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Abstract

Humans exhibit a remarkable ability to design new tools and systems for solving

problems. At the heart of this capability lies a rich suite of evolved pattern recog-

nition modules, enabling the reuse and modification of previously existing solutions.

Machine learning offers the intriguing possibility of automatically capturing the pat-

terns that arise in various design domains, in particular via generative modeling. By

leveraging the general tool of distribution approximation over data, we may hope to

computationally encode common design patterns, leading to applications that enable

more efficient workflows in engineering, design, and even scientific discovery.

But this promising route faces challenges. Integral to the above fields are discrete

domains, such as molecules and graphs. In contrast to the Euclidean spaces where

generative modeling has recently thrived (e.g., images), discrete domains often exhibit

irregular structure, strict validity constraints, and non-canonical representations, pre-

senting unique challenges to modeling. In addition, machine learning as applied to

engineering still lacks maturity, and as a result there is a need for curated datasets,

benchmarks, and shared pipelines.

First, we discuss a novel generative model for discrete domains, known as reversible

inductive construction. Building off of generative interpretations of denoising autoen-

coders, the model employs a Markov chain where transitions are restricted to a set

of local operations that both preserve validity and avoid marginalization over a po-

tentially large space of construction histories. Next, we introduce SketchGraphs, a

dataset and processing pipeline that contains millions of real-world computer-aided

design (CAD) sketches paired with their original geometric constraint graphs. Un-

like previously available CAD data, explicit supervision is provided regarding the

designer-imposed geometric relationships between primitives, making the typically

latent construction operations directly accessible. Lastly, we present Vitruvion, a

model that is trained to autoregressively generate CAD sketches as a sequence of
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primitives and constraints. Generations from the model may be directly imported,

solved, and edited in standard CAD software according to downstream design tasks.

In addition, we condition the model on various contexts, including partial sketches

(primers) and images of hand-drawn sketches. Evaluation demonstrates the potential

for this approach to aid the mechanical design workflow.
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Chapter 1

Introduction

Pattern recognition lies at the heart of humankind’s remarkable ability to innovate

[65]. Experts across the scientific and engineering landscape identify and exploit

regularities in natural and artificial phenomena in order to create new systems and

technology. Whether it is the synthetic chemist developing new drugs by building

upon prevalidated molecular scaffolds, or the mechanical engineer meeting a new

target functionality by modifying a previous design, new solutions often intersect, or

are combinations of, previous solutions.

But design can be tedious. Consider the engineer who must apply of hundreds of

precise operations in computer-aided design (CAD) software in order to concretely

realize an envisioned part. Finding and specifying the desired solution resembles a

guided but time-consuming search through a large combinatorial space.

What role can learning systems play to mitigate these challenges pervasive across

engineering and scientific discovery? In this thesis, we take the view that learning,

particularly generative modeling, will allow us to automatically capture the patterns

and regularities exhibited by these domains, enabling the development of new and

more efficient design workflows. In contrast to discriminative modeling, which typi-

cally involves predicting some privileged label (e.g., a category) given an input exam-
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ple, generative modeling aims to jointly model all observed dimensions of the data.

Rather than treating the domain simply as input, a generative model has something

to say about the creation of the data itself.

Concretely, a generative model approximates an observed data distribution,

pdata(x), with some parameterized distribution, pθ(x). This follows one of two forms:

explicit density estimation, where pθ(x) is directly defined and evaluated, or implicit

density estimation, where samples may be efficiently drawn from pθ(x) but tractable

evaluation is not accessible.

Both of these generative paradigms have the potential to aid design processes.

When direct sampling is possible, novel data may be fantasized that maintains the

key characteristics of the training domain. However, rather than drawing from the

full joint distribution, specific applications may target selected conditional distribu-

tions, sampling unknown dimensions given a subset of fixed variables. This may be

applied, for instance, in a CAD “autocomplete” tool that suggests next construction

steps to the user conditioned on a partial design. Although the trained model is not

told explicitly what the user is attempting to build, the model’s exposure to simi-

lar patterns during training allows it to infer completions with high probability. In

the explicit density case, a “spellcheck” model could offer corrections of implausible

operations (those resulting in a low probability evaluation).

The promise of generative models to aid in engineering and design draws direct

inspiration from other domains where artificial data generation has proven possible.

For example, generative models have been successfully applied to the synthesis of

continuous data such as speech audio [87] and high-resolution images [6]. In dis-

crete settings, large sequence models have been used to advance natural language

generation tasks [9].

But in many domains, irregular structure often presents additional modeling chal-

lenges. Here, we use irregular structure to refer to graph-based representations that
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include one (but often multiple) of the following properties: nodes with varying de-

grees (irregular graphs), parallel edges (multigraphs), hyperedges (hypergraphs), or

heterogeneous, multi-dimensional node and edge features. Prominent examples in-

clude geometric constraint graphs (found in CAD and robotics) and molecular graphs.

