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ABSTRACT
It is common to manufacture an object by decomposing it into
parts that can be assembled. This decomposition is often required
by size limits of the machine, the complex structure of the shape,
etc. To make it possible to easily assemble the final object, it is
often desirable to design geometry that enables robust connections
between the subcomponents. In this project, we study the task of
dovetail-joint shape optimization for stiffness using gradient-based
optimization. This optimization requires a differentiable simulator
that is capable of modeling the contact between the two parts of a
joint, making it possible to reason about the gradient of the stiffness
with respect to shape parameters. Our simulation approach uses a
penalty method that alternates between optimizing each side of the
joint, using the adjoint method to compute gradients. We test our
method by optimizing the joint shapes in three different joint shape
spaces, and evaluate optimized joint shapes in both simulation and
real-world tests. The experiments show that optimized joint shapes
achieve higher stiffness, both synthetically and in real-world tests.
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1 INTRODUCTION
The dovetail joint has been used in manufacturing for millennia;
Figure 1, for example, is a dovetailed box from an Egyptian tomb
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Figure 1: Dovetailed box fromHatnefer’s tomb, ca. 1492–1473
B.C. (Public domain image via The Metropolitan Museum of
Art.)

estimated to have been made circa 1492–1473 B.C. In modern manu-
facturing, dovetail joints [Ruiz et al. 1984], as shown in Figure 2, are
commonly used to connect components in woodworking, turbine
blades, 3D printing, etc. In woodworking, there are widely-used
heuristics regarding the appropriate angles for hardwood versus
softwood [Schwarz and Moskowitz 2009], but how can we deter-
mine the optimal dovetail shape under more general conditions
and with different materials?

In this work, we study the problem of efficiently finding the
optimal dovetail joint design that maximizes the stiffness, given a
design space and specified external loads. We choose to study the
dovetail joint for its simplicity and ubiquity, but the method we
develop should work for any joint shape that is piecewise linear. To
find the optimal design, we formalize the task as an optimization
problem, with the stiffness as a function of design parameters that
characterize the shape of the dovetail joint in the design space.
We calculate the gradient of stiffness with respect to the design
parameters, and directly optimize them using gradient descent.
However, optimizing the shape of a dovetail joint is challenging.
First, we need a simulator that can simulate the deformation of the
joint given external loads, while considering the contact between
two parts of the joint. Second, we need to compute the gradient of
stiffness with respect to the design parameters.

To address the first challenge, we perform contact simulations
using the penalty approach [Huněk 1993], alternating between the
two sides of the joint. In every iteration, we compute the deforma-
tion of one side of the joint while considering the other side as rigid,
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(a) Initial design (single dovetail
joint), 228.4 N/mm

(b) Optimized design (single dove-
tail joint), 406.0 N/mm

(c) Initial design (complex dove-
tail joint), 518.1 N/mm

(d) Optimized design (complex
dovetail joint), 1036.3 N/mm

Figure 2: Initial and optimized designs of single and complex
dovetail joints with average stiffness measured over three
batches and external forces applied on the two sides. (a) (c):
initial (randomly chosen) single and complex dovetail joints.
(b) (d): optimized single and complex dovetail joints, which
provide greater stiffness.

and we penalize the elastic side’s penetrating the rigid side. By itera-
tively applying this alternating approach on the two sides, we have
a sufficiently accurate simulator for joint deformation simulation.

As the simulation can be written as partial differential equations
(PDEs), the stiffness maximization task can now be understood as a
PDE-constrained optimization [De los Reyes 2015]. To perform this
optimization, we use the adjoint method [Cao et al. 2003; Errico
1997] to calculate the gradients of stiffness with respect to design
parameters.

To demonstrate the effectiveness of our method, we test it both in
simulation and in real tests. We first verify the accuracy of the gra-
dients by comparing the adjoint method with the finite difference
method. We then run optimization on three different dovetail joint
design spaces, each using two different initial designs. Experiments
show that optimized designs provide greater stiffness compared to
the initial ones, both in simulation and in real tests on 3D-printed
structures. We finally study the sensitivity of the optimization result
with respect to material parameters by optimizing using different
Poisson’s ratios. Experiments show that the optimization result is
not sensitive to different Poisson’s ratios.

