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Abstract

In categorical data there is often structure in the number of variables that take on
each label. For example, the total number of objects in an image and the number of
highly relevant documents per query in web search both tend to follow a structured
distribution. In this paper, we study a probabilistic model that explicitly includes
a prior distribution over such counts, along with a count-conditional likelihood
that defines probabilities over all subsets of a given size. When labels are binary
and the prior over counts is a Poisson-Binomial distribution, a standard logistic
regression model is recovered, but for other count distributions, such priors induce
global dependencies and combinatorics that appear to complicate learning and
inference. However, we demonstrate that simple, efficient learning procedures
can be derived for more general forms of this model. We illustrate the utility of
the formulation by exploring applications to multi-object classification, learning
to rank, and top-K classification.

1 Introduction
When models contain multiple output variables, an important potential source of structure is the
number of variables that take on a particular value. For example, if we have binary variables indi-
cating the presence or absence of a particular object class in an image, then the number of “present”
objects may be highly structured, such as the number of digits in a zip code. In ordinal regression
problems there may be some prior knowledge about the proportion of outputs within each level. For
instance, when modeling scores assigned to papers submitted to a conference, this structure can be
due to instructions that reviewers assign scores such that the distribution is roughly uniform.

One popular model for multiple output classification problems is logistic regression (LR), in which
the class probabilities are modeled as being conditionally independent, given the features; another
popular approach utilizes a softmax over the class outputs. Both models can be seen as possessing
a prior on the label counts: in the case of the softmax model this prior is explicit that exactly one
is active. For LR, we can consider a factorization in which there is a specific prior on counts; this
prior is the source of computational tractability, but also imparts an inductive bias to the model. The
starting observation for our work is that we do not lose much efficiency by replacing the LR counts
prior with a general prior, which permits the specification of a variety of inductive biases.

In this paper we present a probabilistic model of multiple output classification, which incorporates a
distribution over the label counts, and show that computations needed for learning and inference in
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this model are efficient. We develop applications of this model to diverse problems. A maximum-
likelihood version of the model can be used for problems such as multi-class recognition, in which
the label counts are known at training time but only a prior distribution is known at test time. The
model easily extends to ordinal regression problems, such as ranking or collaborative filtering, in
which each item is assigned to one of a small number of relevance levels. We establish a connec-
tion between n-choose-k models and ranking objectives, and prove that optimal decision theoretic
predictions under the model for “monotonic” loss functions (to be defined later), which include stan-
dard objectives used in ranking, can be achieved by a simple sorting operation. Other problems can
be modeled via direct minimization of expected loss. An important aim in classification and infor-
mation retrieval is to optimize expected precision@K. We show that we can efficiently optimize this
objective under the model and that it yields promising results.

Overall, the result is a class of models along with a well-developed probabilistic framework for
learning and inference that makes use of algorithms and modeling components that are not often
used in machine learning. We demonstrate that it is a simple, yet expressive probabilistic approach
that has many desirable computational properties.

2 Binary n-Choose-k Model
We begin by defining the basic model under the assumption of binary output variables. In the
following section, we will generalize to the case of ordinal variables. The model inputs are x,
and θ is defined as θ = Wx, where W are the parameters. The model output is a vector of D
binary variables y ∈ Y = {0, 1}D. We will use subsets c ⊆ {1, . . . , D} of variable indices and will
represent the value assigned to a subset of variables as yc. We will also make use of the notation c̄
to mean the complement {1, . . . , D}\c. The generative procedure is then defined as follows:

• Draw k from a prior distribution p(k) over counts k.
• Draw k variables to take on label 1, where the probability of choosing subset c is given by

p(yc = 1,yc̄ = 0 | k) =

{
exp{

∑
d∈c θd}

Zk(θ) if |c| = k

0 otherwise
, (1)

where θ = (θ1, . . . , θD) are parameters that determine individual variable biases towards
being off or on, and Zk(θ) =

∑
y|

∑
d yd=k exp{

∑
d θdyd}. Under this definition Z0 = 1,

and p(0 | 0) = 1. This has been referred to as a conditional Bernoulli distribution [1].

