y12 y13 · · ·

N (f(x1),Kt)

y21 y22 y23 · · ·

N (f(x2),Kt)

y31 y32 y33 · · ·

N (f(x3),Kt)
...

(a) Graphical Model (b) Training curve predictions (c) Asymptotic GP

Fig 2: (a) Factor graph representation of the GP model for training procedures. Each row represents a learning
curve that is drawn from an independent GP prior, conditioned on its mean. The mean of each learning curve

is jointly drawn with the mean of the other curves using another GP prior. (b) Partially completed training
curves, and the GP prediction at their eventual asymptotes. (c) The posterior GP prediction at the asymptote.
Each colored point represents the GP prediction at the hyperparameter location corresponding to a training

curve with the same color.

gamma function. This choice of mixing measure leads to an analytic solution for Equation 5:

k(t, t′) =

∫ ∞
0

e−λ(t+t′) βα

Γ(α)
λα−1e−λβ dλ

=
βα

Γ(α)

∫ ∞
0

e−λ(t+t′+β)λα−1 dλ =
βα

(t+ t′ + β)α
.(6)

In Figure 1, we show visualizations of the basis set, samples from a Gaussian process prior with this
covariance function and samples from a model specifically for optimization curves. In the following, we use
this kernel in our model as the covariance function over time steps for an iterative optimization procedure
being modeled. For noisy curves, this kernel can be composed with e.g., a noise kernel or an Ornstein-
Uhlenbeck kernel.

4. Efficient Gaussian Processes for Iterative Training Procedures

4.1. Specification In order to perform Bayesian optimization we need to use a surrogate model as a
proxy for the function of interest. The main issue with GPs is that making predictions requires O(N3)
computation, where N is the number of training observations. In the context of freeze-thaw Bayesian opti-
mization, a naı̈ve model would put a Gaussian process prior over every observed training loss through time.
With N unique hyperparameters settings and up to T training iterations per setting, computing quantities of
interest using a GP would scale as O(N3T 3), which is prohibitively expensive.

To reduce the computational cost, we incorporate a conditional independence assumption that each train-
ing curve is drawn from a separate Gaussian process, conditioned on the prior mean, which is itself drawn
from a global Gaussian process. We define yn to be a vector of generalization loss measurements for the nth
hyperparameter setting, i.e., it is a time series. Formally, we model the distribution over these training curves
{yn}Nn=1 given hyperparameter settings {xn}Nn=1 as,

P ({yn}Nn=1 | {xn}Nn=1) =

∫ [ N∏
n=1

N (yn; fn1n,Ktn)

]
N (f ; m,Kx) df ,(7)

where f is a latent function that specifies the mean of each training curve and 1 is a column vector of 1’s.
In other words, the generative procedure is to first draw a latent function f over hyper parameter settings
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according to a GP prior. Conditioned on f , each training curve is modelled independently using another GP
prior with a mean given by the corresponding entry of f . We use a constant mean m (which we infer) and
Matérn-5/2 kernel for the GP prior over hyperparameters. Each time-based GP uses the covariance given in
Section 3. A graphical illustration of this model is shown in Figure 2a.

The training curves will asymptotically converge to f away from the observed points. As we will demon-
strate, the conditional independence assumption is not too restrictive for the kinds of training curves that are
typically found when training machine learning models.

Using properties of the Gaussian distribution, we can write the joint distribution over y and f as,

P (y, f | {xn}Nn=1) = N
((

f
y

)
;

(
m

Om

)(
Kx KxO>

OKx Kt + OKxO>

))
,(8)

where y = (y1,y2, . . . ,yN )>, O = blockdiag(11,12, . . . ,1N ) is a block-diagonal matrix, where each
block is a vector of ones corresponding to number of observations in its corresponding training curve, and
Kt = blockdiag(Kt1,Kt2, . . . ,KtN ) is a block-diagonal matrix where each block is the covariance for it’s
corresponding training curve.

4.2. Inference Using this representation, we can efficiently compute the required quantities for Bayesian
optimization. We have omitted some of the details of these derivations; they can be found in the appendix.

