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Abstract

Shape design problems are important in engineering, e.g ., trajectory planning for robot

arms, material distribution optimization, etc. However, existing works usually solve

these tasks without the help of gradients, whose efficiency can be limited. We formalize

design problems as constrained optimization tasks and propose to use gradient-based

optimizers with automatic differentiation to solve them. Specifically, we use the

adjoint method when the underlying physical process can be characterized by PDEs.

In Chapter 2, we solve for extruder paths of 3D printing that can compensate for the

deformation caused by the fiber printing process. As the printing process is complex

and difficult to model, we create a synthetic dataset and fit it using a neural network

to get a differentiable surrogate of the printing simulator. We further speed up the

optimization process by using a neural network to amortize it, sacrificing a bit of

accuracy but getting much faster, real-time inferences. In Chapter 3, we study the

task of fiber path planning, figuring out where to lay reinforcing fibers in plastic

for 3D printing, maximizing the stiffness of the composite. We build a simulator by

solving the linear elastic equations and use the adjoint method for gradient calculation

and BFGS for fiber path optimization. In Chapter 4, we investigate the problem of

dovetail joint shape optimization for stiffness. To model the contact between two

parts of a joint, we build a simulator by alternatively solving one side of the joint

while fixing the other side. We use the adjoint method for gradient computation and

gradient descent for optimization. All methods across the projects are tested both in

simulation and real-world experiments, showing our approach produces high-quality

designs, and also the amortized approach provides real-time inference while achieving

a comparable design quality.
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Chapter 1

Introduction

Manufacturing is a significant part of the secondary sector of the economy, and it is

related to a great variety of industries, including aerospace, automobile, furniture,

etc. Design is one of the most important parts of manufacturing —e.g ., distributing

material properly to reduce material usage while achieving the required strength. In

this dissertation, we formalize design tasks as a type of optimization problem. Design

refers to the parameters that we have control over and what we are optimizing. Given

the design parameters, a known or unknown underlying physical process happens,

which produces a resulting physical realization. A design goal is given, which describes

desired properties of the physical realization. An objective function is then evaluated

using the design parameters, the physical realization, and the design goal, and we

would like to minimize the value of this function.

Existing research works solve design problems mostly using three types of ap-

proaches: optimization (e.g ., evolutionary algorithms (EA), constrained optimization

algorithms), sampling (e.g ., simulated annealing (SA)), and search (e.g ., A* search).

However, most existing works do not calculate and use the gradient of the objective

function, which is essential for gradient-based optimizers. With the development

of automatic differentiation, gradient calculation has become much easier and more
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efficient. We, therefore, propose to solve design problems using automatic differenti-

ation and gradient-based optimizers (e.g ., gradient descent, BFGS). If the physical

realization process can be characterized as PDEs, we use the adjoint method for

gradient calculation; otherwise, we can generate synthetic datasets and fit them using

neural networks, which provides us with a differentiable surrogate of the simulator. In

this dissertation, three design problems related to “shape” are studied: 3D printer

extruder path planning, 3D printer fiber path planning, and dovetail joint shape

optimization.

3D printing is powerful in rapid prototyping, aerospace, etc. To increase the

strength of polymers, adding continuous fibers is a popular option. However, fibers

are stiff, which deform during the printing process and results in fiber paths that are

different from the extruder paths. In Chapter 2, we study extruder path planning,

aiming at finding an extruder path that can compensate for the deformation caused

by the printing process for any desired fiber path, and Chapter 2 is based on a joint

work [Sun et al., 2021] with Tianju Xue, Szymon Rusinkiewicz, and Ryan P. Adams.

As the printing process is complex and difficult to be modeled directly, we create a

simulator of the fiber printing process and use it to generate a synthetic dataset. We

build a differentiable surrogate of the simulator by fitting a neural network to the

dataset. To further speed up the optimization process, we propose to train an “encoder”

(consider the surrogate as a decoder) that directly produces a design from the goal,

which amortizes the optimization process. We test the amortized approach as well as

the optimization approach both synthetically and in real tests, demonstrating that the

optimization approach can produce extruder paths that result in high-quality fiber

paths, and the amortized approach generates extruder paths of comparable qualities

and is much faster, providing real-time inferences.

Another task in continuous fiber 3D printing is fiber path planning, i.e., given a

shape and some external loads, figuring out where to lay fibers, and we study this
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task in Chapter 3. Chapter 3 is based on a joint work [Sun et al., 2022] with Geoffrey

Roeder, Tianju Xue, Ryan P. Adams, and Szymon Rusinkiewicz. Given a shape, loads,

and a fiber layout, we create a simulator by solving the linear elastic equations, and

the task becomes a PDE-constrained optimization task. We use the adjoint method

and automatic differentiation to compute gradients and optimize fiber paths using the

BFGS optimizer. We test our algorithm as well as commercial software, Eiger, both

in simulation and in real experiments, which proves our method provides fiber paths

that are shorter and the corresponding composites are stiffer.

In manufacturing, objects are manufactured in several parts for reasons including

machine size limit, easier to transport, etc. Joints are commonly used structures to

connect parts, and the dovetail joint is one of them. In Chapter 4, we study the task

of dovetail joint shape optimization, and Chapter 4 is based on a joint work with

Chenyue Cai, Ryan P. Adams, and Szymon Rusinkiewicz. To effectively apply our

approach, we cannot simply use existing simulators for contact simulation as they

are usually not differentiable. We thus build our own simulator by using the penalty

approach, i.e., solve one side of the joint while considering the other side as rigid. We

alternatively solve on the two sides for the solution to converge. Similarly, we test

our approach both synthetically and in real experiments, proving the optimized joint

shape from our algorithm is stiffer.

In summary, this dissertation studies the use of automatic differentiation and the

adjoint method on shape design tasks, solving them using gradient-based optimizers,

as well as an extension that amortizes the optimization process that sacrifices a bit

of accuracy but provides much faster real-time inferences. All methods are tested in

both simulation and real-world experiments.
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Chapter 2

Amortized Synthesis of Constrained

Configurations Using a

Differentiable Surrogate

In design, fabrication, and control problems, we are often faced with the task of

synthesis, in which we must generate an object or configuration that satisfies a set of

constraints while maximizing one or more objective functions. The synthesis problem

is typically characterized by a physical process in which many different realizations may

achieve the goal. This many-to-one map presents challenges to the supervised learning

of feed-forward synthesis, as the set of viable designs may have a complex structure. In

addition, the non-differentiable nature of many physical simulations prevents efficient

direct optimization. We address both of these problems with a two-stage neural

network architecture that we may consider to be an autoencoder. We first learn

the decoder: a differentiable surrogate that approximates the many-to-one physical

realization process. We then learn the encoder, which maps from goal to design,

while using the fixed decoder to evaluate the quality of the realization. We evaluate

the approach on two case studies: extruder path planning in additive manufacturing
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Figure 2.1: (a) For a fixed and large-enough starting speed, there exist exactly two angles
such that the ball will hit the target, where the mean of these two angles is π/4. (b) Some
3D printers utilize fibers to reinforce the thermoplastic print. (c) For such printers, fiber
is laid out along an extruder path but deforms into a smoothed version due to the fiber’s
high stiffness and low stretch. Our goal is to generate extruder paths that compensate for
the smoothing, but multiple extruder paths can result in the same target shape, such as a
square. (d) In soft robot inverse kinematics, we control the stretch ratios of both the left-
and right-hand sides of a snake-like robot. Our goal is to reach the target while avoiding an
obstacle but, as is illustrated, the solution is not unique – two different designs are shown.

and constrained soft robot inverse kinematics. We compare our approach to direct

optimization of the design using the learned surrogate, and to supervised learning of

the synthesis problem. We find that our approach produces higher quality solutions

than supervised learning, while being competitive in quality with direct optimization,

at a greatly reduced computational cost.

2.1 Introduction

One of the ambitions of artificial intelligence is to automate problems in design,

fabrication, and control that demand efficient and accurate interfaces between machine

learning algorithms and physical systems. Whether it is optimizing the topology of a

mechanical structure or identifying the feasible paths for a manufacturing robot, we

can often view these problems through the lens of synthesis. In a synthesis task, we

seek configurations of a physical system that achieve certain desiderata while satisfying

given constraints; i.e., we must optimize a physically-realizable design.
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In this work, design refers to the parametric space over which we have control and

in which, e.g., we optimize. A realization is the object that arises when the design is

instantiated, while goal refers to its desired properties. For example, in fabrication,

the design might be a set of assembly steps, the realization would be the resulting

object, while the goal could be to match target dimensions while maximizing strength.

Synthesis, then, refers to finding a design whose realization achieves the goal.

Synthesis problems are challenging for several reasons. The physical realization

process may be costly and time-consuming, making evaluation of many designs

difficult. Moreover, the realization process—or even a simulation of it—is generally

not differentiable, rendering efficient gradient-based methods inapplicable. Finally,

there may be a many-to-one map from the parametric space of feasible and equally-

desirable designs to realizations; i.e., there may be multiple ways to achieve the

goal.

Surrogate modeling is widely used to address the first two challenges, though it can

still be expensive because of the need for optimization, sampling, or search algorithms

to find a feasible design. More seriously, the third challenge—lack of uniqueness—

creates difficulties for näıve supervised learning approaches to synthesis. Specifically,

consider generating many design/realization pairs, evaluating the constraints and

objectives on the realizations, and attempting to learn a supervised map from goal

back to design. When multiple designs lead to the same realization, or multiple

realizations achieve the same goal, the supervised learner is penalized for producing

designs that are valid but happen to not be the ones used to generate the data.

Moreover, this approach may learn to produce an “average” design that is actually

incorrect. Figure 2.1a shows a cartoon example: if the goal is to throw a ball to

reach some target distance, there are two possible launch angles (designs) resulting in

landing points (realizations) at the correct spot. Performing least-squares regression
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from distance to angle on the full set of distance/angle pairs, however, learns an

average angle that does not satisfy the goal.

To address these challenges, we propose to use a two-stage neural network architec-

ture that resembles an autoencoder. One stage (the decoder) acts as a differentiable

surrogate capturing the many-to-one physical realization process. The other stage

(the encoder) maps from a goal back to a design but, critically, it is trained end-to-end

with a loss in the space of realizations that flows back through the decoder. Thus the

encoder—our central object of interest for synthesis—is not constrained to match a

specific design in a training dataset, but instead is tasked with finding any design

that meets the desiderata of the realized output. The result is a neural network that

performs amortized synthesis: it is trained once, and at run time produces a design

that is approximately optimal, using only a feed-forward architecture. Note that our

method is not an autoencoder, as the design is not a lower-dimensional representation

of the goal, and the encoder and the decoder are trained in separate stages.

Our method places a number of requirements on the synthesis problem. First,

to train the surrogate, we need data pairs of designs and realizations. Commonly,

this would require us to generate designs, in which a substantial amount of designs

are viable, and simulate them on a simulator. Second, given our current setting, the

physical realization process needs to be deterministic. Third, to train the encoder, the

synthesis problem should have a clear objective function, or at least we can quantify

the objective. Finally, given our current feed-forward setting, we consider synthesis

problems that need only one valid design, although we may further extend our method

by using a generative encoder.

In this work, we demonstrate this two-stage approach on a pair of specific design

tasks. The first case study is extruder path planning for a class of 3D printers

(the Markforged Mark Two) that can reinforce polymer layers with discrete fibers

(Figure 2.1b). Since the fibers are stiff, their shape is deformed after extrusion
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(Figure 2.1c, top row), and our task is to find an extruder path that results in

a given fiber shape. As shown in Figure 2.1c, this problem has the many-to-one

nature described above: for a small error tolerance on fiber path, there exist infinitely

many extruder paths, which may even look very different. The second case study

is constrained soft robot inverse kinematics. In this work, we use a simulation of a

snake-like soft robot as in Xue et al. [2020a], in which we can control the stretch ratios

of each individual segment on both sides of the robot. The robot has to reach a target

while avoiding an obstacle, and the locations of both are input goals. As before, there

may be multiple solutions for a given goal (i.e., locations of target and obstacle), as

shown in Figure 2.1d.

For both case studies, we compare to two baseline algorithms. In direct-learning,

a neural network for the synthesis problem (i.e., from goal to design) is trained in

a supervised manner on a set of designs. Since this effectively averages designs in

the training dataset, as argued above, our method outperforms it significantly. The

second baseline is direct-optimization, which uses a gradient-based method (BFGS)

to optimize for each new design separately, given access to the trained differentiable

surrogate for the realization process (decoder). Our method is competitive with this

rough “performance upper bound” while using dramatically lower computational

resources.

2.2 Related work

Machine learning applications in synthesis problems. In synthesis tasks, the

aim is to find a design solution such that its realization achieves one or more given

goals. Usually, the solution is non-unique, and only one is needed. In molecule

discovery, one would like to find a molecule which has some desired properties (e.g .,

minimal side effects, efficacy, metabolic stability, growth inhibition) [Coley et al., 2018,
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Jin et al., 2020, Polykovskiy et al., 2018, Hawkins-Hooker et al., 2021, Stokes et al.,

2020]. See Vamathevan et al. [2019], Chen et al. [2018] for surveys on machine/deep

learning in drug discovery. Challenges of molecule discovery include discrete design

space [Gómez-Bombarelli et al., 2018, Seff et al., 2019] and limited data [Jin et al.,

2021] due to difficulty in simulation. In materials synthesis, researchers seek materials

with specific properties (e.g ., Xue et al. [2020c], Xue [2022]). See Bhuvaneswari et al.

[2021] for a review. Similarly, to obtain enough training data, researchers have put

efforts into parsing and learning from scientific literature in natural language [Kim

et al., 2017, Huo et al., 2019]. In 3D shape generation, one wants to find a 3D shape

that has some desired properties: properties like 2.5D sketches [Wu et al., 2017, Wang

et al., 2018] that can be easily calculated and properties like functionality [Guan

et al., 2020] that need to be human-labeled. In topology optimization, researchers

aim to maximize the system’s performance by optimizing the material layout given

boundary conditions, constraints, external loads, etc [Sigmund and Maute, 2013,

Bendsoe and Sigmund, 2013, Wang et al., 2003]. Machine learning has been used to

infer properties [Sasaki and Igarashi, 2019], find representations of designs [Kallioras

et al., 2020, Yu et al., 2018], and directly generate designs [Kollmann et al., 2020].

In program synthesis, the goal is to find programs that realize given intentions (e.g .,

generating 3D shapes, answering visual questions) [Gulwani, 2014, Tian et al., 2018,

Yi et al., 2018], where machine learning has been used to generate programs and

execute programs. In this work, we propose an approach to learn a feed-forward neural

network that can directly and efficiently produce a feasible solution to a synthesis

problem that satisfies the requirements mentioned above.

Surrogate/oracle-based synthesis. Surrogate/oracle-based synthesis uses an

auxiliary model—a surrogate (or sometimes called oracle)—that can evaluate qualities

of a design without time-consuming laboratory experiments, while still being reasonably
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accurate [Koziel et al., 2011, Brookes et al., 2019]. Surrogate models can be physics-

based or approximation-based [Koziel and Ogurtsov, 2014] (i.e., empirical), and

there are different modeling techniques for approximation-based surrogates [Koziel

et al., 2011, Han et al., 2012], including polynomial regression, radial basis functions,

Gaussian processes, and neural networks (e.g ., [Xue et al., 2020b, Beatson et al., 2020,

Xue et al., 2023]). Bhosekar and Ierapetritou [2018] provide a review of surrogate-based

methods, and see Koziel and Leifsson [2013] for a general review of surrogate models

in engineering. There are two major approaches: optimization and sampling. The

most common approach is surrogate-based optimization; see Forrester and Keane

[2009] for a survey. Some application examples include: optimizing the parameters

of a CPU simulator [Renda et al., 2020]; solving partial differential equations in

service of PDE-constrained optimization [Xue et al., 2020a]; and optimizing stochastic

non-differentiable simulators [Shirobokov et al., 2020]. Researchers have also developed

methods to deal with the challenge that inputs can be out-of-distribution for the

oracle [Fannjiang and Listgarten, 2020, Fu and Levine, 2020, Trabucco et al., 2021].