Logistic regression can be viewed as an instantiation of this model, with a “prior” distribution over
count values that depends on parameters θ. This is a forced interpretation, but it is useful in under-
standing the implicit prior over counts that is imposed when using LR. Specifically, if p(k) is defined
as be a particular function of θ (known as a Poisson-Binomial distribution [2]): p(k;θ) = Zk(θ)

Z(θ) ,
where Z(θ) =

∑
k Zk(θ), then the joint probability p(y, k;θ) becomes equivalent to a LR model in

the following sense. Suppose we have a joint assignment of variables y and
∑
d yd = k, and p(k;θ)

is Poisson-Binomial, then

p(y, k;θ) = p(k;θ)p(y | k;θ) =
Zk(θ)

Z(θ)

exp{
∑
d∈c θd}

Zk(θ)
=
∏
d

exp{θdyd}
1 + exp{θd}

. (2)

Note that the last equality factorizes Z(θ) to create independence across variables, but it requires
that the “prior” be defined in terms of parameters θ. Our interest in this paper is in the more flexible
family of models that arise after breaking the dependence of the “prior” on θ. First, we explore
treating p(k) as a prior in the Bayesian sense, using it to express prior knowledge about label counts;
later we will explore learning p(k) using separate parameters from θ. A consequence of these
decisions is that the distribution does not factorize. At this point, we have not made it clear that
these models can be learned efficiently, but we will show in the next section that this is indeed the
case.

2.1 Maximum Likelihood Learning
Our goal in learning is to select parameters so as to maximize the probability assigned to observed
data by the model. For notational simplicity in this section, we compute partial derivatives with
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respect to θ, then it should be clear that these can be back-propagated to a model of θ(x;W). We
note that if this relationship is linear, and the objective is convex in terms of θ, then it will also be
convex in terms of W. The log-likelihood is as follows:

log p(y;θ) = log

D∑
k=0

p(k)p(y | k;θ) = log p(y |
∑
d

yd;θ) + κ (3)

=
∑
d

θdyd − logZ∑
d yd

(θ) + κ, (4)

where κ is a constant that is independent of θ. As is standard, if we are given multiple sets of
binary variables, {yn}Nn=1, we maximize the sum of log probabilities

∑
n log p(yn;θ). The partial

derivatives take a standard log-sum-exp form, requiring expectations Ep(yd|k=
∑
d′ yd′ )

[yd].

A naive computation of this expectation would require summing over
(

D
k=

∑
d yd

)
configurations.

However, there are more efficient alternatives: the dynamic programming algorithms developed
in the context of Poisson-Binomial distributions are applicable, e.g., the algorithm from [3] runs
in O(Dk) time. The basic idea is to compute partial sums along a chain that lays out vari-
ables yd in sequence. An alternative formulation of the dynamic program [4] can be made to
yield an O(D log2D) algorithm by using a divide-and-conquer algorithm that employs Fast Fourier
Transforms (FFTs). These algorithms are quite general and can also be used to compute Zk values,
incorporate prior distributions over count values, and draw a sample of y values conditional upon
some k for the same computational cost [5]. We use the FFT tree algorithm from [5] throughout,
because it is most flexible and has best worst-case complexity.

2.2 Test-time Inference
Having learned a model, we would like to make test-time predictions. In Section 4.2, we will show
that optimal decision-theoretic predictions (i.e. that minimize expected loss) can be made in several
settings by a simple sorting procedure, and this will be our primary way of using the learned model.
However, here, we consider the task of producing a distribution over labels y, given θ(x). To draw
a joint sample of y values, we can begin by drawing k from p(k), then conditional on that k, use the
dynamic programming algorithm to draw a sample conditional on k.

To compute marginals, a simple strategy is to loop over each value of k and run dynamic program-
ming conditioned on k, and then average the results weighted by the respective prior. For priors that
only give support to a small number of k values, this is quite efficient. An alternative approach is
to draw several samples of k from p(k), then for each sampled value, run dynamic programming to
compute marginals. Averaging these marginals can then be seen as a Rao-Blackwellized estimate.
Finally, it is possible to compute exact marginals for arbitrary p(k) in a single run of anO(D log2D)
dynamic programming algorithm, but the simpler strategies were sufficient for our needs here, so
we do not pursue that direction further.