2 RELATEDWORK
2.1 Dovetail joint shape optimization
Researchers have explored the optimization of dovetail joints using
different approaches. The most straightforward approach is simply
testing different design parameters. Kogo et al. [2002] and Kogo
et al. [2019] conducted tensile and shear tests on carbon-carbon
composite dovetail joints with different dovetail angles. Miyauchi
et al. [2006] tested wooden dovetail joints with different inclinations
and base widths. Jeong et al. [2012] tested different wooden dovetail
joints for maximum tension load. Estenlund et al. [2022] studied the
dovetail design for mounting coils on rotors by building a simulator
and enumerating different dovetail angles. Another approach for
dovetail optimization is applying a gradient-free optimizer on a
simulator. Hu et al. [2022] tested dovetails with different combina-
tions of tenon length, width, thickness, and angle, and studied the

effect of each design parameter using the linear model. Yang et al.
[2018] used commercial FEM software for simulation and optimized
dovetail shapes for aero-engines using several different gradient-
free optimizers. Some researchers build (differentiable) surrogate
models for the simulators and optimize the surrogate models. For
example, Hahn and Cofer IV [2012] first optimized design parame-
ters using a surrogate model and further used other gradient-free
optimizers to optimize design parameters that are sensitive. In this
work, instead of enumerating, using gradient-free optimizers or
surrogate models, we directly optimize dovetail design parameters
in the FEM simulation, using the adjoint method to compute the
gradients.

2.2 PDE-constrained optimization
PDE-constrained optimization is a type of constrained optimization
problems whose constraints can be written as partial differential
equations reflecting the physics that determine the behavior of a
system. See, e.g., De los Reyes [2015] for a comprehensive intro-
duction. In a PDE-constrained optimization problem, the objective
function depends on both the design variable and the state variable,
and the constraints between them can be written as PDEs. There
are two major types of approaches to solving PDE constrained
optimization problems [Herzog and Kunisch 2010]: black-box and
all-at-once. all-at-once methods treat the design variable and the
state variable as being independent during optimization, and re-
searchers may use algorithms such as sequential quadratic program-
ming (SQP) [Boggs and Tolle 1995] to solve the problem. black-box
methods treat only the design as the independent variable during
optimization, and researchers may use the adjoint method to calcu-
late the total derivative of the objective with respect to the design
variable. See Givoli [2021] for a tutorial on the adjoint method. In
this work, we formalize the dovetail joint shape optimization prob-
lem as a PDE-constrained optimization task and use the adjoint
method with gradient descent to solve it.

3 METHOD
The pipeline of our approach is shown in Figure 3. For an initial
set of shape parameters, we first calculate the displacement of the
corresponding dovetail joint given a fixed external load on the
two sides. We simulate this by employing a contact solver with
the penalty approach, alternating between sides while assuming
the other side is rigidly fixed in the deformed configuration of the
previous iteration. After this alternating solver converges, we use
the adjoint method to calculate the derivative of the displacement
with respect to design parameters and use line search to find an
appropriate step size in the direction of steepest descent.

3.1 Alternating penalty contact simulator
In this subsection, we describe how we simulate the deformation
of a specific joint given external loads. Assuming the material is
isotropic, we use the linear elastic model from Langtangen and Logg
[2017]. Denoting the body as Ω, we have the equations governing
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Shape parameters

Solve the left-
hand side with 
the right-hand 

side rigid

Solve the right-
hand side with 
the left-hand 

side rigid

Iteration 1 Iteration 2

Alternating penalty contact simulator (Sec. 4.3.1)

Gradient calculation and optimization (Sec. 4.3.2)

More iterations

…

…

dJ
dθ

= − ∂J
∂u ( ∂F

∂u )
−1 ∂F

∂θ
+ ∂J

∂θ

Adjoint method Line search on gradient direction
Update

Gradient

Figure 3: Given a set of shape parameters, we first use the alternating penalty contact simulator (§ 3.1) to calculate the
deformation of the joint, and then use the adjoint method to calculate the gradient and use line search to find the step size for
gradient descent (§ 3.2).