On the other hand, sampling-based methods have several advantages: the design space

can be discrete and can generate multiple designs [Brookes et al., 2019, Brookes and

Listgarten, 2018, Engel et al., 2018]. Researchers have successfully applied sampling

methods to problems in chemistry [Gómez-Bombarelli et al., 2018] and biology [Gupta

and Zou, 2019, Killoran et al., 2017, Rives et al., 2021]. In this work, we use surrogate-

based optimization as one of our baseline algorithms, and our proposed method uses

a surrogate during training to optimize for a feed-forward network for the design

problem.

Differentiable surrogate of losses in machine learning. Since some loss func-

tions in machine learning are not differentiable (e.g ., IoU for rotated bounding boxes,

0-1 loss in classification), researchers have proposed to learn surrogates for them.
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Grabocka et al. [2019] provided a formulation of surrogate loss learning and compared

several learning mechanisms on some commonly used non-differentiable loss functions.

Liu et al. [2020] proposed a general pipeline to learn surrogate losses. Bao et al. [2020],

Hanneke et al. [2019] provided theoretical analyses of surrogates for 0-1 loss in classifi-

cation. Patel et al. [2020], Nagendar et al. [2018], Yuan et al. [2020] explored the use

of surrogate losses in various real-world tasks, including medical image classification,

semantic segmentation, and text detection and recognition. In this work, due to the

non-uniqueness of design solutions, we further extend this idea from loss functions to

more complex, physical realization processes.

Robot motion planning. Robot motion planning [Latombe, 2012] can also be

viewed as a form of synthesis, and there are different types of approaches to it. One

popular strategy is optimization. For example, researchers have used evolutionary

algorithms (EA) [Leger and Bares, 1999, Cabrera et al., 2011, Hornby et al., 2001],

including variants of genetic algorithms (GA) [Chung et al., 1997, Chen and Burdick,

1995, Tabandeh et al., 2016, Cabrera et al., 2002, Khorshidi et al., 2011, Kim and

Khosla, 1993, Farritor et al., 1996] and covariance matrix adaptation evolution strategy

(CMA-ES) [Ha et al., 2016]. Another example is constrained optimization [Whitman

and Choset, 2018, Subramanian et al., 1995, Coros et al., 2013, Dogra et al., 2021],

which includes extensions like sequential quadratic programming (SQP) [Campos de

Almeida et al., 2020, Ha et al., 2016] and the DIRECT algorithm [Van Henten et al.,

2009]. Other examples of optimization applied to robot motion planning include

reinforcement learning [Singh et al., 1994, Everett et al., 2018, Wu et al., 2020,

2021, 2022] and teaching-learning-based optimization [Sleesongsom and Bureerat,

2017]. Another popular class of methods is sampling, including simulated annealing

(SA) [Baykal and Alterovitz, 2017, Patel and Sobh, 2015, Zhu et al., 2012], probabilistic

roadmaps (PRM) [Karaman and Frazzoli, 2011], rapidly exploring random trees
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(RRT) [Campos et al., 2019, Baykal and Alterovitz, 2017, Campos and Kress-Gazit,

2021], etc. Finally, search methods, e.g ., A* search [Ha et al., 2018], have been used

to solve motion planning problems. These works usually model the robot’s physics

directly without using a surrogate model and solve the design using methods including

optimization, sampling, and search, which can be time-consuming. Our method

amortizes the cost of inference, and can be used to solve planning problems with more

complex physics that cannot be directly modeled. In our first case study, we plan

for a trajectory of the extruder, and our design space is not the speeds of the motors

but rather the coordinates of points along the trajectory. In the second case study,

rather than solving a dynamic planning problem, we solve a static planning task on a

soft robot, with the stretch ratios of all the controllable segments of the robot as the

design space.

Path planning in 3D printing. Path planning is one of the most important

problems in 3D printing, and people plan for different objectives: minimizing printing

time, avoiding collision, faster planning, etc. Shembekar et al. [2018] proposed a

planning algorithm to build complex shapes with multiple curvatures and can avoid

collisions. Ganganath et al. [2016] minimized the printing time by modeling the

task as a traveling salesman problem. Xiao et al. [2020] speeded up path planning

algorithms by introducing efficient topology reconstruction algorithms. Stragiotti

[2020] provided an optimization-based algorithm that minimizes compliance of a

printed part. Asif [2018] introduced a planning algorithm for continuous fiber and

can generate a continuous deposition path. See Huang et al. [2020] for a review of

existing work in 3D printing path design. In this work, instead of the aforementioned

objectives, we plan an extruder path to compensate for the deformation caused by

the printing process. We demonstrate increased run-time efficiency by amortizing the
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cost of physical simulation of the printing process, learning a feed-forward network to

output the extruder path.

2.3 Method

We formalize synthesis as a constrained optimization problem, denoting the set of

allowed designs as Θ and the set of possible realizations as U . There is a physical

process that maps from design to realization that we denote as U : Θ → U . Our goal

may be a function of both the realization and the design, as designs may differ in,

e.g ., ease of manufacturing. Moreover, it may be appropriate to specify a parametric

family of goals to accommodate related tasks, e.g ., different target locations in inverse

kinematics. The user expresses a (g-indexed) family of design goals via a cost function

denoted Lg : Θ× U → R. The problem of interest is to optimize the cost function

with respect to the design:

min
θ∈Θ

Lg(θ,u) s.t. U(θ) = u . (2.1)

We can view this problem as a generalization of PDE-constrained optimization prob-

lems, where we have allowed for broader types of realizations than PDE solutions.

Revisiting the challenges of synthesis problems articulated earlier, U may be expensive,

non-differentiable, and non-injective, and Lg may not a have a unique minimum.

Recalling the toy problem of Figure 2.1a: θ is the angle at which the ball is

thrown, U(θ) = u is where it lands, the goal g is a desired distance, i.e., a target

realization, and a (design-independent) cost function might be the squared difference

between the desired and actual realizations: Lg(θ,u) = ||g − u||2.

Since the realization u = U(θ) is unique for a specific design θ, we propose using

a two-stage approach, which can be viewed as an autoencoder. We first learn a

differentiable surrogate (decoder) Û(·) for the physical realization process from θ to u,
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and then learn an encoder ϕ(·) from goal g to design θ, evaluating the design quality

with the trained decoder. To build a dataset, we have to randomly sample designs and

calculate realizations and goals from them, since the physical realization process U(·)

is known, and the reverse direction (i.e., goal to design) is difficult as discussed before

and is what we are trying to learn. Thus we first sample D designs θ1, · · · ,θD and

build our dataset as D :=
{
(θ1,u1, g1), · · · , (θD,uD, gD)

}
, where ui := U(θi) and gi

is the goal calculated from the realization ui. The calculation of the goal gi summarizes

properties that we care about in ui, and this process depends on the synthesis problem

itself and how the cost function L·(·, ·) is designed. We split D into Dtrain, Dval, and

Dtest. We then train our surrogate Û(·) such that

Û∗(·) := argmin
Û(·)

E(θ,u,·)∼Dtrain

[
||Û(θ)− u||2

]
, (2.2)

so that Û∗(·) serves as a differentiable surrogate of the physical realization function

U(·). We then use the trained decoder Û∗(·) to train an encoder ϕ(·):

ϕ∗(·) := argmin
ϕ(·)

E(·,·,g)∼Dtrain

[
Lg

(
ϕ(g), Û∗(ϕ(g))

)]
. (2.3)

Note that although our method resembles an autoencoder, it is not an autoencoder,

since we learn the decoder first and then the encoder rather than jointly. Besides, the

design space is usually not a lower-dimensional representation of the goal space, and

the cost function is usually not simply reconstruction loss.

2.4 Empirical evaluation approach

In this work, we use our method to solve two real problems as case studies: a task

of optimizing the extruder path in additive manufacturing, and a task of actuating

a soft robot in an inverse kinematics setting. While the details of the two differ, we
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evaluate them in the same way. In each case, we compare our algorithm with two

baselines—direct-learning and direct-optimization—and evaluate our method

in terms of relative quality and run time.

direct-learning: One natural baseline is to directly learn a model from the goal g

to the design θ. Thus we introduce the direct-learning model ϕdl(·):

ϕdl(·) := argmin
ϕ(·)

E(θ,·,g)∼Dtrain

[
||θ − ϕ(g)||2 +Rdl(ϕ(g))

]
. (2.4)

Note that, since there is no surrogate, we do not have access to the realization u.

We thus have to slightly adjust the cost function into a squared Euclidean distance

part and a regularizer part Rdl(·) (if there is one), the latter of which comes from the

original cost function L·(·, ·). We expect our method to perform much better than

direct-learning.

direct-optimization: Since our surrogate is a neural network and therefore differ-

entiable, another natural baseline is to directly optimize the design θ with respect

to the goal g by using a gradient-based optimizer (e.g ., BFGS), which provides us a

rough performance “upper bound” on our method:

ϕdo(g) := argmin
θ

Lg(θ, Û
∗(θ)). (2.5)

Note that AmorFEA [Xue et al., 2020a] is state-of-the-art method for PDE-constrained

optimization, which uses the same approach as the direct-optimization baseline.

We expect our method to have performance close to direct-optimization, while

running orders of magnitude faster.

To evaluate our method and the baselines, we iterate over all g from Dtest, and

evaluate the quality of each tuple
(
ϕ(g), U(ϕ(g)), g

)
, where we use the physical
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realization function U(·) rather than the learned surrogate Û∗(·). We run every

experiment 3 times with random initialization of neural networks. More details are

provided in each case study and in the appendix.

2.5 Case study: extruder path planning

3D printing (a.k.a. additive manufacturing) is the process of creating a 3D object from a

3D model by successively adding layers of material. It has a wide variety of applications

in areas including aerospace, automotive, healthcare, and architecture [Shahrubudin

et al., 2019]. Popular 3D printers use thermoplastic polymers (PLA, ABS, nylon, etc.)

as the printing material, but these have limited strength. To address this issue, some

recent printers support using strong fibers to reinforce the composite. In this work, we

explore a 3D printer (the Markforged Mark Two) capable of extruding discrete fibers

(fiberglass, kevlar, or carbon fiber) along a controllable path. However, since the fibers

are stiff and non-stretchable, the printed fiber path will be “smoothed” compared to

the extruder path. As shown in Figure 2.1c, without path planning, the fiber path

will be severely deformed. We seek to find a general method that, given any desired

fiber path, plans an extruder path to compensate for the deformation caused by the

printing process. To the best of our knowledge, there is no existing automated method

for this task, so it is worthwhile to tackle it using machine learning.

2.5.1 Cost function

Following the notation in Section 2.3, we denote the target fiber path as g ∈ Rn×2:

a path is represented as a series of n points, and n varies from path to path (at the

scale of hundreds in our experiments). We denote the extruder path (the design)

as θ ∈ Rn×2 and its realization fiber path as u ∈ Rn×2. Our cost function L·(·, ·) is
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defined as:

Lg(θ,u) := ||g − u||22 + λ · R(θ), (2.6)

where λ is a hyper-parameter and R(·) is a smoothing regularizer that calculates the

sum of squared empirical second-order derivatives of the extruder path:

R(θ) :=

n−1∑

i=2

((
θi+1 − θi

||θi+1 − θi||2
− θi − θi−1

||θi − θi−1||2

)/( ||θi+1 − θi||2 + ||θi − θi−1||2
2

))2
,

(2.7)

where θi ∈ R2 is the i-th row of θ.

2.5.2 Evaluation metric

The most intuitive way to evaluate the quality of extruder path θ is to measure the

distance between g, the desired fiber path, and u, the fiber path we get by printing θ.

Note that it is likely the model under-estimates or over-estimates the deformation

of fiber introduced by printing, so both cases can happen when we print with path

θ: we run out of fiber before we finish θ, or there is still some fiber remaining in

the nozzle after we finish θ (the total length of fiber is fixed given a desired fiber

path g). In other words, the gi’s and ui’s might not be synchronized. Thus, directly

measuring the distance between gi and ui does not necessarily reflect the difference

between desired fiber path and the fiber path we get. Therefore, to better measure the

distance between g and u during testing, we use Chamfer distance [Fan et al., 2017],

which was first proposed by Barrow et al. [1977] as an image matching technique, later

developed as a commonly used (semi)metric to measure the difference between two

sets, and has been shown to have a higher correlation with human judgment compared

to intersection over union and earth mover’s distance [Sun et al., 2018]:

dCD(g,u) :=
1

2

(
1

n

n∑

i=1

min
j∈[1,n]

∥gi − uj∥2 +
1

n

n∑

j=1

min
i∈[1,n]

∥gi − uj∥2
)
. (2.8)
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Figure 2.2: The pipeline for our method and two baselines for extruder path planning. We
first generate data by building a simulator and calibrating it using a real printer, and we
train the decoder and direct-learning using the synthetic dataset. We then train our
method and build direct-optimization using the trained decoder.

2.5.3 Implementation

The pipeline is shown in Figure 2.2. To generate the dataset for calibrating the

decoder, we first use elliptical slice sampling [Murray et al., 2010] (New BSD License)

to sample random extruder paths from a Gaussian process. We then use a physical

simulator built using Bullet [Coumans, 2010] (zlib License), calibrated to a real

printer, to predict the realization (fiber path) for each extruder path. We generate

10,000 paths, split into 90% training, 5% validation, and 5% testing. For decoder,

encoder, and direct-learning, we use an MLP with 5 hidden layers and ReLU as

the activation function. The MLP takes 61 points as input and produces 1 point as

output, and is applied in a “sliding window” fashion over the entire path (details

in appendix). We train every model with a learning rate of 1 × 10−3 for 10 epochs

using PyTorch [Paszke et al., 2019b] and Adam optimizer [Kingma and Ba, 2015]. For

direct-optimization, we use the BFGS implementation in SciPy [Virtanen et al.,

2020a]. More implementation details are included in the appendix.
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Table 2.1: Path-planning evaluation of the average Chamfer distance on the test set evaluated
in simulation

Regularizer weight 0.1 0.3 0.6 1.0 1.5

direct-learning 0.0314±0.0008 0.0319±0.0016 0.0502±0.0072 0.1007±0.0292 0.1457±0.0216
Ours 0.0180±0.0004 0.0157±0.0003 0.0164±0.0004 0.0158±0.0002 0.0156±0.0002

direct-optimization 0.0155±0.0002

Sample 2

Direct learning Ours Distance from simulated path 
to desired path

Distance from desired path to 
simulated path

Sample 1

Target fiber path Simulated fiber pathExtruder path Direct learning Ours<latexit sha1_base64="8A0tAxlHjJ4J0V5Fs9pjSwahN84="></latexit>g
<latexit sha1_base64="1iigsPasZEcM0HK2YmutYOpbUTw="></latexit>

✓
<latexit sha1_base64="+f9fpBo2AOc3rAB93Ych111zfBE="></latexit>u

Figure 2.3: Path-planning evaluation of direct-learning vs. ours on the test set evaluated
in simulation. We also visualize the Chamfer distance for each point on both the simulated
fiber path and the desired fiber path.

2.5.4 Experiments

Fiber path quality evaluated in simulation. To quantitatively evaluate the

effectiveness of our approach, the most straightforward way is to run its prediction

on the simulator and see how close the simulated fiber path is to the input fiber

path. We compare the performance of our approach (encoder), direct-learning,

and direct-optimization on the test set of 500 paths, for different values of the

regularization parameter λ. We report the average Chamfer distance (§ 2.5.2) with

the standard error among 3 runs in Table 2.1. Note that direct-optimization runs

very slowly, so we instead tune its regularizer weight on the first 40 test samples, select

the best regularizer weight, and report its performance on the whole test set using the

selected regularizer weight (more details in the appendix). The results demonstrate
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Table 2.2: Path-planning evaluation of the average running time on the first 50 samples in
the test set

Avg. time (s)

direct-learning 7.96×10−4

Ours 7.96×10−4

direct-optimization 1.17×104

Without planning Direct learning Ours

Run 1

Run 2

Figure 2.4: Path-planning evaluation of “without planning” vs. direct-learning vs. ours
on Markforged Mark Two, with a star as the desired fiber. For “without planning”, we
have the same extruder path for the 2 runs; for direct-learning and ours, the 2 runs are
predictions from neural networks trained with different initializations.

that our method significantly outperforms direct-learning, and the performance is

comparable to direct-optimization.