3 Ordinal n-Choose-k Model
An extension of the binary n-choose-k model can be developed in the case of ordinal data, where
we assume that labels y can take on one of R categorical labels, and where there is an inherent
ordering to labels R > R− 1 > . . . > 1. Let kr represent the number of variables y that take on
label r and define k = (kR, . . . , k1). The idea in the ordinal case is to define a joint model over
count variables k, then to reduce the conditional distribution of p(y | k) to be a series of binary
models. The generative model is defined as follows:

• Initialize all variables y to be unlabeled.
• Sample kR, . . . , k1 jointly from p(k).
• Repeat for r = R to 1:

– Choose a set cr of kr unlabeled variables y≤r and assign them label r. Choose subsets
with probability equal to the following:

p(y≤r,cr = 1,y≤r,c̄r = 0 | kr) =

{
exp{

∑
d∈cr θd}

Zr,k(θ,y≤r) if |cr| = kr

0 otherwise
, (5)
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where we use the notation y≤r to represent all variables that are given a label less than
or equal to r. Zr,k is similar to the normalization constantZk that appears in the binary
model, but it is restricted to sum over y≤r instead of the full y: Zr,kr (θ,y≤r) =∑
y≤r|(

∑
d 1{yd=r})=kr exp {θd · 1 {yd = r}}.

Note that if R = D and p(k) specifies that kr = 1 for all r, then this process defines a Plackett-
Luce (PL) [6, 7] ranking model. Consequently, one interpretation of this model is as a “group” PL
model, where instead of drawing individual elements in the generative process, groups of elements
are drawn simultaneously.

3.1 Maximum Likelihood Learning
Let kr =

∑
d 1 {yd = r}. The log likelihood of parameters θ can be written as follows:

log
∑
k∈K

p(k)p(y | k;θ) =

R∑
r=1

 ∑
d:yd=r

θd − logZr,kr (θ,y≤r)

 . (6)

Here, we see that learning decomposes into the sum of R objectives that are of the same form as
arise in the binary n-choose-k model. As before, the only non-trivial part of the gradient compu-
tation comes from the log-sum-exp term, but the required expectations that arise can be efficiently
computed using dynamic programming. In this case, R− 1 calls are required.

3.2 Test-time Inference
The test-time inference procedure in the ordinal model is similar to the binary case. Brute force enu-
meration over k becomes exponentially more expensive as R grows, but for some priors where p(k)
has sparse support, this may be feasible. To draw samples of y, the main requirement the ability to
draw a joint sample of k from p(k). In the case that p(k) is a simple distribution such as a multino-
mial, this can be done easily. It is also possible to efficiently draw a joint sample if the distribution
over k takes the form p(k) = 1 {

∑
r kr = D} ·

∏
r p(kr). That is, there is an arbitrary but inde-

pendent prior over each kr value, along with a single constraint that the chosen kr values sum to
exactly D. Given a sample of k, it is straightforward to sample y using R calls to dynamic pro-
gramming. To do so, begin by using the binary algorithm to sample kR variables to take on value R.
Then remove the chosen variables from the set of possible variables, and sample kR−1 variables to
take on value R− 1. Repeat until all variables have been assigned a value.

An alternative to producing marginal probabilities at test time is trying to optimize performance un-
der a task-specific evaluation measure. The main motivation for the ordinal model was the learning
to rank problem [8], so our main interest is in methods that do well under such task-specific evalua-
tion measures that arise in the ranking task. In Section 4.2, we show that we can make exact optimal
decision theoretic test-time predictions under the learning to rank loss functions without the need
for sampling.

4 Incorporating Loss
4.1 Training to Maximize Expected Top-K Classification Gain
One of the motivating applications for this model is the Top-K Classification (TKC) task. We for-
mulate this task using a gain function, parameterized by a value K and a “scoring vector” t, which
is assumed to be of the same dimension as y. The gain function stipulates that K elements of y are
chosen, (assigning a score of zero if some other number is chosen), and assigns reward for choosing
each element of y based on t. Specifically the gain function is defined as follows:

GK(y, t) =

{ ∑
d ydtd if

∑
d yd = K

0 otherwise . (7)

The same gain can be used for Precision@K, in which case the number of nonzero values in t is
unrestricted. Here, we focus on the case where t is binary with a single nonzero entry at index d∗.