Marginal likelihood The marginal likelihood is required to estimate the hyperparameters of the GP. Us-
ing the marginalization property of the Gaussian distribution, the marginal likelihood can be derived from
Equation 8 and is given by,

P (y | {xn}Nn=1) = N
(
y; Om,Kt + OKxO>

)
.(9)

The covariance of this distribution has a size of NT × NT , however we can efficiently invert it using the
Woodbury matrix identity.

(Kt + OKxO>)−1 = K−1
t −K−1

t O(K−1
x + O>K−1

t O)−1O>K−1
t .(10)

We can also use the analogous matrix determinant lemma to obtain an efficient representation for the nor-
malization constant of the Gaussian distribution, allowing us to write the log-likelihood as,

logP (y | {xn}Nn=1) = −1

2
(y −Om)>K−1

t (y −Om) +
1

2
γ>(K−1

x + Λ)−1γ

− 1

2

(
log
(
|K−1

x + Λ|
)

+ log (|Kx|) + log (|Kt|)
)

+ const(11)

Where γ = O>K−1
t (y − Om) and a specific element can be written as, γn = 1>nK−1

tn (yn − mn);
Λ = O>K−1

t O = diag(λ1, λ2, . . . , λN ), where λn = 1>nK−1
tn 1n.

Posterior distribution Using the conditioning property of the Gaussian, we can express the posterior
P (f |y, {xn}Nn=1) as,

P (f |y, {xn}Nn=1) = N (f ;µ,C) ,

µ = m + Kxγ −KxΛ(K−1
x + Λ)−1γ,

= m + Cγ,(12)

C = Kx −KxΛKx + KxΛ(K−1
x + Λ)−1ΛKx,

= Kx −Kx(Kx + Λ−1)−1Kx.(13)
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Posterior predictive distributions Given a new hyperparameter setting x∗, the posterior distributionP (f∗ |y, {xn}Nn=1,x∗)
is given by,

P (f∗ |y, {xn}Nn=1,x∗) =

∫
P (f∗ | f ,x∗)P (f |y, {xn}Nn=1)df ,

=

∫
N (f∗;m+ K>x∗K

−1
x f ,Kx∗∗ −K>x∗K

−1
x Kx∗)N (f ;µ,C)df ,

= N (f∗;m+K>x∗K
−1
x (µ−m),Kx∗∗−K>x∗(Kx+Λ−1)−1Kx∗).(14)

Similarly, the posterior predictive distribution for a new point in a training curve, yn∗, is given by,

P (yn∗ | {xn}Nn=1,y) =

∫
P (yn∗ |yn, fn)P (fn |y, {xn}Nn=1)dfn,

=

∫
N (yn∗; fn1∗ + K>tn∗K

−1
tn (yn − 1nfn),Ktn∗∗ −K>tn∗K

−1
tn Ktn∗)

N (fn;µn,Cnn)dfn,

= N (yn∗; K>tn∗K
−1
tn yn + Ωµn,Ktn∗∗ −K>tn∗K

−1
tn Ktn∗ + ΩCnnΩ>),(15)

Ω = 1∗ −K>tn∗K
−1
tn 1n.

Where 1∗ is a vector of ones with size equal to the number of time-steps we are predicting. We have omitted
the dependence on t for brevity since it is a regularly spaced grid in our experiments.

Finally, in the absence of any observations, the posterior predictive distribution is given by,

P (y∗ | {xn}Nn=1,y,x∗) = N (yn∗;µ∗,Kt∗∗ + Σ∗∗),(16)

Where µ∗ and Σ∗∗ are the mean and variance given by Equation 19.

4.3. Computational Complexity In order to evaluate the GP we need to invert Kx and Kt independently.
When computing the quantities Λ and γ we can pre-compute the Cholesky decomposition of Kt and use
this to solve linear systems with a T × T matrix N times, leading to a total computational complexity of
O(N3 +T 3 +NT 2). In practice T is somewhere between 10 and 100, or can be kept small by sampling the
training curves in coarser increments.