As a qualitative evaluation, Figure 2.3 shows the predictions of both direct-learning

and our method on samples from the test set. We select the run with minimum

average Chamfer distance over the test set for both direct-learning and our method,

respectively. The results indicate that our method is better than direct-learning

on handling details in the fiber path. We also visualize the Chamfer distance from

each individual point on one path to the other, and observe that the distances for our

method are generally lower than for direct-learning.
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Running time comparison. To train needed neural networks, direct-optimization

takes roughly 10 minutes, direct-learning takes roughly 1 hour, and our method

takes roughly 5 days. Note that training costs are amortized, since we only need

to train once. We then evaluate the inference time of the three algorithms on a

server with two Intel(R) Xeon(R) E5-2699 v3 CPUs running at 2.30GHz. Since small

neural networks generally run faster on the CPU, we run all of the tests solely on

CPU. We run every algorithm on the first 50 paths in the test set and report the

average inference time in Table 2.2. As we can see, both ours and direct-learning

achieve a running time below 1 millisecond, while direct-optimization runs orders

of magnitude slower.

Fiber path quality evaluated on a real printer. Lastly, we test our extruder

path solutions on a real Markforged Mark Two 3D printer. We set the desired

fiber path to a star, and print the star itself (without planning) as well as solutions

from both direct-learning and our method. We select regularizer weights based

on Table 2.1, i.e., 0.1 for direct-learning, 1.5 for our method, and we show two

of the trained models. The results are visualized in Figure 2.4, confirming that our

method successfully improves the quality of the printed fiber.

2.6 Case study: constrained soft robot inverse kine-

matics

Partial differential equations (PDEs) are a powerful tool for describing complex

relationships between variables and have been used widely in areas including physics,

engineering, and finance. In PDE-constrained optimization [Biegler et al., 2003], the

goal is to optimize a cost function such that the constraints can be written as PDEs,

i.e., the solutions are consistent with the relationships specified by the PDE. In the
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context of synthesis problems, we can consider the boundary conditions of the PDE as

the design, and the solution of the PDE as the realization. Similar to other synthesis

problems, different boundary conditions can result in the same PDE solution, and the

cost function may not have a unique minimum. In the above situations, we propose to

apply our method. We test our method on a specific PDE-constrained optimization

problem—constrained soft robot inverse kinematics, which serves as a representative

use case of our method in this large category of problems.

Soft robots made of elastic materials, have received significant recent attention

because of their reduced potential harm when working with humans [Rus and Tol-

ley, 2015]. Researchers have explored a variety of applications, including surgical

assistance [Cianchetti et al., 2014], bio-mimicry [Li et al., 2021a], and human-robot

interaction [Pang et al., 2020]. In this case study, as in Xue et al. [2020a], we use a

snake-like soft robot with a fixed bottom, in which we can control the stretch ratios

on both sides of the robot. As shown in Figure 2.1d, the objective is for the midpoint

at the top of the robot to reach a target, while making sure that the robot does not

collide with a fixed-size circular obstacle. The relationship between the robot’s shape

and the stretch ratios can be written as a PDE, and as shown in Figure 2.1d, there

are different solutions to achieve the goal.

2.6.1 Cost Function

We adopt the soft robot from Xue et al. [2020a], which has an original height of 10 and

an original width of 0.5, with its bottom is fixed. The goal vector g is in R2×2, where

g1 ∈ R2 indicates the target location and g2 ∈ R2 indicates the obstacle location.

We denote the radius of the obstacle as r, which we set to 0.9. The design (control)

vector θ is in Rn with n = 40, with θi ∈ R indicating the stretch ratio of the i-th

segment (e.g ., θi = 0.95 indicates the i-th segment is contracted by 5%). The physical

realization vector u is in Rm×2 with m = 103, where ui ∈ R2 indicates the location of
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the i-th vertex on the soft robot’s mesh. The location of the top midpoint is denoted

as utm ∈ R2. Implicitly, the relationship between θ and u obeys a PDE that governs

the deformation of the robot, as detailed in Xue et al. [2020a].

The cost function L·(·, ·) is defined as

Lg(θ,u) :=
1

2
||g1 − utm||22 + λ1 · B(u, g2) + λ2 · R(θ). (2.9)

The first term ||g1−utm||22 is the squared Euclidean distance between the top midpoint

of the robot and the target. The second term, weighted by a hyper-parameter λ1

(which we fix at 0.5), enforces the constraint via a barrier function [Nesterov et al.,

2018, Nocedal and Wright, 2006] for the obstacle B(u, g2):

B(u, g2) :=
1

m

m∑

i=1

(
max(r +∆r − ||ui − g2||2, 0)

)2
, (2.10)

where ∆r is a hyper-parameter (which we fix at 0.1). A positive ∆r provides a penalty

as well as nonzero gradients when the robot gets close to the obstacle. The last term

contains another hyper-parameter λ2, varied in our experiments, weighting a smooth

regularization term R(θ), with

R(θ) :=
1

n− 4

∑

1<i<n,i ̸=n/2,
i ̸=n/2+1

(
θi+1 − θi

2
− θi − θi−1

2

)2

, (2.11)

where θi for i = 1, 2, · · · , n/2 corresponds to stretch ratios on the left-hand side of the

robot, and θi for i = n/2 + 1, · · · , n corresponds to stretch ratios on the right-hand

side of the robot. This regularizer prevents unphysical deformations with strong

discontinuities.

23



Table 2.3: Soft-robot evaluation of the number of successful cases (over 1,000) on test set

Regularizer weight 0.03 0.05 0.07 0.09

direct-learning 907.7±3.1 918.3±3.4 910.7±3.4 912.3±3.8
Ours 986.3±0.5 975.0±3.9 981.7±5.0 984.7±4.5

direct-optimization 997.0±0.5 998.0±0.0 998.3±0.7 997.7±0.5

2.6.2 Evaluation metric

Since there are two objectives—“reach” and “avoid”—in this task, we have two

evaluation metrics. The first metric is the number of cases that successfully avoid

the obstacle (i.e., have all vertex positions outside the obstacle circle). The second

metric is the average Euclidean distance of the robot’s top midpoint to the target for

successful cases.

2.6.3 Implementation

Using the finite element method [Hughes, 2012] and the code from Xue et al. [2020a]

(MIT license), we randomly generate 40,000 data samples, and split them into 90%

training, 7.5% validation, 2.5% testing. For encoder, decoder, and direct-learning,

we use an MLP with 3 hidden layers and ReLU activation. We train every model

for 200 epochs with a learning rate of 1× 10−3 using PyTorch [Paszke et al., 2019b]

and Adam optimizer [Kingma and Ba, 2015]. For direct-optimization, we use the

BFGS implementation in SciPy [Virtanen et al., 2020a]. More implementation details

are included in the appendix.

2.6.4 Experiments

Design quality evaluation. We experiment with different regularizer weights λ2

for our method and the two baselines. During training, we randomly sample the

location of the obstacle, and we ensure the robot never collides with the obstacle for
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Table 2.4: Soft-robot evaluation of the average distance to the target on successful cases on
test set

Regularizer weight 0.03 0.05 0.07 0.09

direct-learning 0.2171±0.0016 0.2200±0.0028 0.2236±0.0006 0.2179±0.0036
Ours 0.0657±0.0093 0.0464±0.0018 0.0599±0.0097 0.0691±0.0224

direct-optimization 0.0233±0.0003 0.0240±0.0004 0.0241±0.0004 0.0242±0.0003

Sample 1

Sample 2

ObstacleTarget
Direct learning Ours Direct optimization

Figure 2.5: Soft-robot evaluation of direct-learning vs. ours vs. direct-optimization on
examples from the test set. The direct learning baseline both violates the constraints (Sample
1) and fails to reach the target (Samples 1 and 2), while the run time of direct-optimization
is 4000 times that of our method.

direct-learning, since it does not have access to the realization vector and thus its

loss function cannot contain the barrier function term for the obstacle (more details

about direct-learning are in the appendix). For a fair comparison, during testing,

we set the random seed to 0 such that for the same test sample, the obstacle will

appear at the same location for all algorithms. The number of cases in which the robot

successfully avoids the obstacle, with standard error for 3 runs, is shown in Table 2.3.

The average Euclidean distance to the target for successful cases, with its standard

error, is shown in Table 2.4. As the numbers show, our method is competitive to

direct-optimization, and performs much better than direct-learning. Samples

from the test set are shown in Figure 2.5 (for both algorithms, we select the best run

25



Table 2.5: Soft-robot evaluation of the average running time on the test set

Avg. time (s)

direct-learning 3.12×10−4

Ours 3.34×10−4

direct-optimization 1.33×100

with a regularizer weight of 0.5). We can see that our method collides less frequently

while reaching the target more accurately than direct-learning.

Running time. To train the neural networks, direct-optimization takes roughly

2 hours, direct-learning takes roughly 4 hours, and our method takes roughly 4.5

hours. Note that training costs are amortized, since we only need to train once. We

then test all algorithms on a server with two Intel(R) Xeon(R) E5-2699 v3 CPUs

running at 2.30GHz. Everything runs solely on the CPU, maximizing efficiency for

the small neural networks we use. The results are shown in Table 2.5, showing that

we successfully reduce the running time from over 1 second to less than 1 millisecond.

Note that the soft robot is relatively small (40 control variables), and the time

complexity of BFGS grows quadratically w.r.t. the number of parameters. Therefore,

for more complex soft robots or PDE-constrained optimization problems with a larger

number of variables, the running time advantage of our method can be of even greater

importance.

2.7 Discussion

In this work, we provided an amortized approach to synthesis problems in machine

learning. To tackle the non-differentiability of physical system realizations, the huge

computational cost of realization processes, and the non-uniqueness of the design

solution, we designed a two-stage neural network architecture, where we first learn

the decoder, a surrogate that approximates the realization processes, and then learn
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the encoder, which proposes a design for an input goal. We tested our approach on

two case studies on fiber extruder path planning and constrained soft robot inverse

kinematics, where we demonstrated that our method provides designs with much

higher quality than supervised learning of the design problem, while being competitive

in quality to and orders of magnitude faster than direct optimization of the design

solution.

Although the experiments in both case studies show the effectiveness of our

approach, we would like to mention some limitations of our method. First, to effectively

learn a differentiable surrogate for the realization process, we need to be able to generate

a substantial number of viable designs. We also need a simulator to calculate physical

realizations of them, and the realization process has to be deterministic, although

extensions might consider probability distributions over realizations. Also, to train the

encoder, we need the objective (“goal”) to be quantifiable. Our method provides the

greatest gains if the realization is computationally expensive and/or non-differentiable,

or if our encoder can exploit the non-uniqueness of designs to choose one good option

where supervised learning would have learned a poor “average” solution. Additionally,

due to the cost of neural network training, amortization is only a good idea when we

need to solve one design problem many times with different goals, or we need fast

inference. From a societal point of view, the primary negative consequence is the

potential for replacing human labor in design. We view the present approach, however,

as part of larger human-in-the-loop design processes in line with other software tools

for modeling and fabrication.
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Chapter 3

More Stiffness with Less Fiber:

End-to-End Fiber Path

Optimization for 3D-Printed

Composites

In 3D printing, stiff fibers (e.g ., carbon fiber) can reinforce thermoplastic polymers

with limited stiffness. However, existing commercial digital manufacturing software

only provides a few simple fiber layout algorithms, which solely use the geometry of

the shape. In this work, we build an automated fiber path planning algorithm that

maximizes the stiffness of a 3D print given specified external loads. We formalize this

as an optimization problem: an objective function is designed to measure the stiffness

of the object while regularizing certain properties of fiber paths (e.g ., smoothness).

To initialize each fiber path, we use finite element analysis to calculate the stress field

on the object and greedily “walk” in the direction of the stress field. We then apply

a gradient-based optimization algorithm that uses the adjoint method to calculate

the gradient of stiffness with respect to fiber layout. We compare our approach,
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in both simulation and real-world experiments, to three baselines: (1) concentric

fiber rings generated by Eiger, a leading digital manufacturing software package

developed by Markforged, (2) greedy extraction on the simulated stress field (i.e., our

method without optimization), and (3) the greedy algorithm on a fiber orientation field

calculated by smoothing the simulated stress fields. The results show that objects with

fiber paths generated by our algorithm achieve greater stiffness while using less fiber

than the baselines—our algorithm improves the Pareto frontier of object stiffness as a

function of fiber usage. Ablation studies show that the smoothing regularizer is needed

for feasible fiber paths and stability of optimization, and multi-resolution optimization

help reduce the running time compared to single-resolution optimization.

3.1 Introduction

Additive manufacturing has revolutionized the ability to fabricate three-dimensional

objects of high geometric complexity, with a variety of applications including in

healthcare, automotive, and aerospace industries [Shahrubudin et al., 2019]. However,

the increasing flexibility in manufacturing has outstripped our ability to produce

designs that optimally take advantage of 3D printers. This has motivated research

on computational fabrication pipelines that augment human specification of goals

with computational optimization of designs that best realize those goals, for problems

ranging from ensuring structural integrity through controlling appearance and fine-

tuning the fabrication process Attene et al. [2018].

In this work, we address the problem of producing structurally-sound parts that are

capable of bearing nontrivial load. We aim to exploit the capabilities of devices such as

the Markforged Mark Two Markforged [2022b], which is based on conventional fused

deposition modeling (FDM) using thermoplastic nylon, but augments this with the

ability to extrude and deposit continuous fibers. Options for the latter include carbon
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(a) Eiger baseline (1 inner ring),
449.6 mm, 292.3 N/mm

(b) Eiger baseline (2 rings at all walls),
2022.8 mm, 617.2 N/mm

(c) Optimized fiber path (1 ring),
372.7 mm, 483.8 N/mm

(d) Optimized fiber path (2 rings),
799.5 mm, 815.0 N/mm

Figure 3.1: Planned and 3D printed fiber paths with fiber lengths and average stiffness
measured over four batches annotated, for a part with external tension applied between two
holes. (a) (b): Concentric fiber rings generated by the Eiger baseline only consider geometry.
(c) (d): Our optimized fiber paths, tuned for the applied loads, yield greater stiffness at
lower fiber lengths.

fiber, Kevlar, fiberglass, and HSHT (High Strength High Temperature) fiberglass, all

of which offer the ability to selectively strengthen printed parts with respect to tensile

loads. In effect, this process creates fiber-reinforced plastic (FRP) composites [Kabir

et al., 2020], but with the ability to control fiber placement to achieve specific tradeoffs

in strength, weight, and cost.

The optimization of fiber layout is similar to problems traditionally considered in

computational fabrication, such as topology optimization (i.e., removing material from

certain regions) and spatially-varying assignment of different materials. Systems for

these latter tasks are typically based on Eulerian analysis and optimization, in which
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a quantity (density, material choice, etc.) is determined for each location in space

(e.g ., on a voxel grid). Similarly, almost all existing methods for optimizing carbon

fiber composites focus on the spatially-varying fiber direction field, then use variants

of greedy extraction or ODE solvers to extract the fiber paths themselves [Wang et al.,

2021, Schmidt et al., 2020].

In contrast, we are inspired by a Lagrangian point of view: we characterize the

strength of the part as a function of the fiber path, compute gradients with respect to

changes in fiber coordinates, and optimize the fiber path directly using gradient descent.

This strategy is based on the adjoint method [Errico, 1997, Cao et al., 2003], commonly

used for PDE-constrained optimization, and exploits modern systems for automatic

differentiation [Griewank and Walther, 2008], which have evolved considerably in

recent years to support a range of machine learning and general optimization problems.

Our end-to-end optimization approach has the benefit of focusing directly on the final

goal—maximizing stiffness with respect to external loads—rather than on indirect

objectives such as minimizing strain throughout the object.