An interesting issue is what loss function should be used to train a model when the test-time evalu-
ation metric is TKC, or Precision@K. Maximum likelihood training of TKC in this case of a single
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target class could correspond to a version of our n-choose-k model in which p(k) is a spike at k = 1;
note that in this case the n-choose-k model is equivalent to a softmax over the output classes. An
alternative is to train using the same gain function used at test-time.

Here, we consider incorporating the TKC gain at training time for binary t with one nonzero entry,
training the model to maximize expected gain. Specifically, the objective is the following:

Ep[GK(y, t)] =
∑
k

∑
y

p(k)p(y | k)1

{∑
d

yd = K

}∑
d

ydtd =
∑
y

p(K)p(y | K)yd∗ (8)

It becomes clear that this objective is equivalent to the marginal probability of yd∗ under a prior
distribution that places all its mass on k = K. In the experiments, we empirically investigate
training under expected gain versus training under maximum likelihood empirically in Section 5.3.

4.2 Optimal Decision-theoretic Predictions for Monotonic Loss Functions
We now turn attention to loss functions defined on rankings of items. Letting π be a permutation,
we define a “monotonic” gain function as follows:

Definition 1. A gain function G(π, r) is a monotonic ranking gain if:

• It can be expressed as
∑D
d=1 αdf(rπd), where αd is a weighting (or discount) term, and

πd is the index of the item ranked in position d,

• αd ≥ αd+1 ≥ 0 for all d, and

• f(r) ≥ f(r − 1) ≥ 0 for all r ≥ r′.

It is straightforward to see that popular learning to rank scoring functions like NDCG
and Precision@K are monotonic ranking gains. NDCG(π, r) ∝

∑
d

2
rπd−1

log2(1+d) , so set
αd = κ · 1

log2(1+d) and f(r) = 2r − 1. We define Precision@K gain to be the fraction of docu-
ments in the top K produced ranks that have label R: P@K(π, r) =

∑
d 1 {d ≤ K}1 {rπd = R},

so set αd = 1 {d ≤ K} and f(r) = 1 {r = R}.
The expected gain under a monotonic ranking gain and ordinal n-choose-k model is

Ep [G(π)] =
∑
y′∈Y

p(y′)

D∑
d=1

αdf(y′πd) =

D∑
d=1

αd

R∑
y′πd

=1

f(y′πd)p(yπd = y′πd) =

D∑
d=1

αdgπd , (9)

where we have defined gd =
∑R
r=1 f(r)p(yd = r).

We now state four propositions and a lemma. The proofs of the propositions mostly result from
algebraic manipulation, so we leave their proof to the supplementary materials. The main theorem
will be proved afterwards.

Proposition 1. If θi ≥ θj , then p(yi = R) ≥ p(yj = R).

Proposition 2. If θi ≥ θj and p(yi ≥ r) ≥ p(yj ≥ r), then p(yi ≥ r − 1) ≥ p(yj ≥ r − 1).

Lemma 1. If θi ≥ θj , then for all r, p(yi ≥ r) ≥ p(yj ≥ r).

Proof. By induction. Proposition 1 is the base case, and Proposition 2 is the inductive step.

Proposition 3. If θi ≥ θj and f is defined as in Definition 1, then gi ≥ gj .
Proposition 4. Consider two pairs of non-negative real numbers ai, aj and bi, bj where ai ≥ aj
and bi ≥ bj . It follows that aibi + ajbj ≥ aibj + ajbi.

Theorem 1. Under an ordinal n-choose-k model, the optimal decision theoretic predictions for a
monotonic ranking gain are made by sorting θ values.

Proof. Without loss of generality, assume that we are given a vector α corresponding to placing the
α’s in descending order and a vector gπ where π is some arbitrary ordering of the g’s. The goal now
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Figure 1: Four example images from the embedded MNIST dataset test set, along with the Poisson-
Binomial distribution produced by logistic regression for each image. The area marked in red has
zero probability under the data distribution, but the logistic regression model is not flexible enough
to model it.

is to find the ordering π∗ that maximizes the objective given in (9) which is equivalently expressed
as the inner product αTgπ .