5. Bayesian Optimization for Iterative Training Procedures

Using the GP developed in the previous sections, our goal is to create an automatic system that can
intelligently decide when to pause training of current models, resume training of previous models, or start
new models for training. The optimal strategy is critically dependent on the goal of the user, and we assume
that this is to find the best model. That is, if every model were to be fully trained, then the one with the lowest
asymptotic error is the one we want to discover. This is reflected in our GP, which becomes a standard GP
over hyperparameter settings at the asymptote of each training curve.

Our Bayesian optimization strategy proceeds by maintaining a basket of B = Bold + Bnew candidate
models. Bold represents some number of models that have already been trained to some degree, while Bnew

represents some number of brand new models. In practice, we set Bold = 10 and Bnew = 3. The entire
basket is chosen using models with the maximum EI at the asymptote, which is computed using Equations
19 and 3. Each round, after a new observation has been collected, the basket is re-built using possibly
different models. This step is essentially standard Bayesian optimization using EI.
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Algorithm 1 Entropy Search Freeze-Thaw Bayesian Optimization
1: Given a basket {(x,y)}Bold ∪ {(x)}Bnew

2: a = (0, 0, . . . , 0)
3: Compute Pmin over the basket using Monte Carlo simulation and Equation 19.
4: for each point xk in the basket do
5: // nfant is some specified number, e.g., 5.
6: for i = 1 . . . nfant do
7: if the point is old then
8: Fantasize an observation yt+1 using Equation 20.
9: end if

10: if the point is new then
11: Fantasize an observation y1 using Equation 21.
12: end if
13: Conditioned on this observation, compute P ymin over the basket using Monte Carlo simulation and Equation 19.

14: a(k)← a(k) +
H(P

y
min)−H(Pmin)

nfant
// information gain.

15: end for
16: end for
17: Select xk, where k = argmaxk a(k) as the next model to run.
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(a) Logistic Regression
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(b) Online LDA
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(c) PMF

Fig 3: This figure shows the results of the empirical comparison to standard Bayesian optimization on three common
machine learning hyperparameter optimization problems. For each problem we report the lowest loss

observed over all training epochs evaluated by each method, averaged over five optimization runs.

Given a basket, the task now becomes one of choosing which candidate to run. Naively choosing EI would
always favor picking new models rather than running old ones for more iterations since the new models have
maximal EI by definition. Instead, similar to [18], we use the entropy search acquisition function to pick the
point that provides the most information about the location of the minimum at the asymptote. The method is
summarized in Algorithm 1. This procedure is similar to standard entropy search, except that here we are not
just fantasizing outcomes for unseen inputs but also fantasizing outcomes for already seen inputs. Since we
are considering the results at the asymptote, each subsequent observation provides more information about
the true function.

6. Empirical Analysis

In this section, we empirically validate our method by comparing to the state-of-the-art (Warped GP EI
MCMC) Bayesian optimization method of [20] on three common machine learning tasks: Online LDA,
Logistic Regression and Probabilistic Matrix Factorization. For each of these tasks, we allowed the method
of [20] to select the number of training epochs to run, as a hyperparameter to be optimized between 1 and
100, and report at each epoch the cumulative number of epochs run and the lowest objective value observed
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Fig 4: A visualisation of the progression of the optimization curves throughout the optimization procedure on the
probabilistic matrix factorization problem. Figure 4a shows for each distinct hyperparameter setting

evaluated, the optimization curve run out by the procedure. The curves are ordered by the iteration in the
Bayesian optimization procedure that they were started and each epoch of each curve is colored by the

iteration of the Bayesian optimization that this section was evaluated. From the figure we can see that the
procedure frequently stops running training curves that are not promising and often returns to promising

training curves that were previously started. Figure 4b shows a two dimensional cross section of Figure 4a.

over all epochs. We report our results of the comparison in Figure 3, visualizing the problem specific loss as a
function of the total number of training epochs run throughout each of the Bayesian optimization procedures.
Each experiment was run five times and we report the mean loss. Both methods used input warping to model
non-stationarity. Specific details of our implementation are provided in the appendix.

Logistic Regression In the first experiment, we optimize five hyperparameters of a logistic regression
trained using stochastic gradient descent on the popular MNIST data set. The hyperparameters include a
norm constraint on the weights (from 0.1 to 20), an `2 regularization penalty (from 0 to 1), the training
minibatch size (from 20 to 2000), dropout regularization [21] on the training data (from 0 to 0.75) and the
learning rate (from 10−6 to 10−1).