We incorporate our gradient descent-based optimization into a complete system

that addresses three key challenges: (1) solving for the stress field of the object given

external loads, (2) computing an optimization objective and its gradient based on the

stress field, and (3) providing a good initialization of fiber layout for our local optimizer.

To address the first challenge, we model the composite material using the linear elastic

model, and approximately solve the PDE using the finite element method. Without

loss of generality and for the sake of simplicity, we model the composite material

in two dimensions under the assumption of in-plane stress (i.e., we only consider

laminates). We also simplify the problem by considering Dirichlet (fixed-displacement)

boundary conditions. To address the second challenge, we design an objective function

based on total strain energy given the boundary conditions: under the assumption

of linear elasticity, maximizing this energy is equivalent to maximizing the object’s
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stiffness. We regularize the objective to ensure that the optimized fiber paths are

feasible. Finally, to address the last challenge, we initialize each fiber path by greedily

following the directions of maximum tensile stress (or perpendicular to the direction

of maximum compressive stress). We further use a multi-resolution approach inspired

by multigrid methods, to reduce the running time of the optimization.

We show designs produced by our method on a number of illustrative case studies,

demonstrating that our method yields higher stiffness with less fiber as compared to

baseline paths produced by the Eiger software by Markforged [Markforged, 2022a]. We

compare our results to greedy extraction based on either the stress field or optimized

fiber direction field, as well as other ablations including omitting regularization or

multi-resolution optimization. We print our designs (see Figure 3.1), using the method

of Sun et al. [2021] to compute fiber extruder paths that compensate for fiber stiffness.

Finally, we test our printed parts to verify that our method matches the predicted

stiffness in the real world (subject to inherent print-to-print variations in material

strength).

3.2 Related work

3.2.1 Fiber orientation optimization in 3D printing

A task that is similar to fiber path planning is fiber orientation optimization, where

researchers discretize space into elements and optimize fiber orientations in them.

Additional steps, such as greedy extraction, ODE solvers, or geometric methods, must

be performed to produce fiber paths from the orientation field. Thus fiber orientation

optimization can serve as the first step of fiber path planning, which we will discuss

in § 3.2.2. See Hu [2021] for a survey (called “free material optimization”). The

most common approach for orientation optimization is to set density and orientation

as design variables and optimize an objective such as compliance [Chu et al., 2021,
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da Silva et al., 2020, Jung et al., 2022] or the Tsai–Wu failure criterion [Ma et al.,

2022] with a gradient-based optimizer. To address the checkerboard pattern issue

(periodicity of the orientation variables), researchers usually use filtering [Andreassen

et al., 2011] to smooth the design variable field (e.g ., through a weighted average of

neighboring elements). Another choice of design variable is the lamination parameters:

Shafighfard et al. [2019] and Demir et al. [2019] proposed to first optimize lamination

parameters, search for the best fitting fiber orientations from the optimized lamination

parameters, and then perform an optimization on the orientation field while considering

manufacturing constraints (e.g ., curvature). There are also iterative variants. For

example, Caivano et al. [2020] proposed iterating between calculating the principal

stress direction and updating the material distribution until convergence. While mainly

concentrating on orientation optimization, some approaches do ultimately generate

fiber paths. For example, Fedulov et al. [2021] first optimized density and orientation

and then used third-party software for printing trajectory generation; Schmidt et al.

[2020] performed density and orientation optimization and generated streamlines using

the 4th-order Runge-Kutta integrator for visualization.

3.2.2 Fiber path planning in 3D printing

A variety of path planning algorithms have been proposed for continuous fiber-

reinforced plastics—see Zhang et al. [2020] for a survey. The most common approach

is to first perform an optimization (topology, orientation, etc.), and then extract fiber

paths from the result. As discussed, orientation optimization is one choice of the

optimization (i.e., use density and orientation as the design variables), but there are

different methods for path extraction. Wang et al. [2021] proposed to “walk” in the

field along with the stress direction and consider the angle turned in every move to

produce smoothed paths. Papapetrou et al. [2020] described three methods for path

extraction: the offset method and the EQS (Equally-Space) method use the geometry
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of the optimized layout, and the streamline method fits the orientation field with

streamlines. Safonov [2019] proposed to alternate between topology optimization and

fiber orientation updates using an evolutionary heuristic method.

There are also more potential choices for the design variable. For example, one

choice is to only optimize the density. Li et al. [2021b] performed topology optimization

of material density (without orientation) using regularizers that force the fiber material

to form lines. However, they did not extract fiber paths explicitly at the end, so it is

unclear whether the fibers are directly printable. Li et al. [2020] and Chen and Ye

[2021] proposed to lay fibers along with the load transmission trajectories. Almeida Jr.

et al. [2019] proposed to perform the SIMP (Solid Isotropic Material with Penalization)

method first, designed the fiber pattern manually, and then used a genetic algorithm to

determine the number of fiber rings/paths that would minimize compliance (defined as

mass divided by stiffness). Sugiyama et al. [2020] proposed to calculate the stress field

and update fiber paths so that they follow the direction of maximum principal stress,

repeating this process until convergence. Apart from these two-stage approaches, there

are also end-to-end approaches based on genetic algorithms. For example, Yamanaka

et al. [2016] modeled fiber paths as streamlines and optimized them directly using a

genetic algorithm.

In summary, most existing works perform fiber planning in two stages (topol-

ogy/orientation optimization followed by path extraction). In contrast, our method

performs an end-to-end optimization of the fiber layout, maximizing the regularized

object stiffness via a gradient-based optimizer.

3.2.3 PDE-constrained optimization

Also related to the problem of optimizing geometry to maximize stiffness is the area

of PDE-constrained optimization, in which an optimization problem is subjected

to physical constraints expressed via partial differential equations (PDEs) [De los

34



Goal

Stress field 
(red: tension, blue: compression) Greedy path(s) Low-resolution 

path(s)

Optimized low-
resolution path(s) Upsampled path(s) Optimized path(s)

Greedy  
algorithm 
(Sec. 3.2) Downsample

Optimization (Sec. 3.3)

Upsampling 
(interpolation) Optimization

Simulation 
(Sec. 3.1)

Next fiber
Coarse-to-fine optimization (Sec. 3.4)

Figure 3.2: We repeatedly use the finite element method to calculate the stress field of the
object (§ 3.3.1), extract a new fiber path by greedily “walking” on the stress field (§ 3.3.2),
optimize the downsampled fiber path with an objective function designed to maximize
stiffness and regularize fiber paths to be manufacturable (§ 3.3.3), and finally upsample and
optimize all the fiber paths several times to perform coarse-to-fine optimization (§ 3.3.4).

Reyes, 2015]. There are two common types of algorithms to solve PDE-constrained

optimization problems: all-at-once and black-box [Herzog and Kunisch, 2010]. All-at-

once treats both the design variable and the state variable as independent variables,

so the method may not satisfy the constraints before the optimization finishes. A

common all-at-once algorithm is SQP (sequential quadratic programming) [Boggs and

Tolle, 1995]. A disadvantage of the all-at-once approach is the dimension of the state

variable can be very large, which makes the optimization costly. Black-box solves the

problem in reduced form, by treating the design variable as the only independent

variable, so that a gradient-based optimizer can be applied (e.g ., gradient descent,

Newton’s method). We formalize the fiber path planning task as a PDE-constrained

optimization problem and use the black-box approach, specifically the adjoint method,

to solve it.

3.3 Method

The pipeline of our method is shown in Figure 3.2. Starting from a goal (a shape with

some external loads), we first simulate the stress field using the finite element method
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(§ 3.3.1). We apply a greedy fiber extraction algorithm by “walking” in the stress field,

and then downsample the greedy path (§ 3.3.2). We build and optimize an objective

function based on the object’s stiffness and regularity conditions of the fiber paths,

using the adjoint method to calculate the gradients of the objective (§ 3.3.3). These

steps can be repeated until a desired number of fiber paths are extracted and optimized.

We then perform a coarse-to-fine optimization by upsampling and optimizing the fiber

paths a specified number of times (§ 3.3.4).

3.3.1 Simulation

In this subsection, we describe how we solve the stress field given a shape, some

external loads, and a specified fiber layout. We denote the body as Ω, the stress tensor

as σ, the strain tensor as ε, the displacement vector as u, and the stiffness tensor as

C. The linear elastic model can be written as

−∇ · σ = f,

ε =
1

2

(
∇u+ (∇u)⊺

)
,

σ = C : ε,

(3.1)

where f is the body force and we set it to 0. For certain regions on the boundary of

Ω (i.e., ∂Ω), the value of u is given as input (i.e., Dirichlet boundary condition). For

the remaining regions, we have σ · n = T (i.e., Neumann boundary condition), where

n is the outward unit normal vector, and T is the tractive force which we set to 0.

The constitutive equations σ = C : ε can also be written in a matrix product form;

under the assumption of in-plane stress, we have
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, (3.2)

36



where E1 and E2 are Young’s moduli, ν12 and ν21 are the Poisson’s ratios, and µ is the

shear modulus. For simplicity, we assume both plastic and fiber are isotropic materials,

and they have different Young’s moduli Eplastic and Efiber and identical Poisson’s ratio

ν.

The next issue is to calculate the Young’s modulus field. Consider a laminate

of height hobject, with some layers filled with just plastic and others containing both

plastic and fiber. We assume that all layers with fiber, adding up to a total height of

hfiber, have identical fiber paths, and omit plastic where fiber is present. The set of

fiber paths is denoted as P , and every path p in it is a sequence of vertices on the

fiber path. For a point x ∈ Ω, for the purpose of differentiability, we define its “soft”

Young’s modulus as

E(x) := Eplastic · αplastic(x) + Efiber · αfiber(x), (3.3)

where

αfiber(x) :=
∑

p∈P

exp

(
−
(
dis(p, x)

wfiber/2

)2
)

· hfiber, (3.4)

where wfiber = 0.9 mm is the width of the fiber, dis(·, ·) measures the distance between

a point and a path, and

αplastic(x) := hobject −min(αfiber(x), hfiber). (3.5)

We allow fiber paths to overlap in this setting, as even in real prints from the Markforged

Mark Two, we do not observe any problems. We then have µ(x) = E(x)
2(1+ν)

. Finally, we

solve the PDE in Equation 3.1 using FEniCS with DOLFIN [Logg and Wells, 2010]

by solving its first-order condition. Figure 3.2 visualizes an example of the calculated

stress field, using line integral convolution Cabral and Leedom [1993].
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3.3.2 Greedy fiber path extraction

In this subsection, we describe how we greedily extract a fiber path from a stress field

along the directions of maximum tensile stress or perpendicular to the direction of

maximum compressive stress. With the stress tensor σ calculated from § 3.3.1, we

first calculate the stress on plastic:

σplastic := σ · Eplastic · αplastic

Eplastic · αplastic + Efiber · αfiber

. (3.6)

For any point x ∈ Ω, we can calculate the eigenvalue with the largest absolute value

λ(x) and its corresponding eigenvector v(x). We then build a scalar field with |λ(x)|

and randomly sample a starting point x0 with the field as sampling weights. From

the starting point, we walk in both directions along with ±v(x0) (or perpendicular

to v(x0) if λ(x0) is negative) at a fixed step size of 0.5 mm. If we walk outside Ω or

within 1.3 mm to ∂Ω (number measured from prints from Eiger), we retry at most

19 times with a random rotation uniformly sampled between −π/12 to π/12. The

algorithm stops when a preset length limit is reached, or we cannot walk in both

directions even after retries.

We then downsample the extracted fiber path by keeping 1 of every 20 vertices. We

iterate every subsequence of the downsampled path and select the one that minimizes

the objective function we will define in Section 3.3.3. We repeat this process 10 times

(sampling 10 starting points) and keep the one that minimizes the objective function.

3.3.3 Gradient calculation and optimization

In this subsection, we describe how we design an objective function and optimize it using

a gradient-based optimizer. We denote the optimized strain energy in Equation 3.1
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as U , and the set of fiber paths as P . The objective L(P ) is defined as

−U +
∑

p∈P
(wlap · Llap(p) + wmin l · Lmin l(p) + wbdy · Lbdy(p)) , (3.7)

where wlap, wmin len, and wbdy are hyper-parameters. The Laplacian regularizer Llap

penalizes non-smooth fiber paths:

Llap(p) := s(P )3 ·
|p|−1∑

i=2

∣∣∣∣
∣∣∣∣pi −

pi−1 + pi+1

2

∣∣∣∣
∣∣∣∣
2

, (3.8)

where s(P ) is a count of the total number of segments in all fiber paths (i.e.,
∑

p∈P |p| − |P |). The reason to apply the s(P )3 multiplier is because the Laplacian

regularizer is sensitive to upsampling, which we discuss in § 3.3.4, and this multiplier

keeps our Laplacian regularizer scale-invariant. The minimum-length regularizer Lmin l

penalizes infeasibly-short fiber paths:

Lmin l(p) := max


lmin −

|p|∑

i=2

||pi − pi−1|| , 0




2

, (3.9)

where lmin is the minimum fiber length that can be printed by the 3D printer. The

boundary regularizer Lbdy penalizes fiber paths outside Ω or too close to ∂Ω:

Lbdy(p) :=
∑

i

max(dmin − dis(pi,Ω), 0)
2, (3.10)

where dis(pi,Ω) measures the distance from p to ∂Ω (positive for pi ∈ Ω, negative

otherwise) and dmin is the lower limit of distance from fiber to the boundary.

The next step is to calculate dL(P )
dP

. Here we apply the adjoint method. Denote the

first-order condition of Equation 3.1 as F (u, P ) = 0. By the implicit function theorem

(under proper regularity conditions) u can be thought of a function of P , and the
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derivative du
dP

is well-defined. Taking the derivative of F with respect to P , we have

dF

dP
=

∂F

∂u

du

dP
+

∂F

∂P
= 0, (3.11)

which leads to

dL(P )

dP
= −∂L(P )

∂u

(
∂F

∂u

)−1
∂F

∂P
+

∂L(P )

∂P
. (3.12)

We implement this end-to-end differentiation automatically using dolfin-adjoint [Mi-

tusch et al., 2019] and PyTorch [Paszke et al., 2019a]. We use the BFGS implementation

in SciPy [Virtanen et al., 2020b] to minimize L(P ), and again we iterate every subse-

quence of the optimized path and select the one that minimizes L(P ). We can repeat

the steps in § 3.3.1, § 3.3.2, and § 3.3.3 several times to extract multiple fiber paths.

3.3.4 Coarse-to-fine optimization

To speed up the optimization, we perform multigrid optimization. As described in

§ 3.3.2, we initially downsample all the fiber paths. Then, for every fiber path p, we

insert midpoints between every pi and pi+1 by B-spline interpolation, using SciPy, and

optimize all the fiber paths. This process can be repeated several times to generate

the final fiber paths for 3D printing.

3.4 Fabrication and experimental setup

In this section, we describe how we manufacture real 3D prints and measure their

position-load curves. We use a Markforged Mark Two printer with nylon as the plastic

material and carbon fiber as the reinforcing fiber material. We print laminates with a

height of 2 mm and 16 layers, from which the 4th, 7th, 10th, and 13th layers are fiber

layers. All layers without fiber and regions in fiber layers without fiber are filled with

nylon (solid fill).
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Figure 3.3: A 3D printed part being tested on a universal testing machine (Instron 600DX),
with square nuts in the trapezoidal holes. The machine moves at a speed of 20 mm/min and
stops when the object breaks or by a manual stop.

For the 2D shape, we use a 46 mm × 30 mm rectangle with two rounded isosceles

trapezoid holes, the same shape as shown in Figure 3.2. The isosceles trapezoids have

two sides of 11 mm and 14 mm and a height of 11 mm, with every corner smoothed

by an arc with a radius of 1 mm. We will reuse this shape in § 3.5, § 3.6.3, and § 3.7.

To measure the position-load curve of a print, we insert two square nuts into both

its holes and apply tension to them using a universal testing machine (Instron 600DX),

as shown in Figure 3.3. The machine is programmed to move at a speed of 20 mm/min

until the object breaks or by a manual stop when we believe enough data is collected.