Assume that we are given an ordering π̂ where for at least one pair i, j where i > j, we have
that θπ̂i < θπ̂j . Furthermore, assume that this ordering is optimal. That is, π̂ = π∗. By Proposi-
tion 3 we have that gπ̂i < gπ̂j . The contributions of these elements to the overall objective is given
by αigπ̂i + αjgπ̂j . By Proposition 4 we improve the objective by swapping θπ̂i and θπ̂j contradict-
ing the assumption that π̂ is a local optimum.

If we have multiple elements that are not in sorted order, then we can repeat this argument by
considering pairs of elements until the whole vector is sorted.

5 Experiments
5.1 Modeling Varying Numbers of Objects
Our first experiment explores an issue that arises frequently in computer vision, where there are
an unknown number of objects in an image, but the number is highly structured. We developed a
multiple image dataset that simulates this scenario.1 To generate an image, we uniformly sampled
a count between 1 and 4, and then take that number of digit instances (with at most one instance
per digit class) from the MNIST dataset and embed them in a 60× 60 image. The x, y locations
are chosen from a 4× 4 uniformly spaced grid and and then a small amount of jitter is added. We
generate 10,000 images each for the training, test, and validation sets. The goal, then, is to predict
the set of digits that appear in a given image. Examples can be seen in Fig. 1.

We train a binary n-choose-k model on this dataset. The inputs to the model are features learned
from the images by a standard Restricted Boltzmann Machine with 1000 hidden units. As a base-
line, we trained a logistic regression classifier on the features and achieved a test-set negative log-
likelihood (NLL) of 2.84. Ideally, this model should learn that there are never more than 4 digits
in any image. In Figure 1, we show four test images, and the Poisson-Binomial distribution over
counts that arises from the logistic regression model. Marked in red are regions where there is zero
probability of the count value in the data distribution. Here it is clear that the implicit count prior
in LR is not powerful enough to model this data. As a comparison, we trained a binary n-choose-
k model where we explicitly parameterize and learn an input-dependent prior. The prior parameters
corresponding to counts greater than 4 become extremely negative, suggesting that this model does
learn the correct distribution. Indeed, it achieves an NLL of 1.95. We show a visualization of the
learned likelihood and prior parameters in the supplementary material.

5.2 Ranking
A second set of experiments consider learning-to-rank applications of the n-choose-k model. We
report on comparisons to other ranking approaches, using seven datasets associated with the LETOR
3.0 benchmark [8]. Following the standard LETOR procedures, we trained over five folds, each with
distinct training, validation, and testing splits.

For each dataset, we train an ordinal n-choose-k model to maximize the likelihood of the data, where
each training example consists of a number of items, each assigned a particular relevance level; the
number of levels ranges from 2-4 across the datasets. At test time, we produce a ranking, which as
shown in Section 4.2 is the optimal decision theoretic prediction under a ranking gain function, by

1http://www.cs.toronto.edu/˜kswersky/data/
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Figure 2: Ranking results on two datasets from LETOR 3.0. Results for the other 5 datasets, along
with Precision@K results, appear in the supplementary material.

simply sorting the items for each test query based on their θ score values. Note that this is a very
simple ranking model, in that the score assigned to each test item by the model is a linear function of
the input features, and the only hyperparameter to tune on the validation set is an `2 regularization
strength.

Results for two of the data sets are shown in Figure 2 (first is our best relative performance, second is
typical); the full set of results are in the supplementary material. Several publicly available baselines
are shown for comparison. As can be seen in the graphs, our approach is competitive with the state-
of-the-art on all data sets, and substantially outperforms all baselines on the TD 2003 dataset.

5.3 Top K Classification

Our third and final set of experiments concern Top-K Classification, an important task that has gained
considerable attention recently in the ImageNet Challenge.2 Here we consider a task analogous to
that in the ImageNet Challenge, in which each image contains a single object label, but a model is
allowed to return up to K class predictions per image, and a classification is deemed correct if the
appropriate class is one of the K returned classes.