Online LDA Next we optimize five hyperparameters of an online Latent Dirichlet Allocation (LDA) [22]
experiment on 250,000 documents from Wikipedia. We optimize the number of topics (from 2 to 100), two
Dirichlet distribution prior base measures (from 0 to 2), and two learning rate parameters (rate from 0.1 to
1, decay from 10−5 to 1). We used the implementation from [23] and report average perplexity on a held out
validation set of 10% of the data.

Probabilistic Matrix Factorization As a final experiment, we optimize three hyperparameters of a proba-
bilistic matrix factorization (PMF) [24] on 100,000 ratings from the MovieLens data set [25]. The hyper-
parameters include the rank (from 0 to 50), the learning rate (from 10−4 to 10−1) and an `2 regularization
penalty (from 0 to 1).

Results Figure 3 shows the results of the empirical analysis in terms of the problem specific loss as a
function of the total number of training epochs run out by each method. Clearly in each of the experiments,
our method significantly outperforms the state-of-the-art due to the advantage of being able to dynamically
stop and restart experiments. The difference is particularly prominent for the online LDA problem, where we
hypothesize that it is relatively easy to predict the shape of the optimization curves given only a small number
of observed epochs. We assume that the underlying models being optimized are sufficiently expensive that
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the cost of fitting the GP is negligible. In practice, the small additional computational effort incurred by our
method for explicitly modeling epochs was eclipsed by the performance gains of more rapidly reaching a
better loss.

In Figure 4, we show a visualization of the progression of our Bayesian optimization procedure on the
PMF problem. We observe here and throughout the empirical analysis that the method generally initially
explored the hyperparameter space by running only a small number of epochs for various hyperparameter
settings. However, once it found a promising curve, it would run it out for more epochs. Later in the opti-
mization, the method would frequently revisit existing curves and extend them for a few epochs at a time,
as we observe in Figure 4a.

7. Conclusion

Hyperparameter tuning is an important and ubiquitous problem in machine learning that can drastically
affect the performance of a model. Given a setting of the hyperparameters, fitting a machine learning model
usually involves an iterative training procedure. In this paper, we designed a Bayesian optimization algorithm
that is able to exploit the partial information obtained as training proceeds.

Our algorithm relies on a key assumption that training curves tend to follow an exponential decay. We
developed a novel, non-stationary kernel as an infinite mixture of exponentially decaying basis functions,
and combined this with an efficient temporal Gaussian process prior in order to accurately forecast train-
ing curves for a variety of machine learning models. Using an information-theoretic decision framework,
our algorithm can dynamically pause, resume, or create new training runs in order to rapidly find good
hyperparameter settings.

The methodology developed in this paper can potentially be extended to other problems where partial
observations reduce uncertainty. In cases where the exponential decay assumption does not hold, it would
be interesting to experiment with other, more flexible priors such as a spatio-temporal GP with a separable
covariance.
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APPENDIX

APPENDIX B: EFFICIENT GAUSSIAN PROCESSES FOR ITERATIVE TRAINING PROCEDURES

B.1. Inference Derivations
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Posterior distribution Using the conditioning property of the Gaussian, we can express the posterior
P (f |y, {xn}Nn=1) as,

P (f |y, {xn}Nn=1) = N (f ;µ,C) ,

µ = m + Kxγ −KxΛ(K−1
x + Λ)−1γ,

= m + (K−1
x + Λ)−1γ,

= m + Cγ,(17)

C = Kx −KxΛKx + KxΛ(K−1
x + Λ)−1ΛKx,

= Kx −Kx(Λ−Λ(K−1
x + Λ)−1Λ)Kx,

= Kx −Kx(Kx + Λ−1)−1Kx,(18)

= (K−1
x + Λ)−1.