A position-load curve is recorded for every print.

3.5 Modulus calculation

In this section, we describe how we determine the effective Young’s moduli of nylon

and carbon fiber. We print composites with different (baseline) fiber layouts, measure
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Figure 3.4: Nine different fiber layouts printed for moduli calculation (left to right, top to
bottom): no fiber path, 1 to 3 inner rings, 1 to 3 outer rings, 1 to 2 rings for all walls.

their stiffness, then optimize for moduli such that their stiffness in simulation best

matches the real-world measurements.

3.5.1 3D prints for testing

We use Eiger to generate nine different layouts of carbon fiber paths: no fiber path,

1 to 3 inner rings, 1 to 3 outer rings, 1 to 2 rings for all walls. To reduce the bias

introduced by the non-uniformity of the material, we print all of them in one batch,

as shown in Figure 3.4. Due to the variability of the printing process, we print three

batches of these nine prints and pick the batch with the best printing quality.

3.5.2 Stiffness measurement

As described in Section 3.4, we test the prints and record their position-load curves

(Figure 3.5). Note that the beginning of every curve can be noisy as the part is not

perfectly vertical, etc. Additionally, a large load can cause the part to buckle out of

the 2D plane, which violates our in-plane stress assumption. We therefore measure

the position change between a load of 150 N and a load of 300 N for every print, and

calculate the stiffness by dividing load change (150 N) by position change (in mm).

The results are shown in Figure 3.6, marked as “X”. Note that there is a factor of 0.5

when converting stiffness in N/mm to energy in N·mm at 1 mm displacement (e.g .,
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Figure 3.5: Position-load curves recorded from the testing machine. The beginning parts of
the curves are noisy due to parts not being perfectly vertical, etc., and a too-large load can
cause the object to buckle, violating our in-plane stress assumption. We therefore use the
middle parts of the curves, with loads between 150 N and 300 N, to calculate the stiffness.

a stiffness of 500 N/mm corresponds to having strain energy of 250 N·mm at 1 mm

displacement).

3.5.3 Simulation and modulus calculation

For each measured data point, we apply Dirichlet boundary conditions corresponding

to 1 mm displacement on the two shorter sides of the two holes on the rectangle. We

calculate the strain energy of the object, then do a grid search for the values of the

moduli of nylon and carbon that minimize the sum of squared distances between

measured and simulated stiffness. The search yields moduli of 0.40 GPa for nylon and

20.1 GPa for carbon, with results shown in Figure 3.6. As we can see, the simulation

results mostly match the real results, with small residuals relative to the energy.
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Figure 3.6: We calibrate the moduli of nylon and carbon fiber using nine prints with three
different types of fiber layouts: inner rings, outer rings, and rings at all walls. The solid
lines connect datapoints sharing the same fiber layout strategy. The real results are marked
as “X”, the simulated results are marked as small solid circles, and the residuals are shown
as dotted lines. The energy numbers are calculated at 1 mm displacement.

3.6 Experiments

In this section, we present detailed evaluations of the performance of our method in

both simulation and real experiments on four case studies (§ 3.6.1–§ 3.6.4), then show

several additional results in § 3.6.5. We start with two simple shapes—a rectangle and

a “plus” shape—then move to more complex shapes: rectangles with two and four

holes (Figure 3.7). The first baseline we use is concentric fiber rings from Eiger, which

have three different types: inner, outer, and all walls. For the next two case studies,

to better illustrate the effectiveness of our algorithm on complex shapes and loads, we

include two additional baselines: (1) greedy, simplifying our algorithm by removing

all the optimization components and directly generating results using the greedy

algorithm; (2) field-opt-greedy, similar to greedy but with an additional step of field

optimization before running the greedy algorithm. The latter baseline, intended to

represent the approach of previous work on fiber orientation optimization (see § 3.2.1),
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(a) Rectangle (b) Plus shape

(c) Rectangle with two holes (d) Rectangle with four holes

Figure 3.7: Four shapes we use in our case studies. (a) and (b) are relatively simple shapes,
and the loads are applied on the two sides. For (c), a rectangle with two holes, tension
is applied on the two shorter sides of the holes. (d) is designed to be a multi-functional
rectangle with four holes, and the user can choose one hole from the left two holes and
another hole from the right two holes to apply tension.

optimizes a vector field that aligns to the stress direction, with a smoothing regularizer.

Additional details about the field optimization can be found in the appendix. We

refer to the results from our method as optimized. For all the experiments (unless

otherwise specified), we use the BFGS optimizer and limit the maximum number of

iterations to 500 and a gradient tolerance of 3× 10−9. The objective function is set

with wlap = 1× 10−8, wmin l = 1, and wbdy = 1.

3.6.1 Case 1: rectangle

In this case study, we show how our algorithm works step by step on a rectangle (45

mm × 30 mm), with tension applied to its two shorter sides (Figure 3.7a). As we can
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1 greedy path 
Energy =  346.3 N⋅mm

Optimized 1 greedy path 
Energy =  354.6 N⋅mm

2 greedy paths 
Energy =  425.2 N⋅mm

Optimized 2 greedy paths 
Energy =  436.0 N⋅mm

3 greedy paths 
Energy =  506.7 N⋅mm

Optimized 3 greedy paths 
Energy =  515.6 N⋅mm

Upsampled paths 
Energy =  516.0 N⋅mm

Optimized upsampled paths 
Energy =  516.1 N⋅mm

Figure 3.8: Step-by-step visualization of how our method extracts three fiber paths, optimizes
them, and performs coarse-to-fine optimization on the rectangle shape. In the first row, we
extract the first fiber path, optimize it, extract the second fiber path, and optimize both
paths. The two paths curve and move up and down after the optimization, respectively. In
the second row, we extract a third fiber path, optimize all three paths, upsample them, and
finally optimize them. The energy numbers are calculated at 1 mm displacement.

1 outer ring (558.4 mm) Energy map (449.0 N⋅mm) Optimized (510.9 mm) Energy map (516.1 N⋅mm)

Figure 3.9: Fiber paths and energy maps of outer and optimized at 1 mm displacement on
the rectangle shape. We use less fiber while achieving higher energy, as the baseline lays
vertical fibers that are much less useful than horizontal fibers.

see in the first row in Figure 3.8, we first greedily extract a fiber path and optimize it.

When we add and optimize a second fiber path, the two paths separate and curve. In

the second row, we extract a third greedy path and optimize the three paths together.

Finally, we double the number of points of both fiber paths and optimize the three

paths together. The last step does not help much since the task is relatively simple.

As shown in Figure 3.9, for a fixed displacement of 1 mm, our algorithm uses less

fiber while achieving higher energy in simulation, compared to 1 outer concentric fiber

ring, which lays fiber in vertical directions that are much less useful than fibers in

horizontal directions.
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1 outer ring, 678.4 mm, 251.3 N⋅mm 2 outer rings, 1328.0 mm, 336.9 N⋅mm 3 outer rings, 1948.8 mm, 432.7 N⋅mm

Optimized, 339.3 mm, 300.0 N⋅mm Optimized, 678.7 mm, 455.7 N⋅mm Optimized, 1017.9 mm, 607.4 N⋅mm
Figure 3.10: Fiber paths, lengths, and strain energy at 1 mm displacement of outer and
optimized on the plus shape. With the help of optimization, fiber paths automatically
distribute themselves uniformly in the space as we increase the number of fiber paths. By
laying slightly bending fibers in horizontal directions, we save fiber while increasing the
energy, compared to outer, which lays fiber in unrelated regions.

3.6.2 Case 2: “plus” shape

As shown in Figure 3.7b, we use a “plus” shape whose edges are all of length 15 mm,

and we apply tension to two sides of the shape. We compare fiber paths of outer and

optimized in Figure 3.10, with three solutions from each strategy. As we can see, outer

lays fibers in regions of low relevance to the loads applied, in contrast to optimized

which prioritizes regions of high relevance to the loads. We also observe that the

optimization process automatically distributes fiber paths uniformly as we extract

more fiber paths. Based on our simulation, for a fixed displacement at 1 mm, the fiber

paths of optimized improve upon the Pareto front of outer, as shown in Figure 3.11.
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Figure 3.11: Energy-fiber usage plot of outer and optimized at 1 mm displacement on the
plus shape. Our method improves over the Pareto front of outer by laying fibers according
to the external loads.

3.6.3 Case 3: rectangle with two holes

As shown in Figure 3.7c, we also tested a rectangle (46 mm × 30 mm) with two

rounded isosceles trapezoid holes, with external forces applied to the two sides of the

holes.

Planned fiber paths and simulation results The fiber paths generated from

all methods are shown in Figure 3.12. We set the maximum greedy fiber path length

so that fiber lengths of greedy, field-opt-greedy, and optimized are comparable. As

we can see, the baseline methods use only geometric information; both greedy and

field-opt-greedy generate similar fiber paths along stress directions, but paths from

field-opt-greedy are smoother; optimized wraps fiber paths tightly around the holes

while aligned with stress direction, yielding larger strain energy when using a similar

amount of fiber.

Real experiment results To evaluate the quality of fiber paths, we perform real-

world experiments by applying tension to 3D prints on a universal testing system
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No fiber, 0.0 mm, 
80.0 N⋅mm

1 inner ring, 428.3 mm, 
164.1 N⋅mm

2 inner rings, 901.8 mm, 
222.4 N⋅mm

3 inner rings, 1420.8 mm, 
287.6 N⋅mm

1 outer ring, 566.4 mm, 
102.6 N⋅mm

2 outer rings, 1104.0 mm, 
117.2 N⋅mm

3 outer rings, 1612.8 mm, 
137.3 N⋅mm

1 ring at all walls, 994.7 mm, 
192.6 N⋅mm

2 ring at all walls, 2005.8 mm, 
281.2 N⋅mm

Greedy, 400.0 mm, 
157.1 N⋅mm

Greedy, 800.0 mm, 
223.9 N⋅mm

Field-opt-greedy, 400.0 mm, 
160.4 N⋅mm

Field-opt-greedy, 800.0 mm, 
220.0 N⋅mm

Optimized, 799.5 mm, 
355.2 N⋅mm

Optimized, 372.7 mm, 
222.0 N⋅mm

Figure 3.12: Fiber paths, lengths, and strain energy at 1 mm displacement of inner, outer,
all walls, greedy, field-opt-greedy, and optimized on the rectangle with two holes shape.
field-opt-greedy provides similar but smoother paths compared to greedy, and optimized
provides more effective fiber paths. Note that there is a factor of 2 when converting the
strain energy in N·mm at 1 mm displacement to stiffness in N/mm which we will use in real
experiments (e.g ., strain energy of 250 N·mm at 1 mm displacement corresponds to having
a stiffness of 500 N/mm).

(600DX from Instron). Due to the limited space on the printer bed, two sets of

comparisons are performed separately: (1) inner, outer, and all walls vs. optimized ;

(2) greedy and field-opt-greedy vs. optimized. We thus printed eight batches, four

for each set of comparisons. Again, as in Section 3.4, we measure the stiffness of a

print by calculating the slope of its position-load curve, picking two points that have

loads of 150 N and 300 N. The results of inner, outer, and all walls vs. optimized are

shown in Figure 3.13. As we can see, our algorithm consistently provides significantly

higher stiffness than the concentric baselines when using a similar or lower amount of

fiber. Note that the fiber lengths may have slight discrepancies between simulation
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(a) Batch 1
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(c) Batch 3
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(d) Batch 4

Figure 3.13: Real stiffness-fiber length plots of inner, outer, all walls, and optimized on the
rectangle with two holes shape, measured between 150 N and 300 N (4 batches). By laying
fibers tightly around the holes, optimized consistently performs better than all others.

and real-world experiments since they are from different path generation algorithms

(one from our re-implementation of Eiger, another from Eiger directly). The results of

greedy and field-opt-greedy vs. optimized are shown in Table 3.1. Again, our algorithm

consistently improves the stiffness over the two baselines while using a similar or lower

amount of fiber.

3.6.4 Case 4: rectangle with four holes

As shown in Figure 3.7d, we also tested a rectangle (84 mm × 28 mm) with four

rounded isosceles trapezoid holes. We design the shape to be multi-functional—if we

label the holes from 1 to 4 from left to right, we assume the user uniformly chooses
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Table 3.1: Real (measured) stiffness of greedy (g), field-opt-greedy (f ), and optimized (o)
on the rectangle with two holes shape, measured between 150 N and 300 N (4 batches).
Optimized performs consistently better than the baselines when using a similar or less amount
of fiber.

Stiffness (N/mm)
Solution 1 Solution 2

g f o g f o

Batch 1 490.1 574.6 625.5 745.0 741.3 992.6
Batch 2 584.3 692.0 756.0 801.0 741.3 985.2
Batch 3 483.5 485.0 656.7 671.6 603.4 953.5
Batch 4 491.7 481.7 603.0 670.0 670.9 970.4

Average 512.4 558.3 660.3 721.9 689.2 975.4
Length (mm) 400.0 400.0 372.7 800.0 800.0 799.5

one of the four settings: 1) hole 1 and hole 3; 2) hole 1 and hole 4; 3) hole 2 and hole

3; 4) hole 2 and hole 4. To support this multi-functional shape, we simulate all four

cases and calculate the average strain energy.

The fiber paths from all the methods are shown in Figure 3.14. Again, both

greedy and field-opt-greedy produce fibers along stress directions with fiber paths from

field-opt-greedy being slightly smoother. Optimized lays the first fiber over all holes

and lays the second fiber around the middle two holes, due to the multi-functional

nature of the shape. The energy-fiber usage plot is shown in Figure 3.15, where

optimized improves upon the Pareto front of every baseline.

3.6.5 Results on additional shapes

In this subsection, we provide results from our method and baselines on several

additional shapes. The shape designs are inspired by sketches from SketchGraphs [Seff

et al., 2020], a large-scale dataset of sketches of real-world CAD models, as well as

shapes from existing works [Shafighfard et al., 2019, Ma et al., 2022]. We use a

Laplacian regularizer weight wlap = 5× 10−7, and the results are shown in Figure 3.16,

with every dotted line a Dirichlet boundary condition. For the first shape, all methods

use a similar amount of fiber but optimized achieves much higher energy than others.
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No fiber, 0.0 mm, 
67.9 N⋅mm

1 inner ring, 856.5 mm, 
135.4 N⋅mm

2 inner rings, 1803.7 
mm, 185.5 N⋅mm

1 outer ring, 854.4 mm, 
94.7 N⋅mm

2 outer rings, 1680.0 mm, 
110.8 N⋅mm

1 ring at all walls, 1710.9 
mm, 174.6 N⋅mm

Greedy, 720.0 mm, 
110.8 N⋅mm

Greedy, 1092.0mm, 
132.4 N⋅mm

Field-opt-greedy, 718.0 mm, 
110.4 N⋅mm

Field-opt-greedy, 1078.0 
mm, 127.5 N⋅mm

Optimized, 1021.9 
mm, 218.0 N⋅mm

Optimized, 688.6 mm, 
171.0 N⋅mm

Figure 3.14: Fiber paths, lengths, and strain energy at 1 mm displacement of inner, outer,
all walls, greedy, field-opt-greedy, and optimized on the multi-functional rectangle with four
holes shape. Similarly, greedy and field-opt-greedy lay fibers along stress directions, and
field-opt-greedy provides slightly smoother fiber paths. Optimized lays the first fiber over all
the holes, and the second fiber around the middle two holes, with paths tightly around the
holes.

For the second shape, optimized uses a similar amount of fiber as concentric, less

fiber than greedy and field-opt-greedy but achieves higher energy. For the third shape,

optimized achieves comparable energy as concentric but saves approximately 70%

of fiber. Compared to greedy and field-opt-greedy, optimized achieves much higher

energy while using slightly more fiber. For the fourth and fifth shapes, optimized uses

less fiber or comparable fiber as other baselines while achieving significantly higher

energy.
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(a) Concentric vs. optimized
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(b) Greedy-based vs. optimized

Figure 3.15: Energy-fiber usage plot (at 1 mm displacement) of all methods on the rectangle
with four holes shape. The comparison between concentric fiber rings and optimized is shown
on the left, and the comparison between greedy-based baselines and optimized is shown on
the right. Optimized improves the Pareto front of all the baselines by laying fibers tightly
around the holes.