We train binary n-choose-k models, experimenting with different training protocols that directly
maximize expected gain under the model, as described in Section 4.1. That is, we train on the
expected Top-K loss for different values of K. Note that Top-1 is equivalent to softmax regression.
For each model/test combination, we find the `2 penalty that gives the lowest validation error and
report the corresponding test results. For comparison, we also include logistic regression, where
each output is conditionally independent. We experimented on the embedded MNIST dataset where
all but one label from each example was randomly removed, and on the Caltech-101 Silhouettes
dataset [9], which consists of images of binarized silhouettes from 101 different categories. In both
datasets we trained the models using the pixels as inputs. We noticed that the optimal `2 strength
chosen by each method was quite high, suggesting that overfitting is an issue in these datasets. When
the `2 strength is low, the difference between the objectives becomes more apparent. On Caltech
it is clear that training for the expected loss improves the corresponding test error in this regime.
On the embedded MNIST dataset, when the `2 strength is low there is a surprising result that the
top-3 and top-5 criteria outperform top-1, even when top-1 is used as the evaluation measure. Since
there are several digits actually present in the ground truth, there is no real signal in the data that
differentiates the digit labeled as the target from the other equally valid ”distractor” digits. In order to
satisfy the top 1 objective for the given target, the learning algorithm is forced to find some arbitrary
criterion by which to cause the given target to be preferred over the distractors, which is harmful for
generalization purposes. This scenario does occur in datasets like ImageNet when multiple objects
are present in a single image. It would be interesting to see how these training criteria perform on
more challenging, large scale datasets, but we leave this for future work.

2http://www.image-net.org/challenges/LSVRC/2011/
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Model Top 1 / Top 3 / Top 5
LR 0.394 / 0.215 / 0.188

Top 1 0.379 / 0.204 / 0.169
Top 3 0.386 / 0.208 / 0.166
Top 5 0.398 / 0.213 / 0.166

(a) Caltech Sil. strong `2

Top 1 / Top 3 / Top 5
0.455 / 0.284 / 0.234
0.426 / 0.245 / 0.196
0.442 / 0.229 / 0.187
0.477 / 0.233 / 0.177

(b) Caltech Sil. weak `2

Top 1 / Top 3 / Top 5
0.654 / 0.353 / 0.185
0.647 / 0.341 / 0.180
0.647 / 0.329 / 0.166
0.670 / 0.341 / 0.176

(c) EMNIST strong `2

Top 1 / Top 3 / Top 5
0.737 / 0.443 / 0.258
0.732 / 0.431 / 0.243
0.682 / 0.363 / 0.185
0.687 / 0.358 / 0.178

(d) EMNIST weak `2

Table 1: Top-K classification results when various models are trained using an expected top-K loss
and then tested using some possibly different top-K criterion. (a) and (c) show the test error when a
strong `2 regularizer is used, while (b) and (d) use a relatively weaker regularizer. Logistic regression
is included for comparison.

6 Related Work
Our work here is related to many different areas; we cannot hope to survey all related work in multi-
label classification and ranking. Instead, we focus on work related to the main novelty in this paper,
the explicit modeling of structure on label counts. That is, given that we have prior knowledge of
label count structure, or are modeling a domain that exhibits such structure, how can the structure
be leveraged to improve a model.

The first and most direct approach is the one that we take here: explicitly model the count structure
within the model. There are other alternative approaches that are similar in this respect. The work
of [10] considers MAP inference in the context of cardinality-based models and develops applica-
tions to named entity recognition tasks. Similarly, [11] develops an example application where a
cardinality-based term constrains the number of pixels that take on the label “foreground” in a fore-
ground/background image segmentation task. [12] develops models that include a penalty in the
energy function for using more labels, which can be seen as a restricted form of structure over label
cardinalities. Also related is work that uses Poisson-Binomial distributions such as [2], although the
focus in these is generally on computing quantities related to a particular distribution over counts,
rather than adapting the distribution over counts to structure we wish to model. However, we note
that much of our algorithmic toolbox comes from that line of work, which dates back to [3].