Posterior predictive distributions Given a new hyperparameter setting x∗, the posterior distributionP (f∗ |y, {xn}Nn=1,x∗)
is given by,

P (f∗ |y, {xn}Nn=1,x∗) =

∫
P (f∗ | f ,x∗)P (f |y, {xn}Nn=1)df ,

=

∫
N (f∗;m+ K>x∗K

−1
x f ,Kx∗∗ −K>x∗K

−1
x Kx∗)N (f ;µ,C)df ,

= N (f∗;m+ K>x∗K
−1
x (µ−m),Kx∗∗ −K>x∗K

−1
x Kx∗ + K>x∗K

−1
x CK−1

x Kx∗),

= N (f∗;m+ K>x∗K
−1
x (µ−m),Kx∗∗ −K>x∗(K

−1
x −K−1

x CK−1
x )Kx∗),

= N (f∗;m+ K>x∗K
−1
x (µ−m),Kx∗∗ −K>x∗(Λ−ΛCΛ)Kx∗),

= N (f∗;m+ K>x∗K
−1
x (µ−m),Kx∗∗ −K>x∗(Kx + Λ−1)−1Kx∗).(19)

Similarly, the posterior predictive distribution for a new point in a training curve, yn∗, is given by,

P (yn∗ | {xn}Nn=1,y) =

∫
P (yn∗ |yn, fn)P (fn |y, {xn}Nn=1)dfn,

=

∫
N (yn∗; fn1∗ + K>tn∗K

−1
tn (yn − 1nfn),Ktn∗∗ −K>tn∗K

−1
tn Ktn∗)

N (fn;µn,Cnn)dfn,

= N (yn∗; K>tn∗K
−1
tn yn + Ωµn,Ktn∗∗ −K>tn∗K

−1
tn Ktn∗ + ΩCnnΩ>),(20)

Ω = 1∗ −K>tn∗K
−1
tn 1n.

Where 1∗ is a vector of ones with size equal to the number of time-steps we are predicting. We have omitted
the dependence on t for brevity since it is a regularly spaced grid in our experiments.

Finally, in the absence of any observations, the posterior predictive distribution is given by,

P (y∗ | {xn}Nn=1,y,x∗) =

∫
P (y∗ | f∗)P (f∗ | {xn}Nn=1,y,x∗)df∗,

=

∫
N (y; f∗,Kt∗∗)N (f∗;µ∗,Σ∗∗)df∗,

= N (y∗;µ∗,Kt∗∗ + Σ∗∗).(21)

Where µ∗ and Σ∗∗ are the mean and variance given by Equation 19.
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APPENDIX C: IMPLEMENTATION DETAILS

In our experiments we follow the conventions laid out in [4] and use a modification of it’s accompanying
Spearmint package 1. The specific details of our GP model implementation are given below.

C.1. Kernels and GP Hyperparameters We use a Matérn-5⁄2 to determine the function over hyperpa-
rameters, along with the warping technique developed in [20]

kM52(w(x), w(x′)) = θ0

(
1 +
√

5r2 +
5

3
r2

)
exp

(
−
√

5r2
)
,

r2 =
D∑
d=1

(wd(x)d − wd(x′)d)2

θ2
d

,

wd(x) = BetaCDF(x, ad, bd).

Where BetaCDF refers to the cumulative distribution of the beta distribution with shape parameters a and b.
We place a log-normal prior with a log-scale of 0 on θ0, ad, and bd for all d, and a uniform prior on θd,

θ0 ∼ lognorm(0, 1),

ad ∼ lognorm(0, 1) d = 1...D,

bd ∼ lognorm(0, 1) d = 1...D,

θd ∼ uniform(0, 10).

For the kernel over epochs, we use our custom exponential decay kernel along with an additive noise kernel.

kexp decay(t, t′) =
βα

(t+ t′ + β)α
+ δ(t, t′)σ2.

We place a lognormal prior on the hyperparameters α and β, and a horseshoe prior on σ2.

α ∼ lognorm(0, 1) d = 1...D,

β ∼ lognorm(0, 1) d = 1...D,

σ2 ∼ horseshoe(0.1) [26].

Finally, we use a constant prior mean m with a uniform hyperprior for the GP over hyperparameters. We
ensure that this value does not exceed the bounds of the observations.

m ∼ uniform(ymin, ymax).
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