3.7 Ablation studies

Our algorithm without optimization has been studied in Section 3.6 as the greedy

baseline. In this section, we study the effects of removing two other components of

our method: the Laplacian regularizer and the multi-resolution optimization, using

the shape rectangle with two holes (Figure 3.7c).

3.7.1 Ablation study of the Laplacian regularizer

As both the minimum-length regularizer and the boundary regularizer are intuitively

necessary for fiber paths to be long enough for printing purposes and within the

object boundary, we study the effect of removing the Laplacian regularizer from the

optimization. We run our algorithm with the same hyper-parameter setting except

for wlap = 0. We extract one fiber path and upsample for one time. As shown

in Figure 3.17, the optimizer successfully optimizes the low-resolution path as the

number of points is still small (Figure 3.17a), but introduces jagged results with
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Shape and load(s) Concentric Greedy Field-opt-greedy Optimized (Ours)

265.6 mm, 260.8 N⋅mm 266.0 mm, 257.5 N⋅mm270.0 mm, 257.1 N⋅mm 259.3 mm, 370.3 N⋅mm

185.6 mm, 193.3 N⋅mm 212.0 mm, 180.6 N⋅mm 218.0 mm, 174.9 N⋅mm 190.2 mm, 279.7 N⋅mm

758.4 mm, 301.1 N⋅mm 202.0 mm, 230.7 N⋅mm 202.0 mm, 230.5 N⋅mm 232.2 mm, 292.2 N⋅mm

307.1 mm, 67.1 N⋅mm 196.0 mm, 75.4 N⋅mm 236.0 mm, 66.6 N⋅mm 210.2 mm, 102.2 N⋅mm

249.8 mm, 409.7 N⋅mm228.0 mm, 272.0 N⋅mm230.0 mm, 290.2 N⋅mm460.7 mm, 283.9 N⋅mm
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Figure 3.16: Fiber paths and energy at 1 mm displacement of all methods on additional
shapes. Every dotted line indicates a Dirichlet boundary condition. For the first shape,
optimized achieves significantly higher energy while using slightly less fiber than all baselines.
For the second shape, optimized achieves higher energy while using a similar amount of fiber
as concentric and less fiber than greedy and field-opt-greedy. For the third shape, optimized
saves approximately 70% of fiber usage while achieving similar energy as concentric. It also
achieves much higher energy than greedy and field-opt-greedy while using slightly more fiber.
For the last two shapes, compared to other baselines, optimized achieves significantly higher
energy while using a less or comparable amount of fiber.

more degrees of freedom (Figure 3.17b), demonstrating the need for some form of

regularization.

3.7.2 Ablation study of multi-resolution optimization

In this subsection, we study how the multi-resolution approach speeds up the optimiza-

tion process. For the multi-resolution case, we extract one fiber path, downsample its
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(a) Optimized low-resolution path (b) Optimized upsampled path

Figure 3.17: Optimization results with the Laplacian regularizer disabled. As shown on the
left, the optimizer successfully optimizes the low-resolution path. It fails to optimize the
fiber path after upsampling, as shown on the right.

(a) Multi-res, 293 s, 195.8 N·mm (b) Single-res, 485 s, 190.0 N·mm

Figure 3.18: Running time and the strain energy at 1 mm displacement for both single-
resolution and multi-resolution optimization. In this case, we save approximately 40% of
running time by multi-resolution optimization.

resolution by a factor of 20, optimize it, and upsample and optimize it three times,

with every optimization limited to 100 iterations. For the single-resolution case, we

also extract one fiber path, downsample its resolution by a factor of 2, optimize it and

limit the maximum number of optimization iterations to 400. For a fair comparison,

we use the same random seed for both cases when sampling starting points of the

greedy path extraction algorithm. As shown in Figure 3.18, both cases get similar

fiber paths with similar strain energy, but multi-resolution optimization reduces the

running time by approximately 40%.
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3.8 Discussion

In this work, we studied the task of fiber path planning in 3D printing for given external

loads, aiming at maximizing the stiffness. We proposed an end-to-end optimization

approach that optimizes regularized object stiffness directly to the fiber layout, rather

than an intermediate fiber orientation field, with the help of the adjoint method and

automatic differentiation. We perform planning by extracting fiber paths using a

greedy algorithm that lays fiber paths along stress directions, followed by coarse-to-fine

optimization. To apply our method, we first measure the effective moduli of plastic

and fiber by manufacturing and testing real 3D prints. We then study our method with

three baselines on four case studies and several additional shapes. The first baseline is

concentric fiber rings from Eiger, a leading digital manufacturing software package

developed by Markforged. The second baseline is our method with the optimization

part removed, producing fiber paths from the greedy path extraction algorithm. The

third baseline includes a fiber field optimization part which smooths the stress field

before using it in the greedy algorithm. We demonstrated that, both in simulation

and real experiments, our method could generate shorter fiber paths while achieving

greater stiffness (i.e., we improved the Pareto front). We also studied the effects of

removing the Laplacian regularizer and the multi-resolution optimization, showing the

Laplacian regularizer is necessary for the optimization to be stable and multi-resolution

optimization helps reduce the running time.

We would also like to mention some limitations of our method. First, our simulation

simplifies the task by assuming linear elasticity, restricting to in-plane stress, and

treating both plastic and fiber as isotropic materials with different Young’s moduli

and identical Poisson’s ratio. Lifting these assumptions would introduce greater

mathematical complexity, but would require no conceptual changes to our approach.

Additionally, the planning is not performed in real time. For example, to plan fiber

paths for the shape rectangle with two holes, our method uses 10 minutes and 18
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minutes to generate the two studied solutions, respectively. Relative to the time

required to design and print a part, this represents only a small increase. In addition,

the hyper-parameters may have to be tuned when the task changes. For example, if we

switch to a much larger shape, the scale of strain energy and the lengths of fiber paths

will change. We may have to adjust the weight of the Laplacian regularizer, balancing

the optimization stability and the variety of fiber paths, though this is usually easy to

tune in a few tries. Lastly, as our optimizer is gradient-based, the optimization may be

trapped in a local minimum. Thus a good initialization is important for our method,

and we may have to sample greedy paths several times to obtain a good one.
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Chapter 4

Gradient-Based Dovetail Joint

Shape Optimization for Stiffness

In manufacturing, people manufacture an object in several parts for various reasons,

including the size limit of the machine, the complex structure of the shape, etc.,

after which they can be assembled using joints. In this project, we study the task

of dovetail-joint shape optimization for stiffness. Instead of using search algorithms

or gradient-free optimizers, we use a gradient-based optimizer. To perform the

optimization, a simulator is needed to model the contact between the two parts of

a joint, and gradients on shape parameters are needed for efficient optimization. To

address these challenges, we propose to perform contact simulations using a penalty

approach alternatively on two sides of the joint, and use the adjoint method to calculate

gradients with respect to the shape parameters. We test our method by optimizing

the joint shapes in three different joint shape spaces, and evaluate optimized joint

shapes in both simulation and real tests. The experiments show that optimized joint

shapes achieve higher stiffness, both synthetically and in real tests.
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(a) Initial design (single dovetail joint),
228.4 N/mm

(b) Optimized design (single dovetail joint),
406.0 N/mm

(c) Initial design (complex dovetail joint),
518.1 N/mm

(d) Optimized design (complex dovetail joint),
1036.3 N/mm

Figure 4.1: Initial and optimized designs of single and complex dovetail joints with average
stiffness measured over three batches and external forces applied on the two sides. (a) (c):
initial (randomly chosen) single and complex dovetail joints. (b) (d): optimized single and
complex dovetail joints, which provide greater stiffness.

4.1 Introduction

Manufacturing is one of the essential activities of humans [Groover, 2020]. It involves

the design and assembly of different parts of an object, which is a standard and

common practice in the industry. For example, a wooden record crate can be made

and then assembled from five wood pieces connected by dovetail joints. Dovetail

joint [Ruiz et al., 1984], as shown in Figure 4.1, is a connector commonly used in

woodworking joinery, turbine blades, 3D printing, etc. It is, therefore, an important

question to ask: what is the optimal dovetail joint shape?

In this work, we study the problem of efficiently finding the optimal dovetail joint

design that maximizes the stiffness, given a dovetail joint design space and specified

external loads. We choose to study the dovetail joint for simplicity reasons—it is a

representative type of joint, and the method we develop should work for any joint

shape that is piecewise linear. To find the optimal design, we formalize the task as

an optimization problem, with the stiffness as a function of design parameters that

characterize the shape of the dovetail joint in the design space, calculate the gradient
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with respect to the design parameters, and directly optimize them using gradient

descent. However, optimizing the shape of a dovetail joint is challenging. First, we

need a simulator that can simulate the deformation of the joint given external loads,

while considering the contact between two parts of the joint. Second, we need to

compute the gradient of stiffness with respect to the design parameters.

To address the first challenge, we alternatively perform contact simulations using

the penalty approach [Huněk, 1993] on two sides of a joint. In every iteration, we

compute the deformation of one side of the joint while considering the other side as

rigid, and we penalize the elastic side penetrating the rigid side. By iteratively and

alternatively applying this approach on the two sides, we have a reasonably accurate

simulator for joint deformation simulation. As the simulation can be written as PDEs,

the stiffness maximization task is now a PDE-constrained optimization [De los Reyes,

2015]. We thus use the adjoint method [Errico, 1997, Cao et al., 2003] to calculate the

gradients of stiffness with respect to design parameters, which addresses the second

challenge.

To demonstrate the effectiveness of our method, we test it both in simulation and

in real tests. We first perform a gradient check by computing the gradients of stiffness

with respect to mesh vertex coordinates, both using the adjoint method and the

finite difference method, and compare the difference between these two. We then run

optimization on three different dovetail joint design spaces, each using two different

initial designs. Experiments show that optimized designs provide greater stiffness

compared to the initial ones, both in simulation and in real tests by 3D printing them.

We finally study the sensitivity of the optimization result with respect to material

parameters by optimizing using different Poisson’s ratios. Experiments show that the

optimization result is not sensitive to different Poisson’s ratios.
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4.2 Related work

4.2.1 Dovetail joint shape optimization

Researchers optimize the shapes of dovetail joints using different approaches. The

most straightforward approach is simply testing different design parameters. Kogo

et al. [2002] and Kogo et al. [2019] conducted tensile and shear tests on carbon-carbon

composite dovetail joints with different dovetail angles. Miyauchi et al. [2006] tested

wooden dovetail joints with different inclinations and base widths. Jeong et al. [2012]

tested different wooden dovetail joints for maximum tension load. Estenlund et al.

[2022] studied the dovetail design for mounting coils on rotors by building a simulator

and enumerating different dovetail angles. Another approach for dovetail optimization

is applying a gradient-free optimizer on a simulator. Hu et al. [2022] tested dovetails

with different combinations of tenon length, width, thickness, and angle, and studied

the effect of each design parameter using the linear model. Yang et al. [2018] used

commercial FEM software for simulation and optimized dovetail shapes for aero-engines

using several different gradient-free optimizers. Some researchers build (differentiable)

surrogate models for the simulators and optimize the surrogate models. For example,

Hahn and Cofer IV [2012] first optimized design parameters using a surrogate model

and further used other gradient-free optimizers to optimize design parameters that

are sensitive. In this work, instead of enumerating, using gradient-free optimizers

or surrogate models, we directly optimize dovetail design parameters on the FEM

simulator, using the adjoint method to compute the gradients.

4.2.2 PDE-constrained optimization

PDE-constrained optimization is a type of constrained optimization problems whose

constraints can be written as PDEs. See De los Reyes [2015] for a textbook. Specifically,

the objective function depends on both the design variable and the state variable, and
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the constraints between them can be written as PDEs. There are mainly two different

types of approaches [Herzog and Kunisch, 2010]: black-box and all-at-once. all-at-once

treats the design variable and the state variable as independent variables during

optimization, and researchers may use algorithms including Sequential quadratic

programming (SQP) Boggs and Tolle [1995] for this approach. black-box treats only

the design variable as the independent variable during optimization, and researchers

may use the adjoint method to calculate the total derivative of the objective with

respect to the design variable. See Givoli [2021] for a tutorial on the adjoint method.

In this work, we formalize the dovetail joint shape optimization problem as a PDE-

constrained optimization task and use the adjoint method with gradient descent to

solve it.

4.3 Method

The pipeline of our approach is shown in Figure 4.2. For an initial set of shape

parameters, we first calculate the displacement of the corresponding dovetail joint

given a fixed load size on the two sides. We simulate by alternatively applying a

contact solver with the penalty approach—specifically, we alternatively solve one side

of the joint, assuming the other side is rigid. We then use the adjoint method to

calculate the derivative of the displacement with respect to design parameters and use

line search to find the optimum step size for optimization using gradient descent.

4.3.1 Alternating penalty contact simulator

In this subsection, we describe how we simulate the deformation of a specific joint

given external loads. Assuming the material is isotropic, we use the linear elastic

model from Langtangen and Logg [2017]. Denoting the body as Ω, we have the
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Shape parameters

Solve the left-
hand side with 
the right-hand 

side rigid

Solve the right-
hand side with 
the left-hand 

side rigid

Iteration 1 Iteration 2

Alternating penalty contact simulator (Sec. 4.3.1)

Gradient calculation and optimization (Sec. 4.3.2)

More iterations

…

…

dJ
dθ

= − ∂J
∂u ( ∂F

∂u )
−1 ∂F

∂θ
+ ∂J

∂θ

Adjoint method Line search on gradient direction
Update

Gradient

Figure 4.2: Given a set of shape parameters, we first use the alternating penalty contact
simulator (§ 4.3.1) to calculate the deformation of the joint, and then use the adjoint method
to calculate the gradient and use line search to find the step size for gradient descent (§ 4.3.2).

equations governing the deformation on Ω as

−∇ · σ = f,

ε =
1

2

(
∇u+ (∇u)⊺

)
,

σ = λtr(ε)I + 2µε,

(4.1)

where σ is the stress tensor, f is the body force (0 in our case), ε is the strain tensor,

u is the displacement vector, λ and µ are Lamé parameters, and I is the identity

matrix. Under the assumption of plane stress, we have λ = Eν
1−ν2

and µ = E
2(1−ν2)

where

E is Young’s modulus of the material (we set it to 1 GPa), and ν is the Poisson’s ratio

of the material (we set it to 0.4). Equivalently, we are minimizing the total potential

energy Π which is defined as Alnæs et al. [2015]:

Π :=

∫

Ω

1

2
ε : σdA−

∫

Ω

f · udA−
∫

∂Ω

T · udx, (4.2)
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where the colon is the dot product between tensors and T is the traction force. For

reasonable deformations, we set T to 0.001 GPa for single dovetail joints and 0.003

GPa for complex and double dovetail joints (see Figure 4.3). We apply equal traction

forces on two sides of the joint as Neumann boundary conditions.

One difficulty is to model the contact between the two sides of the joint. As Bleyer

[2018], we use a penalty approach—solving one side while assuming the other side is

rigid, and we apply penalty directly on the displacement field u. Denote two sides of

the joint as ΩL and ΩR, and consider the case that we want to solve the deformation

on ΩL while considering ΩR rigid. For simplicity and the piecewise-linearity nature of

the boundary of dovetail joints, we fit lines to all the contacting edges (see § 4.4.1 for

more details) of ΩR and penalize u on ΩL if collide with the fitted lines. We have our

penalized total potential energy ΠL for ΩL as

ΠL :=

∫

ΩL

1

2
ε : σdA−

∫

ΩL

f ·udA−
∫

∂ΩL

T ·udx+wpen ·
∫

∂ΩL

softplus2(−sdf(u; ΩL,ΩR))dx,

(4.3)

where wpen is the weight of the penalization term, which we set to 1, softplus(x) =

(ln(1 + exp(kx))/k)2 and k is a scale factor that we set to 50, sdf is the signed distance

function and sdf(u; ΩL,ΩR) measures the signed distance from the deformed left-hand

side to the fitted lines of the deformed right-hand side (positive if outside and negative

if inside). We create meshes with a mesh step size of 0.5 mm using pygmsh [Schlömer]

and implement the simulator using FEniCS [Alnæs et al., 2015]. We alternatively

solve the two sides for four iterations, as it is usually enough for u to converge. Note

that the simulator works for any piecewise linear joints, not only for dovetail joints.