An alternative way of incorporating structure over counts into a model is via the loss function. The
work of Joachims [13] can be seen in this light – the training objective is formulated so as to optimize
performance on evaluation measures that include Precision@K. A different approach to including
count information in the loss function comes from [14], which trains an image segmentation model
so as match count statistics present in the ground truth data. Finally, there are other approaches that
do not neatly fall into either category, such as the posterior regularization framework of [15] and
related works such as [16]. There, structure, including structure that encodes prior knowledge about
counts, such as there being at least one verb in most sentences, is added as a regularization term that
is used both during learning and during inference.

Overall, the main difference between our work and these others is that we work in a proper proba-
bilistic framework, either maximizing likelihood, minimizing expected loss, and/or making proper
decision-theoretic predictions at test time. Importantly, there is no significant penalty for assuming
the proper probabilistic approach: learning is exact, and test-time prediction is efficient.

7 Discussion
We have presented a flexible probabilistic model for multiple output variables that explicitly models
structure in the number of variables taking on specific values. The model is simple, efficient, easy to
learn due to its convex objective, and widely applicable. Our theoretical contribution provides a link
between this type of ordinal model and ranking problems, bridging the gap between the two tasks,
and allowing the same model to be effective for several quite different problems. Finally, there are
many extensions. More powerful models of θ can be put into the formulation, and gradients can
easily be back-propagated. Also, while we chose to take a maximum likelihood approach in this
paper, the model is well suited to fully Bayesian inference using e.g. slice sampling. The unimodal
posterior distribution should lead to good behavior of the sampler. Beyond these extensions, we
believe the framework here to be a valuable modeling building block that has broad application to
problems in machine learning.
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Supplementary material for Probabilistics n-Choose-k Models for
Classification and Ranking

Proofs

We introduce shorthand notation #r(yc) =
∑
d∈c 1 {yd = r} and #≤r(yc) =

∑
d∈c 1 {yd ≤ r}

to represent the number of variables in yc that take on value r or value less than or equal to r. We
will also use the notation y−i and yc−i as shorthand for all variables except for i, and all variables
with indices in c except for i, respectively.

Proof of Proposition 1

In order for a variable to be given valueR, it must be chosen in the first step of the generative process
that assigns values to variables. For kR = 0, the statement holds with equality (both are 0). For
kR > 0, we have,

p(yi = R | kR) ∝
∑

y|(yi=R)∧(#R(y−i)=kR−1)

exp

θi +
∑
d 6=i

θd1 {yd = R}

 (10)

p(yj = R | kR) ∝
∑

y|(yj=R)∧(#R(y−j)=kR−1)

exp

θj +
∑
d 6=j

θd1 {yd = R}

 . (11)

The idea is to split these sums into a common component and a disjoint component e.g.

p(yi = R | kR) ∝
∑

y|(yi=R∧yj=R)∧(#R(y−i)=kR−1)

exp

θi + θj +
∑
d6=i,j

θd1 {yd = R}

 (12)

+
∑

y|(yi=R∧yj 6=R)∧(#R(y−i)=kR−1)

exp

θi +
∑
d6=i,j

θd1 {yd = R}

 (13)

Both p(yi = R) and p(yj = R) will share the first term, so it suffices to compare second terms,
which are disjoint. Here, we can see the summations are identical, except that one will have a sum
involving θi, and the other will have a sum involving θj , so clearly the claim holds for any kR. The
full probability p(yi = R) is a sum

∑
kR
p(yi = R | kR), so given that the relation holds for each

component in the sum, it also holds for the full sum.

Proof of Proposition 2

We begin by dividing event space into a 3 × 3 matrix of possibilities: {yi ≥ r, yi = r − 1, yi <
r − 1} × {yj ≥ r, yj = r − 1, yj < r − 1}. The inductive assumption tells us that the sum
of probabilities across the first “row”, p(yi ≥ r) = p(yi ≥ r ∧ yj ≥ r) + p(yi ≥ r ∧ yj =
r − 1) + p(yi ≥ r ∧ yj < r − 1) is greater than or equal to the sum of probabilities across the first
“column”, p(yj ≥ r) = p(yj ≥ r ∧ yi ≥ r) + p(yj ≥ r ∧ yi = r − 1) + p(yj ≥ r ∧ yi < r − 1).
Our goal is to prove that the sum of probabilities across the first two rows is greater than or equal
to the sum of probabilities across the first two columns. The central element of this matrix, which
corresponds to yi = r − 1 ∧ yj = r − 1 is included in both sums, so it suffices to show that
p(yi = r ∧ yj < r) ≥ p(yj = r ∧ yi < r).