the deformation on Ω as
−∇ · 𝝈 = 𝑓 ,

𝜺 =
1
2
(
∇u + (∇u)⊺

)
,

𝝈 = 𝜆tr(𝜺)𝐼 + 2𝜇𝜺,

(1)

where 𝝈 is the stress tensor, 𝑓 is the body force (0 in our case), 𝜺
is the strain tensor, u is the displacement vector, 𝜆 and 𝜇 are Lamé
parameters, and 𝐼 is the identity matrix. Under the assumption of
planar stress, we have 𝜆 = 𝐸𝜈

1−𝜈2 and 𝜇 = 𝐸
2(1−𝜈2 ) where 𝐸 is the

Young’s modulus of the material (we set it to 1 GPa), and 𝜈 is the
Poisson’s ratio of the material (we set it to 0.4). Equivalently, we are
minimizing the total potential energy Π which is defined as [Alnæs
et al. 2015]:

Π B

∫
Ω

1
2
𝜺 : 𝝈d𝐴 −

∫
Ω
𝑓 · ud𝐴 −

∫
𝜕Ω

𝑇 · ud𝑥, (2)

where the colon is the dot product between tensors and 𝑇 is the
traction force. For reasonable deformations, we set 𝑇 to 0.001 GPa
for single dovetail joints and 0.003 GPa for complex and double
dovetail joints (see Figure 4). We apply equal traction forces on two
sides of the joint as Neumann boundary conditions.

One difficulty is to model the contact between the two sides of
the joint. As in Bleyer [2018], we use a penalty approach—solving
one side while assuming the other side is rigid, and applying the
penalty directly on the displacement field u. Denote the two sides of
the joint as Ω𝐿 and Ω𝑅 , and consider the case that we want to solve

the deformation on Ω𝐿 while considering Ω𝑅 rigid. For simplicity
and due to the piecewise-linear boundary of the joints, we fit lines
to all the contacting edges (see § 4.1 for more details) of Ω𝑅 and
penalize u on Ω𝐿 if it collides with the fitted lines. We have our
penalized total potential energy Π𝐿 for Ω𝐿 as

Π𝐿 B

∫
Ω𝐿

1
2
𝜺 : 𝝈d𝐴 −

∫
Ω𝐿

𝑓 · ud𝐴 −
∫
𝜕Ω𝐿

𝑇 · ud𝑥 (3)

+𝑤pen ·
∫
𝜕Ω𝐿

softplus2 (−sdf(u;Ω𝐿,Ω𝑅))d𝑥, (4)

where𝑤pen is the weight of the penalization term, which we set to
1, softplus(𝑥) = (ln(1 + exp(𝑘𝑥))/𝑘)2 and 𝑘 is a scale factor that
we set to 50, sdf is the signed distance function and sdf(u;Ω𝐿,Ω𝑅)
measures the signed distance from the deformed left-hand side to
the fitted lines of the deformed right-hand side (positive if outside
and negative if inside). We create meshes with a mesh step size of
0.5 mm using pygmsh [Schlömer 2021] and implement the simulator
using FEniCS [Alnæs et al. 2015]. We find that four iterations on
both sides are usually enough for u to converge. Note that the
simulator works for any piecewise linear joints, not only for dovetail
joints.

3.2 Gradient calculation and optimization
In this subsection, we describe how we optimize the shape design
parameters 𝜃 . With the simulator, we can compute the displacement
field u(𝜃 ). We define the length change of the joint 𝑑 (u(𝜃 )) as
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Degrees of freedom (lower half)
Contact edges (lower half)

Width of the joint

25 mm

20 mm

(a) Single dovetail joint

25 mm

20 mm

Degrees of freedom (lower half)
Contact edges (lower half)

Width of the joint

(b) Complex dovetail joint

Degrees of freedom (lower half)
Contact edges (lower half)