4.3.2 Gradient calculation and optimization

In this subsection, we describe, given the simulator, how we optimize the shape design

parameters θ. With the simulator, we can compute the corresponding displacement

field u(θ). We define the length change of the joint d(u(θ)) as the difference of average
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displacement in the horizontal direction between the left and right edges of the joint.

Note that maximizing the stiffness is equivalent to minimizing the displacement given

fixed traction. We define the optimization objective function L(θ) as

L(θ) := d(u(θ)) + wmin l · Lmin l(θ) + wmin w · Lmin w(θ), (4.4)

where Lmin l(·) and Lmin w(·) are regularizers, and wmin l and wmin w are weights for

the regularizers, both of which we set to 1. The minimum contact length regularizer

penalizes too short edges that are contacting:

Lmin l(θ) :=
∑

l∈contact(θ)

(max(min len− |l|, 0))2 , (4.5)

where contact(θ) is the set of all contacting edges (see § 4.4.1 for more details), | · |

measures the length of an edge, and we set min len to 1.5 mm. The minimum width

regularizer penalizes too small width of the joint:

Lmin w(θ) := (max(min width− width(θ), 0))2 , (4.6)

where width(·) measures the width of a joint (see § 4.4.1 for more details), and we set

min width to 3.5 mm.

To calculate the gradient of the objective function with respect to the design

parameters (dL(θ)
dθ

), we use the adjoint method, which provides the following result:

dL(θ)
dθ

= −∂L(θ)
∂u

(
∂F

∂u

)−1
∂F

∂θ
+

∂L(θ)
∂θ

, (4.7)

where F (u, θ) = 0 is the PDE corresponding to the simulator. We implement the

automatic gradient calculation using dolfin-adjoint [Mitusch et al., 2019, Dokken et al.,

2020] and PyTorch [Paszke et al., 2019b].
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To optimize θ, we use gradient descent. For every step, we perform a line search

along the gradient direction using SciPy [Virtanen et al., 2020b], finding step size

that satisfies strong Wolfe conditions [Wolfe, 1969, 1971]. If the line search fails, we

randomly sample a step size from N (0, 0.52). We perform 15 optimization steps and

keep the step with minimum d(u(θ)). Lastly, to prevent landing in design parameters

that are sensitive to manufacturing errors, every time we evaluate the objective function

or its gradient, we apply independent random noises sampled from N (0, 0.012) to

every dimension of θ three times and take the average.

4.4 Experiments

In this section, we study the effectiveness of our method. We present different dovetail

joint design spaces for all the experiments in § 4.4.1. We then provide simulated

results from the simulator (§ 4.4.2) and the correctness check of gradients on mesh

vertex coordinates (§ 4.4.3). We show the main result—the optimization results

in § 4.4.4, evaluating them both synthetically and in real experiments. Finally, to

better understand the effect of material parameters, we show the sensitivity test of

optimization results with respect to the Poisson’s ratio in § 4.4.5.

4.4.1 Shapes for experiments

As shown in Figure 4.3, we use three different joint design spaces for all the experiments.

We only visualize the left part of the joint, as the right part is complementary to it.

All joints are horizontally symmetric, so all simulation is only performed on the lower

half of the mesh for lower computational cost. The first design space is named single

dovetail joint (Figure 4.3a), which contains the simplest form of a dovetail joint and

three degrees of freedom. The second design space is called complex dovetail joint

(Figure 4.3b), which still contains only one dovetail shape but with a structure that
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Degrees of freedom (lower half)
Contact edges (lower half)

Width of the joint

25 mm

20 mm

(a) Single dovetail joint

Degrees of freedom (lower half)
Contact edges (lower half)

Width of the joint

25 mm

20 mm

(b) Complex dovetail joint
Degrees of freedom (lower half)

Contact edges (lower half)
Width of the joint

25 mm

10 mm 20 mm

40 mm

Length annotations18°

(c) Double dovetail joint

Figure 4.3: Three dovetail joint shape design spaces that are used in the experiments. All
designs are horizontally symmetric. (a) single dovetail joint with the simplest design of
dovetail; three degrees of freedom. (b) complex dovetail joint with a design that is more
complex; six degrees of freedom. (c) double dovetail joint with two dovetails and a non-
vertical boundary in the middle; six degrees of freedom. All contact edges and the width are
annotated for every design space.

is more complex and has six degrees of freedom. The third design space is double

dovetail joint (Figure 4.3c), which contains two dovetail structures, a non-vertical

boundary in the middle, and six degrees of freedom. We annotate all the contacting

edges for each design space, which are used in the contact penalizer and the minimum

contact length regularizer. We also label the width of every design space, which is

used in the minimum width regularizer.
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Solve the left-hand side with 
the right-hand side rigid

Solve the right-hand side with 
the left-hand side rigid

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6

Iteration 7 Iteration 8
Figure 4.4: Simulation results on a specific dovetail joint design. The alternating simulator
produces reasonable results as the number of iterations increases, and the results converge
in the end.

4.4.2 Alternating penalty contact simulator results

In this subsection, we visualize simulation results from the alternating penalty contact

simulator to demonstrate it is producing reasonable results, and the results are shown
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(a) Gradients on the left half; adjoint method

16 18 20 22 24 26 28

0

2

4

6

8

10

12

(b) Gradients on the left half; finite difference
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(c) Gradients on the right half; adjoint method
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(d) Gradients on the right half; finite difference

Figure 4.5: Gradient directions on three contacting edges calculated using the adjoint method
and the finite difference method. The two results are indistinguishable, which indicates the
gradient calculation is correct.

in Figure 4.4. As the number of iterations increases, the results evolve and converge

in the end.
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Clamp location

20 mm

Length annotation

(a) Single dovetail joint

20 mm

Clamp location
Length annotation

(b) Complex dovetail joint

15 mm

Clamp location
Length annotation

(c) Double dovetail joint

Figure 4.6: Tabs are added in real printings such that the universal testing machine can
clamp the printed parts.

4.4.3 Gradient correctness check

In this subsection, we check the correctness of our gradient computation. We calculate

the derivative of the displacement with respect to the coordinates of vertexes from the

mesh in two different approaches: the adjoint method and the finite difference method,

as shown in Figure 4.5. For the finite difference method, we use a step size of 10−4.

We only visualize gradients on three edges, as interior gradients should be all zero.

The two sets of gradients are indistinguishable, which infers our gradient calculation is

consistent with the finite difference method. The average relative difference from the

adjoint method results to the finite difference results is 1.82× 10−4, which is negligibly

small.
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Double dovetail joints

Initial design Optimized design

Single dovetail joints

Complex dovetail joints

Figure 4.7: Initial and optimized designs of dovetail joints. The optimized designs are similar
for the same design space though the initializations are very different.
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Double dovetail joints 
(traction = 0.003 GPa)

Initial design Optimized design

Single dovetail joints 
(traction = 0.001 GPa)

Complex dovetail joints 
(traction = 0.003 GPa)

Displacement = 0.471 mm Displacement = 0.372 mm

Displacement = 0.437 mm Displacement = 0.361 mm

Displacement = 0.348 mmDisplacement = 1.074 mm

Displacement = 1.269 mm Displacement = 0.356 mm

Displacement = 0.767 mm Displacement = 0.531 mm

Displacement = 0.803 mm Displacement = 0.517 mm

Figure 4.8: Simulated results and displacements of initial and optimized designs. The
displacements of the optimized designs are much smaller than those of the initial designs,
which indicates the optimization algorithm is working effectively.

4.4.4 Shape optimization for stiffness

Fabrication and experimental setup. We use Fusion 3601 to draw 3D shapes

and CHITUBOX2 and UVtools3 for slicing. We use the ELEGOO Saturn S resin 3D

1https://www.autodesk.com/products/fusion-360
2https://www.chitubox.com/
3https://github.com/sn4k3/UVtools
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Table 4.1: Real measured stiffness of initial and optimized designs over three batches. The
significant increase in stiffness indicates our algorithm successfully optimizes the joint shape
design.

Joint type Initial design Optimized design

Single dovetail joint
219.9±22.6 362.3±26.9
228.4±53.2 406.0±15.1

Complex dovetail joint
518.1±29.2 1036.3±61.6
553.3±55.7 1120.0±102.4

Double dovetail joint
380.6±23.8 527.4±48.3
360.2±12.1 611.8±64.0

printer to print laminates of ABS-like resin with a height of 5 mm. For the printed

parts to be assemblable, we introduce a gap of 0.1 mm between the joints. To measure

the stiffness of a joint, we use a universal testing machine Instron 600DX, which is

set to move at a speed of 20 mm/min until the tested object breaks and produces a

position-load curve. We also include tabs on two sides of the joint for the machine to

clamp, as shown in Figure 4.6: the parts on the left-hand side of the solid line are the

tabs, and the solid lines indicate where we clamp at.

Optimization and test results. For each design space, we randomly select two

different initial sets of shape parameters and optimize them for fifteen gradient descent

steps. We select the iteration with the smallest simulated displacement, and the results

are shown in Figure 4.7. The optimized results are similar though the initializations

are quite different. The simulated results are shown in Figure 4.8. We print three

copies of each design and test them on the universal testing machine with position-load

curves recorded. We measure the stiffness using the position change between a load

of 30 N and a load of 60 N, and the results are listed in Table 4.1. The significant

differences between the initial and optimized designs indicate the effectiveness of our

algorithm.
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Double dovetail joints

Single dovetail joints

Complex dovetail joints

Optimization result; poisson’s ratio = 0.4 Optimization result; poisson’s ratio = 0.3 Optimization result; poisson’s ratio = 0.2Initial design

Figure 4.9: Optimization results from the same initial design but using different Poisson’s
ratios. As the difference is negligible, we observe that the optimization results are not
sensitive to Poisson’s ratio.

4.4.5 Poisson’s ratio sensitivity test

This subsection studies the effect of material parameters on the optimization results. As

Young’s modulus is obviously not affecting our optimization process (if simultaneously

increasing the traction), we study whether changing Poisson’s ratio would change the

results, and the results are shown in Figure 4.9. As different Poisson’s ratios produce

almost the same optimization result, we observe that the results are not sensitive to

Poisson’s ratio.

4.5 Discussion

In this project, we studied the task of dovetail joint shape optimization to maxi-

mize its stiffness, and, as existing works, we formalized the task as an optimization

problem, viewing the stiffness of the joint as a function of shape design parameters.

Existing works use search algorithms, gradient-free optimizers, or surrogate models

for optimization, which have limited efficiency. To use gradient-based optimizers,

we first built our own contact simulator by alternatively simulating the deformation

of one side of the joint while considering the other side as rigid, using the penalty
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approach. We then use the adjoint method and gradient descent for optimization. For

experiments, we first verified the gradients were correct by comparing them to the

gradients calculated from the finite difference method. We then tested the optimized

joint shapes on different initializations in different dovetail shape design spaces, both

synthetically and in real experiments, showing that the optimized joints are much

stiffer than the initial ones. Note that our method is not restricted to dovetail joint

shape optimization but works for joints with piecewise linear joint boundaries.

We would also like to discuss some limitations and future directions of our approach.

First, the simulator has limited accuracy as several assumptions and simplifications are

made, e.g ., plane stress, fitting boundaries using lines for the penalty term, etc. Real

experiments showed that the simulator is still reasonably accurate, but future work can

be done on more accurate simulators. Besides, the optimization is not in real-time, and

most optimization (15 gradient descent steps) in this project takes 10 to 20 minutes

to finish on a laptop computer. However, compared to the manufacturing time, this

is acceptable, and there are amortized approaches that can significantly reduce the

running time. Finally, the optimized results from gradient-based optimizers can be

local minima. Possible solutions include using different initializations, introducing

randomness during optimization, etc.
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Chapter 5

Discussion

In this dissertation, we studied three shape design tasks with the help of gradient-

based optimizers. Compared to existing works that mostly rely on gradient-free

optimizers, sampling algorithms, or search algorithms, we proposed to use automatic

differentiation to compute the derivative of the objective function with respect to the

design parameters and use gradient-based optimizers to optimize them. In the first

project (Chapter 2), we aimed to find extruder paths for continuous fibers that can

compensate for the deformation caused by the fiber printing process. As the process

is difficult to be directly modeled, we build a simulator and a differentiable surrogate

of it using neural networks. We further reduce the running time by using a neural

network to amortize the cost of optimization. In the second project (Chapter 3), we

worked on finding locations to lay reinforcing fibers in plastic, aiming at maximizing

the stiffness of the 3D-printed composite. A linear elastic simulator was built to

calculate the deformation of the object given a specific fiber layout. We used the

adjoint method to compute the gradient and BFGS optimizer to find the optimal

fiber layout. In the third project (Chapter 4), we investigated the task of dovetail

joint shape optimization, where a simulator was built by alternatively solving the

deformation of one side of the joint while considering the other side rigid. We used the
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adjoint method for gradient calculation and gradient descent for optimization. In the

three projects, we tested our method in both simulation and real-world experiments,

showing that our approach is producing designs of high quality and that the amortized

approach provides real-time inferences and designs of comparable quality.

There are limitations to our approach, and we would also like to mention some

future directions. First, the accuracy of our simulator is limited, as several assumptions

and simplifications were made (e.g ., plane stress). Thus a future direction would

be creating simulators with higher quality. Additionally, the optimization is not

real-time, and the amortized approach sacrifices some accuracy. The optimization

usually takes 10 to 20 minutes to finish—though acceptable, can be improved. Future

directions can continue to speed up the optimization or increase the accuracy of the

amortized approach. Besides, hyperparameters may need to be tuned if the design

goal changes. For example, the weights of regularizes need to be adjusted if the design

is happening on a different scale, though usually, a few tries would be enough. Lastly,

gradient-based optimizers can be trapped in local minima. Future directions can be

introducing randomness to the optimization process or trying different initializations.
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Appendix A

Appendix for Chapter 2

A.1 Details about extruder path planning

A.1.1 Methods

Ours. As we discussed before in Section 2.3, we train a decoder (surrogate) us-

ing Equation 2.2 and an encoder using Equation 2.3, with the cost function defined

in Equation 2.6. We take the trained encoder ϕ∗(·) as our final model in use.

direct-learning. As we discussed in Section 2.4, we train direct-learning us-

ing Equation 2.4, with a regularizer as defined in Equation 2.7. Note that this is

equivalent to training to minimize the cost function L·(·, ·) in Equation 2.6.

direct-optimization. As described in Section 2.4, we build direct-optimization

as in Equation 2.5, with a trained surrogate of the physical realization process. Here,

to enforce that points θi are evenly distributed along the extruder path, we use a

slightly different cost function Ldo,·(·, ·):

Ldo,g(θ,u) := ddo(g,u) + λdo · Rdo(θ), (A.1)
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where we have a distance function ddo(·, ·) and a smooth regularizer Rdo(·). The

smooth regularizer Rdo(·) is derived from Equation 2.7 by requiring ||θi+1 − θi||2 to

be the same for all i:

Rdo(θ) :=
1

Sθ

n−1∑

i=2

(
θi+1 − θi

2
− θi − θi−1

2

)2

, (A.2)

where Sθ is the length of the extruder path θ; this intrinsically enforces points in θ

to be evenly spaced. To measure the distance between g and u, we first map them

into two functions fg(·) and fu(·), such that fg(s) ∈ R2 is the location if we walk a

distance s along the path g (assuming the path is piecewise linear), and similarly for

fu(·). Then the distance function is defined as

ddo(g,u) :=

∫ 1

0

∥∥fg(x · Sg)− fu(x · Su)
∥∥2 dx, (A.3)

where Sg and Su denote the lengths of paths g and u, respectively.