As before, we begin by showing that this holds for any particular choice of k, which then implies
that it holds for the summation over all possible k. Similarly, we can assume that we are given an
arbitrary choice of subset c≥r of y−i,−j to take on labels ≥ r. The desired property will hold for all
choices, so when we sum over all the choices, it will also still hold.
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Given k and yc≥r , the argument follows similarly to Proposition 1. The probability of choosing yi
to be in level r is

p(yi = r − 1 ∧ yj < r − 1) ∝
∑

y|(yi=r−1∧yj 6=r−1)∧(#r−1(yc̄≥r
)=kr−1−1)

exp

θi +
∑

d∈c̄≥r,d6=i,d6=j

θd1 {yd = r}

 . (14)

The expression for p(yi = r − 1 ∧ yj < r − 1) will be identical, but θi will be replaced with θj .
Using the assumption that θi > θj completes the proof.

Proof of Proposition 3

We can rewrite gd by regrouping the summation (assuming we have defined f(0) = 0):

gd =

R∑
r=1

f(r)p(yd = r) =

R∑
r=1

(f(r)− f(r − 1))p(yd ≤ r). (15)

We then consider the difference between gi and gj :

gi − gj =

R∑
r=1

(f(r)− f(r − 1))(p(yi ≤ r)− p(yi ≤ r)). (16)

Due to the monotonicity of f , each f(r) − f(r − 1) term will be non-negative. By Lemma 1, the
p(yi ≤ r)− p(yi ≤ r) terms are also all non-negative, so the total sum is non-negative, and we get
gi − gj ≥ 0.

Proof of Proposition 4

ai(bi − bj) + aj(bj − bi) ≥ ai(bi − bj) + ai(bj − bi) = 0

⇔aibi − aibj + ajbj − ajbi ≥ 0

⇔aibi + ajbj ≥ aibj + ajbi
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Visualization of the learned parameters from embedded MNIST

Figure 3 shows a visualization of the parameters learned by the binary n-choose-k model on the
embedded MNIST dataset. The likelihood parameters form a 1000× 10 matrix, where each column
corresponds to a different class. We take these and multiply them by the 3600× 1000 RBM weights
that generated the features in order to project them to pixel-space. We then reshape each column to
form a 60 × 60 image. The same can be done for the prior parameters, except now the 10 columns
correspond to counts instead of classes.

For the likelihood parameters, we show the first 4 classes corresponding to the digits 0 to 3. Clearly
the parameters recognize the 4 × 4 grid in which the digits were embedded (before adding a slight
jitter). For the count parameters, we also visualize the first 4 corresponding to the counts 1 to 4. Note
that the count parameters became extremely strongly negative after 4, suggesting that the model
correctly learned that there can be at most 4 digits embedded in an image. In logistic regression,
likelihood parameters look similar to the ones shown, however note that they must also be used to
simultaneously model the prior over counts.

(a) Likelihood parameters

(b) Prior parameters

Figure 3: A visualization of the parameters learned by the binary n-choose-k model on the embed-
ded MNIST dataset. (a) corresponds to the parameters connecting the inputs to the first 4 classes (out
of 10), while (b) corresponds to the input-dependent prior over counts. (also out of 10). White pixels
correspond to large, positive parameters while black pixels correspond to large, negative parameters.
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More LETOR Results
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Figure 4: NDCG and Precision for the Ordinal n-Choose-k Model and other benchmark methods
on the LETOR 3 datasets.
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Figure 4: NDCG and Precision for the Ordinal n-Choose-k Model and other benchmark methods
on the LETOR 3 datasets.
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Figure 5: NDCG and Precision for the Ordinal n-Choose-k Model and other benchmark methods
on the LETOR 3 datasets.
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