Width of the joint

25 mm

10 mm 20 mm

40 mm

Length annotations18°

(c) Double dovetail joint

Figure 4: Three dovetail joint shape design spaces that are used in the experiments. All designs are top-to-bottom symmetric.
(a) single dovetail joint is the simplest design; three degrees of freedom. (b) complex dovetail joint with a design that is more
complex; six degrees of freedom. (c) double dovetail joint with two dovetails and a non-vertical boundary in the middle; six
degrees of freedom. All contact edges and the width are annotated for every design space.

the difference of average displacement in the horizontal direction
between the left and right edges of the joint. Note that maximizing
the stiffness is equivalent to minimizing the displacement given
fixed traction. We define the optimization objective function L(𝜃 )
as

L(𝜃 ) B 𝑑 (u(𝜃 )) +𝑤min_l · Lmin_l (𝜃 ) +𝑤min_w · Lmin_w (𝜃 ), (5)

where Lmin_l (·) and Lmin_w (·) are regularizers, and 𝑤min_l and
𝑤min_w are weights for the regularizers, both of which we set to 1.
The minimum contact length regularizer penalizes contact between
edges that are too short:

Lmin_l (𝜃 ) B
∑︁

𝑙∈contact(𝜃 )

(
max(min_len − |𝑙 |, 0)

)2
, (6)

where contact(𝜃 ) is the set of all contacting edges (see § 4.1 for
more details), |· |measures the length of an edge, andwe set min_len
to 1.5 mm. The minimum width regularization penalty prevents
the joint from being too small:

Lmin_w (𝜃 ) B
(
max(min_width − width(𝜃 ), 0)

)2
, (7)

where width(·) measures the width of a joint (see § 4.1 for more
details), and we set min_width to 3.5 mm.

To calculate the gradient of the objective function with respect
to the design parameters, i.e. dL(𝜃 )

d𝜃 , we use the adjoint method,
which provides the following result:

dL(𝜃 )
d𝜃

= − 𝜕L(𝜃 )
𝜕u

(
𝜕𝐹

𝜕u

)−1
𝜕𝐹

𝜕𝜃
+ 𝜕L(𝜃 )

𝜕𝜃
, (8)

where 𝐹 (u, 𝜃 ) = 0 is the PDE corresponding to the simulator. We im-
plement the automatic gradient calculation using dolfin-adjoint [Dokken
et al. 2020; Mitusch et al. 2019] and PyTorch [Paszke et al. 2019].

To optimize 𝜃 , we use gradient descent. For every step, we per-
form a line search along the gradient direction using SciPy [Vir-
tanen et al. 2020], finding a step size that satisfies strong Wolfe
conditions [Wolfe 1969, 1971]. If the line search fails, we randomly
sample a step size from N(0, 0.52), where a negative step size indi-
cates moving in the opposite direction. This approach introduces
controlled noise to prevent entrapment in local minima.We perform
15 optimization steps and keep the step with minimum 𝑑 (u(𝜃 )).

Lastly, to prevent landing in design parameters that are sensitive to
manufacturing errors, every time we evaluate the objective func-
tion or its gradient, we apply independent random noise sampled
from N(0, 0.012) to every dimension of 𝜃 three times and take the
average.

4 EXPERIMENTS
In this section, we study the effectiveness of our method.We present
different dovetail joint design spaces for all the experiments in § 4.1.
We then provide simulated results (§ 4.2) and check the correct-
ness of gradients on mesh vertex coordinates (§ 4.3). We show the
main result—the optimization results in § 4.4, evaluating them both
synthetically and in real experiments. Finally, to better understand
the effect of material parameters, we show the sensitivity test of
optimization results with respect to the Poisson’s ratio in § 4.5.