A.1.2 Data generation

Random curve generation. To build the dataset, we first need to generate some

random 2D curves, which can be used as extruder paths later. The curves should be

smooth and non-intersecting. For each path, we take both the x and y to be Gaussian

processes whose kernel function K(·, ·) is

K(x, x′) := exp

(
−sin2

(
(x− x′)/2

)

2 l2

)
, (A.4)

with the two axes independent and l = 0.1. We use elliptical slice sampling [Murray

et al., 2010] (New BSD License): for each path, we start from 1,000 points on a unit

circle, and sample 1,000 times. To avoid intersections, we use a log-likelihood of −∞

79



Carbon fiber 
Print 1

Carbon fiber 
Print 2

Kevlar 
Print 1

Kevlar 
Print 2

Amplitudes from 3.0 cm to 4.7 cm Amplitudes from 4.8 cm to 6.5 cm

Figure A.1: We print paths shaped as sine functions with amplitudes from 3.0 cm to 6.5 cm
on the Markforged Mark Two printer, using carbon fiber and Kevlar, respectively. We print
everything twice.

for a self-intersecting path, and a log-likelihood of 0 for a non-intersecting path. We

generate 10,000 paths using this approach.

Simulator. Since it is time-consuming to print every extruder path we generate in

the last step on a real printer, we build a simulation system by using Bullet [Coumans,

2010] to help us generate fiber paths. The simulator is also used in our evaluation. We

calibrate the simulator on two materials—carbon fiber and Kevlar, respectively. To

calibrate, we print paths shaped as sine functions with amplitudes ranging from 3.0

cm to 6.5 cm on the Markforged Mark Two printer (Figure A.1). We then measure

the amplitudes of the printed fiber paths, which will be lower than the amplitudes of

the extruder paths because of smoothing, and fit lines to actual amplitude vs. extruder
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b) simulator tuned for carbon fiber c) simulator tuned for Kevlara) lines fitted on real data
Figure A.2: (a) We print paths shaped as sine functions with different amplitudes, collect
amplitudes of the printed fiber paths, and fit lines through the data we collected. We
experiment with two materials—carbon fiber and Kevlar, and the identity line is also
visualized. (b) and (c) We select two sets of simulator hyper-parameters with their simulation
results closest to the lines we get from the previous step for carbon fiber and Kevlar,
respectively.

Extruder path Simulated fiber path

Figure A.3: Samples from our dataset. We plot both the extruder paths and the simulated
carbon fiber paths.

amplitude (Figure A.2a). After that, we perform a grid search on the parameters of

the simulator (such as stiffness and friction), run simulations with the sine functions as

extruder paths, and collect data pairs of extruder path amplitudes and simulated fiber

path amplitudes. We end up with calibrated simulators for carbon fiber (Figure A.2b)

and Kevlar (Figure A.2c), by selecting the set of parameters for each having the

minimum sum of squared distances between the fitted line from Figure A.2a) and the

collected simulation data points. Finally, we run the tuned simulators on the generated

extruder paths. Though we have conducted experiments with both materials, due to

space constraints, the experiments in the paper use data generated from the carbon
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fiber simulator. We visualize some extruder paths and simulated carbon fiber paths

in Figure A.3.

A.1.3 Mapping from a path to another

We have to design a neural network that can take in an input path (Rn×2) and output

another path (Rn×2), which can be used for encoder, decoder, and direct-learning.

Both paths are sequences of n 2D coordinates. For the purpose of illustration, we use

decoder as an example here. Now the input is the extruder path θ, and the output is

the resulting fiber path u. Remember θi ∈ R2 is the i-th row of θ. Due to the intrinsic

equivariant property of the problem, one natural idea is to have a neural network that

takes in a certain number of points near θi in θ and outputs the corresponding point

in u (i.e., ui), and we iterate over every i, as a window sliding over θ. Note that we

used the same neural network for all i’s.

We thus use a multilayer perceptron (MLP), which takes 2m+ 1 points (we set

m = 30) and outputs one point. We take θi as the starting point and resample m

points both forward and backward along the path θ. To be specific, as in § A.1.1, we

first map θ into a function fθ(·) such that fθ(s) ∈ R2 is the location if we start from

θ1 and walk a length of s on the path. We further set fθ(s) := fθ(0) for s < 0 and

fθ(s) := fθ(Sθ) for s > Sθ, where Sθ is the length of extruder path θ. We denote the

distance of walking from θ1 to θi as si, i.e., fθ(si) = θi. The input to the MLP is:

[f−m,f−m+1, · · · ,f0, · · · ,fm]
⊺, (A.5)

where

fi := fθ(si + i · s0)− fθ(si), (A.6)

and s0 = 0.03 is the step size. Since the problem is intrinsically translation-equivariant,

we normalize every fi by subtracting fθ(si), as shown in the above equation.
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Table A.1: The architecture of the MLP used in extruder path planning

Type Configurations

Fully connected 4m+2 to 500
ReLU N/A

Fully connected 500 to 200
ReLU N/A

Fully connected 200 to 100
ReLU N/A

Fully connected 100 to 50
ReLU N/A

Fully connected 50 to 25
ReLU N/A

Fully connected 25 to 2

Table A.2: Path-planning evaluation of direct-optimization of the average Chamfer
distance on the first 40 samples in the test set evaluated in simulation

Regularizer weight 0.0001 0.0003 0.0006 0.001

direct-optimization 0.0171 0.0161 0.0153 0.0167

A.1.4 Hyper-parameters and neural network training

The architecture of the MLP is shown in Table A.1, and we implement it in Py-

Torch [Paszke et al., 2019b]. We coarsely tuned the architecture, including the number

of hidden layers (from 1 to 6) and the size of each hidden layer. We noticed that the

accuracy is not largely affected by the architecture, as long as there is at least one

hidden layer. We split the dataset into 90% training (9,000 paths), 5% validation

(500 paths), and 5% testing (500 paths), and we use the Adam optimizer [Kingma

and Ba, 2015] with a learning rate of 1×10−3, a learning rate exponential decay of

0.95 per epoch, and a batch size of 1 (path). We train every model—the decoder,

the encoder, and direct-learning—for 10 epochs. We use our internal cluster with

7 servers with 14 Intel(R) Xeon(R) CPUs. For our method and direct-learning,

we train them with different regularizer weights λ = 0.1, 0.3, 0.6, 1.0, and 1.5. For

direct-optimization, we use the BFGS implementation in SciPy [Virtanen et al.,
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Uncontrollable segments 
of the soft robot

Region that the obstacle 
is sampled from

Controllable segments of 
the soft robot

Fixed bottom

Figure A.4: We visualize the soft robot with controllable segments in color, uncontrollable
segments in black. The red region shows where we sample the center of the obstacle—a
sector region with an angle of 60◦, inner and outer radiuses of 4 and 5, respectively.

2020a], with a gradient tolerance of 1×10−7. Since its running time is extremely

long, we tune its regularizer weight on the first 40 test samples (Table A.2) and

select the one with the best performance. To train the needed neural networks, it

takes approximately 10 minutes for direct-optimization, approximately 1 hour for

direct-learning, and approximately 5 days for our method. Note that we only need

to train once so that the training costs are amortized.

A.2 Details about constrained soft robot inverse

kinematics

A.2.1 Robot setting

We adopt the snake-like soft robot that was used in Xue et al. [2020a]. The robot

has an original height of 10 and an original width of 0.5, and its bottom is fixed.
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We can control the stretch ratio of 40 segments (20 on the left-hand side and 20 on

the right-hand side), as visualized in colors in Figure A.4. The stretch ratios are

restricted to be between 0.8 and 1.2. The physical realization of the robot consists of

the locations of its 103 vertexes, as shown in Figure A.4.

A.2.2 Methods

Ours. We follow Section 2.3 with the cost function defined as in Equation 2.9, and

the obstacle location is randomly sampled.

direct-learning. We follow Section 2.4 with Rdl(·) defined as in Equation 2.11.

Note that since we do not have access to the physical realization u, we cannot have a

barrier function term for the obstacle. Thus, for direct-learning, we still randomly

sample the obstacle location, but we guarantee during training, the obstacle does not

collide with the robot in every specific training sample.

direct-optimization. We follow Section 2.4 with the cost function defined as

in Equation 2.9 and the obstacle location randomly sampled. Note that this baseline

is similar to the approach used in Xue et al. [2020a]. The major difference is that we

train the surrogate using supervised loss (as shown in Equation 2.2), and Xue et al.

[2020a] trained their surrogate using a physically informed loss that minimizes the

total potential energy.

A.2.3 Data generation

We first randomly sample the design vector θ with each dimension i.i.d. uniformly

between 0.8 and 1.2. For each design vector θ, we solve the governing PDE with the

finite element method [Hughes, 2012] to obtain the corresponding physical realization

u of the robot. Note that the obstacle location is randomly sampled during training
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Table A.3: The architecture of the MLP used in constrained soft robot inverse kinematics

direct-learning Decoder Encoder

Type Configurations Type Configurations Type Configurations

Fully connected 4 to 128 Fully connected 40 to 128 Fully connected 4 to 128
ReLU N/A ReLU N/A ReLU N/A

Fully connected 128 to 256 Fully connected 128 to 256 Fully connected 128 to 256
ReLU N/A ReLU N/A ReLU N/A

Fully connected 256 to 128 Fully connected 256 to 128 Fully connected 256 to 128
ReLU N/A ReLU N/A ReLU N/A

Fully connected 128 to 40 Fully connected 128 to 206 Fully connected 128 to 40
Sigmoid N/A / / Sigmoid N/A

Linear map 0.2(2x−1) / / Linear map 0.2(2x−1)

ObstacleTarget

Failure 
case 1

Failure 
case 2

Direct learning Ours Direct optimization

Figure A.5: Failure cases of our method in test set on soft robot. In rare cases, our method
might miss the target by a short distance (Samples 1 and 2) or touch the obstacle (Sample
2).

and randomly sampled with a fixed random seed (we set to 0) during testing. The

center of the obstacle is uniformly sampled from a sector region, as shown in Figure A.4,

with an angle of 60◦, an inner radius of 4, and an outer radius of 5. We altogether

generate 40,000 data samples.

86



A.2.4 Hyper-parameters and neural network training

We use MLP for all models (encoder, decoder, and direct-learning) with ReLU

as the activation function and 3 hidden layers of sizes 128, 256, 128, respectively

(Table A.3). We coarsely tuned the architecture, including the number of hidden layers

(from 1 to 4) and the size of each hidden layer. Similarly, we noticed that the accuracy

is not largely affected by the architecture, as long as there is at least one hidden layer.

Note that for the input and output of the neural network, we subtract 1 from all

stretch ratios such that they are always between -0.2 and 0.2, and we use displacement

of each vertex rather than its absolute location since displacement values are mostly

centered around 0. In addition, to ensure that the encoder and direct-learning

always output stretch ratios (minus one) between -0.2 and 0.2, we apply a sigmoid

layer at the end of both the encoder and direct-learning, and linearly map the

sigmoid output to be between -0.2 and 0.2 (as in Table A.3). We use the same trick

in direct-optimization to ensure the stretch ratios never fall out of range.

We implement all neural networks in PyTorch [Paszke et al., 2019b]. We split the

dataset into 90% training (36,000 samples), 7.5% validation (3,000 samples), and 2.5%

testing (1,000 samples), and we use the Adam optimizer [Kingma and Ba, 2015] with a

learning rate of 1×10−3, a learning rate exponential decay of 0.98 per epoch, and a batch

size of 8. We train every model—the decoder, the encoder, and direct-learning—for

200 epochs. For our method and all baselines, we experiment with different regularizer

weights λ2 = 0.03, 0.05, 0.07, and 0.09. For direct-optimization, we use the BFGS

implementation in SciPy [Virtanen et al., 2020a], with a gradient tolerance of 1×10−7.

We use our internal cluster with 7 servers with 14 Intel(R) Xeon(R) CPUs. To train

the needed neural networks, it takes approximately 2 hours for direct-optimization,

approximately 4 hours for direct-learning, and approximately 4.5 hours for our

method. Note that since we only need to train once, the training costs are amortized.
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Table A.4: Ablation study: linear encoder vs. non-linear encoder for soft-robot evaluated on
test set. All encoders are trained on non-linear decoders with a regularizer weight of 0.05

#successful cases (over 1,000) Avg. distance to target on successful cases

Non-linear encoder 975.0±3.9 0.0464±0.0018
Linear encoder 710.7±24.8 0.1324±0.0276

A.2.5 Failure cases

Since our encoder and decoder are both neural networks, there might be some gener-

alization errors. We show two failure cases of our method in test set in Figure A.5.

The design proposed by our method misses the target by a short distance in the first

example, and both touches the obstacle and misses the target by a short distance in

the second example.

A.2.6 Ablation study: linear encoder

To demonstrate the non-linearity in our encoder is necessary, we train a linear encoder

on the pre-trained non-linear decoder, following exactly the same training procedure

mentioned in § A.2.4. We show the number of cases the robot successfully avoids

the obstacle and the average Euclidean distance to the target for successful cases

in Table A.4. Linear encoder violates the obstacle constraints approximately 11.6

times as much as the non-linear encoder, and the average Euclidean distance for

successful cases is approximately 2.9 times as much as the non-linear encoder. Two

samples are shown in Figure A.6. In both samples, the linear encoder misses the

target by a short distance, and in the second sample, the linear encoder violates the

obstacle constraint.
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ObstacleTarget

Sample 1

Sample 2

Linear encoder Non-linear encoder (Ours)

Figure A.6: Soft-robot evaluation of linear encoder vs. non-linear encoder (ours) on examples
from the test set. Linear encoder both violates the constraints (Sample 2) and misses the
target (Samples 1 and 2).
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Appendix B

Appendix for Chapter 3

B.1 Field optimization

Given a stress field σ, we would like to find a fiber field v : Ω → R2 such that (1) its

direction is aligned with σ; (2) it is smooth. We solve v by minimizing an objective

function that reflects both proprieties:

L(v;σ) := αstress · Lstress(v̂;σ) + αsmooth · Lsmooth(v̂), (B.1)

where αstress and αsmooth are hyper-parameters, and

v̂(x, y) := v(x, y)/||v(x, y)|| (B.2)

is the normalized v, as the objective function should be invariant regardless of the

length of v(x, y). Note that the objective function should also be invariant if we

randomly flip some v(x, y)’s, which needs some special handling, as we will discuss

below.
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Consistent with σ. For a specific point (x, y) ∈ Ω, we calculate the tension in the

stress field σ along v̂(x, y), which is v̂(x, y)⊺σ(x, y)v̂(x, y). We then integrate it over

Ω and get

Lstress(v̂;σ) := −
∫∫

Ω

v̂(x, y)⊺σ(x, y)v̂(x, y)dxdy, (B.3)

where the negative sign indicates we would like to maximize the tension along the

field direction.

Smoothness. We penalize the squared Frobenius norm of the gradient of v̂:

Lsmooth(v̂) :=

∫∫

Ω

||∇v̂(x, y)||2Fdxdy. (B.4)

Note that the penalty should be invariant to flips of v̂(x, y)’s, so we handle this

invariance when calculating the finite difference:

||∇v̂(x, y)||2F :=min

(∣∣∣∣∣∣∣∣ v̂(x + h, y) − v̂(x, y)

h

∣∣∣∣∣∣∣∣2 ,

∣∣∣∣∣∣∣∣ v̂(x + h, y) + v̂(x, y)

h

∣∣∣∣∣∣∣∣2
)

+ min

(∣∣∣∣∣∣∣∣ v̂(x, y + h) − v̂(x, y)

h

∣∣∣∣∣∣∣∣2 ,

∣∣∣∣∣∣∣∣ v̂(x, y + h) + v̂(x, y)

h

∣∣∣∣∣∣∣∣2
)

,

(B.5)

where h is the step size.

In the experiments, we set αstress to 1 and αsmooth to 0.02. We use the BFGS

optimizer with a gradient tolerance of 1 × 10−6 and set the maximum number of

iterations to 100.
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