4.1 Shapes for experiments
As shown in Figure 4, we use three different joint design spaces for
all the experiments. We only visualize the left part of the joint, as
the right part is complementary to it. All joints are top-to-bottom
symmetric, so all simulation is only performed on the lower half
of the mesh for lower computational cost. The first design space is
named single dovetail joint (Figure 4a), which contains the simplest
form of a dovetail joint and three degrees of freedom. The second
design space is called complex dovetail joint (Figure 4b), which still
contains only one dovetail shape but with a structure that is more
complex and has six degrees of freedom. The third design space
is double dovetail joint (Figure 4c), which contains two dovetail
structures, a non-vertical boundary in the middle, and six degrees
of freedom. We annotate all the contacting edges for each design
space, which are used in the contact penalizer and the minimum
contact length regularizer. We also label the width of every design
space, which is used in the minimum width regularize.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4

Solve the left-hand side with 
the right-hand side rigid

Solve the right-hand side with 
the left-hand side rigid

Figure 5: Simulation results on a specific dovetail joint design. The alternating simulator produces reasonable results as the
number of iterations increases, and the results converge in the end.

4.2 Alternating penalty contact simulator
results

In this subsection, we visualize simulation results from the alter-
nating penalty contact simulator to demonstrate it is producing
reasonable results, and the results are shown in Figure 5. In the
first iteration, we undertake the two-step process: first, solving the
left-hand side while keeping the right-hand side fixed, leading to a
slight leftward movement of the left side. Subsequently, in the same
iteration, we address the right-hand side while maintaining the left
side in a fixed state, causing the dovetail section on the right side to
bend in opposite directions. In the second iteration, we observe a
progressive leftward pull of the left-hand side when the right-hand
side remains fixed, followed by increased bending of the right-hand
side, consequently creating more space for the left-hand side to
experience a further leftward pull in the third iteration. With each
iteration, the results evolve and eventually converge as the number
of iterations increases.

4.3 Gradient correctness check
In this subsection, we check the correctness of our gradient compu-
tation. We calculate the derivative of the displacement with respect
to the coordinates of vertexes from the mesh in two different ap-
proaches: the adjoint method and the finite difference method, as
shown in Figure 6. For the finite difference method, we use a step
size of 10−4. We only visualize gradients on three edges, as interior
gradients should be all zero. The two sets of gradients are indis-
tinguishable, which infers our gradient calculation is consistent
with the finite difference method. The average relative difference
from the adjoint method results to the finite difference results is
1.82 × 10−4, which is negligibly small.

4.4 Shape optimization for stiffness
Fabrication and experimental setup. We use Fusion 3601 to draw

3D shapes and CHITUBOX2 and UVtools3 for slicing. We use the
ELEGOO Saturn S resin 3D printer to print laminates of ABS-like

1https://www.autodesk.com/products/fusion-360
2https://www.chitubox.com/
3https://github.com/sn4k3/UVtools

Table 1: Real measured stiffness of initial and optimized de-
signs over three batches. The significant increase in stiffness
indicates that our algorithm successfully optimizes the joint
shape design.

Joint type Initial design Optimized design

Single dovetail joint 219.9±22.6 362.3±26.9
228.4±53.2 406.0±15.1

Complex dovetail joint 518.1±29.2 1036.3±61.6
553.3±55.7 1120.0±102.4

Double dovetail joint 380.6±23.8 527.4±48.3
360.2±12.1 611.8±64.0

resin with a height of 5 mm. For the printed parts to be assemblable,
we introduce a gap of 0.1 mm between the joints. To measure
the stiffness of a joint, we use an Instron 600DX universal testing
machine, which is set to move at a speed of 20 mm/min until the
tested object breaks and produces a position-load curve. We also
include tabs on two sides of the joint for the machine to clamp, as
shown in Figure 7: the parts on the left-hand side of the solid line
are the tabs, and the solid lines indicate the position of the clamp.

Optimization and test results. For each design space, we randomly
select two different initial sets of shape parameters and optimize
them for fifteen gradient descent steps. We select the iteration with
the smallest simulated displacement, and the results are shown
in Figure 8. The optimized results are similar though the initializa-
tions are quite different. The simulated results are shown in Figure 9.
We print three copies of each design and test them on the universal
testing machine with position-load curves recorded. We measure
the stiffness using the position change between a load of 30 N and
a load of 60 N, and the results are listed in Table 1. The significant
differences between the initial and optimized designs indicate the
effectiveness of our algorithm.

https://www.autodesk.com/products/fusion-360
https://www.chitubox.com/
https://github.com/sn4k3/UVtools
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(d) Gradients on the right half;
finite difference

Figure 6: Gradient directions on three contacting edges calculated using the adjoint method and the finite difference method.
The two results are indistinguishable, which indicates the gradient calculation is correct.

Clamp location

20 mm

Length annotation

(a) Single dovetail joint

20 mm

Clamp location
Length annotation

(b) Complex dovetail joint

15 mm

Clamp location
Length annotation

(c) Double dovetail joint

Figure 7: Tabs are added in real printings such that the universal testing machine can clamp the printed parts.

Double dovetail joints

Initial design

Optimized design

Single dovetail joints Complex dovetail joints

Figure 8: Initial and optimized designs of dovetail joints. The optimized designs are similar for the same design space though
the initializations are very different.

4.5 Poisson’s ratio sensitivity test
One interesting question raised by our method is the effect of mate-
rial parameters on the optimization results. As Young’s modulus is
obviously not affecting our optimization process (if simultaneously
increasing the traction), we study whether changing Poisson’s ratio
would change the results, and the results are shown in Figure 10.
As different Poisson’s ratios produce almost the same optimization
result, we observe that the results are not sensitive to Poisson’s
ratio.

5 DISCUSSION
In this project, we studied the task of dovetail joint shape optimiza-
tion to maximize its stiffness, and, as existing works, we formalized
the task as an optimization problem, viewing the stiffness of the
joint as a function of shape design parameters. Existing works use
search algorithms, gradient-free optimizers, or surrogate models for
optimization, which have limited efficiency. To use gradient-based
optimizers, we first built our own contact simulator by alternatively
simulating the deformation of one side of the joint while consid-
ering the other side as rigid, using the penalty approach. We then
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Double dovetail joints 
(traction = 0.003 GPa)

Initial design Optimized design

Single dovetail joints 
(traction = 0.001 GPa)

Complex dovetail joints 
(traction = 0.003 GPa)

Displacement = 0.471 mm Displacement = 0.372 mm

Displacement = 0.437 mm Displacement = 0.361 mm

Displacement = 0.348 mmDisplacement = 1.074 mm

Displacement = 1.269 mm Displacement = 0.356 mm

Displacement = 0.767 mm Displacement = 0.531 mm

Displacement = 0.803 mm Displacement = 0.517 mm

Figure 9: Simulated results and displacements of initial and optimized designs. The displacements of the optimized designs are
much smaller than those of the initial designs, which indicates the optimization algorithm is working effectively.

use the adjoint method and gradient descent for optimization. For
experiments, we first verified the gradients were correct by com-
paring them to the gradients calculated from the finite difference
method. We then tested the optimized joint shapes on different
initializations in different dovetail shape design spaces, both syn-
thetically and in real experiments, showing that the optimized joints
are much stiffer than the initial ones. Note that our method is not
restricted to dovetail joint shape optimization but works for joints
with piecewise linear joint boundaries.

We would also like to discuss some limitations and future di-
rections of our approach. First, the simulator has limited accuracy
as several assumptions and simplifications are made, e.g., plane
stress, fitting boundaries using lines for the penalty term, etc. Real
experiments showed that the simulator is still reasonably accurate,
but future work can be done on more accurate simulators. Besides,
the optimization is not in real-time, and most optimization (15 gra-
dient descent steps) in this project takes 10 to 20 minutes to finish
on a laptop computer. However, compared to the manufacturing
time, this is acceptable, and there are amortized approaches that
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Double dovetail joints

Single dovetail joints

Complex dovetail joints

Optimization result; poisson’s ratio = 0.4 Optimization result; poisson’s ratio = 0.3 Optimization result; poisson’s ratio = 0.2Initial design

Figure 10: Optimization results from the same initial design but using different Poisson’s ratios. As the difference is negligible,
we observe that the optimization results are not sensitive to Poisson’s ratio.

can significantly reduce the running time. Finally, the optimized
results from gradient-based optimizers can be local minima. Pos-
sible solutions include using different initializations, introducing
randomness during optimization, etc.
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