These domains sit in contrast to Euclidean or grid-like data (e.g., images) where mod-

eling success has, in part, been attributed to simple inductive biases like convolution

that can account for invariances of the data [7]. Analogous inductive biases in the

non-Euclidean setting are not as straightforward, and there are often additional chal-

lenges such as strict validity constraints (e.g., rules constituting a valid molecule) and

representation ambiguity (e.g., up to n! adjacency matrices for a graph with n nodes).

In addition, machine learning as applied to engineering is a fairly nascent effort

and lacks the maturity of more established disciplines like computer vision. Just as

ImageNet [20] helped spur large advancements in computer vision and deep learning

research by providing large-scale, high quality training data, so too is there a need for

curated datasets, benchmarks, and shared pipelines to aid applied machine learning

research across the engineering domains.

In this thesis, we consider how to make the overlapping fields of design, engineer-

ing, and scientific discovery amenable to learned models. We approach this question

both from an algorithmic perspective, proposing a novel modeling framework for gen-

eral discrete-structured domains, and via an applications perspective, building a new

dataset and processing pipeline relevant to mechanical design and using it to train

design assistance models. The contributions are as follows:

• In Chapter 2, we propose a novel generative model for discrete domains, which

we call reversible inductive construction, that addresses some of their unique

challenges. Building off of generative interpretations of denoising autoencoders

[3], the model parameterizes a Markov chain where learning transitions are

restricted to a set of local inductive moves that preserve object validity. In ad-
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dition, by only requiring the learner to discover local modifications to discrete

objects, this approach avoids marginalization over an unknown and potentially

large space of construction histories. We test the proposed approach on two

complex discrete domains, molecules and a restricted class of geometric con-

straint graphs, and show that the proposed method can effectively model these

distributions while guaranteeing adherence to strict validity constraints. This

work was presented in Seff et al. [77].

• In Chapter 3, we present a new dataset, SketchGraphs, intended to foster ma-

chine learning research in mechanical design. It consists of 15 million real-world

CAD sketches paired with their ground truth geometric constraint graphs. Un-

like previously available CAD data, the construction steps and constraints used

to produce the sketches are provided, giving explicit supervision regarding the

original creator’s design intent. In contrast to, e.g., general modeling of voxel

shapes, this data enables the training of models which operate on the same

data structures used in standard CAD software, opening the door to new de-

sign workflows where samples may be directly edited. In addition to the data,

we provide an open source processing pipeline and establish benchmarks for two

initial use cases of the dataset: unconditional generative modeling of sketches

and conditional generation of likely constraints given unconstrained geometry.

This work was presented in Seff et al. [78].

• In Chapter 4, we introduce Vitruvion, a generative model trained to synthe-

size coherent CAD sketches by autoregressively sampling geometric primitives,

with initial coordinates, and constraints that reference back to the sampled

primitives. The model, trained on SketchGraphs, leverages transformer-based

attention [88] to flexibly propagate information about already-present primi-

tives and constraints to a next-step prediction module. Following sampling,
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the produced geometric constraint graph is handed to a separate solver that

identifies the final configuration. We demonstrate the model’s ability to aid

in two application scenarios when conditioned on a) partial sketches (primers)

and b) hand drawings for inference of plausible complete sketches. This work

is currently in preparation as Seff et al. [79].

• Finally, we conclude by identifying some interesting avenues for future work in

Chapter 5.
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Chapter 2

Discrete Object Generation with

Reversible Inductive Construction

2.1 Introduction

Many applied domains of optimization and design would benefit from accurate gen-

erative modeling of structured discrete objects. For example, a generative model

of molecular structures may aid drug or material discovery by enabling an inexpen-

sive search for stable molecules with desired properties. Similarly, in computer-aided

design (CAD), generative models may allow an engineer to sample new parts or con-

ditionally complete partially-specified geometry. Indeed, recent work has aimed to

extend the success of learned generative models in continuous domains, such as im-

ages and audio, to discrete data including graphs [95, 57], molecules [30, 52], and

program source code [94, 71].

However, discrete domains present particular challenges to generative modeling.

Discrete data structures often exhibit non-unique representations, e.g., up to n! equiv-

alent adjacency matrix representations for a graph with n nodes. Models that per-

form additive construction—incrementally building a graph from scratch [95, 57]—are
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flexible but face the prospect of reasoning over an intractable number of possible con-

struction paths. For example, You et al. [95] leverage a breadth-first-search (BFS)

to reduce the number of possible construction sequences, while Simonovsky and Ko-

modakis [83] avoid additive construction and instead directly decode an adjacency

matrix from a latent space, at the cost of requiring approximate graph matching to

compute reconstruction error.

In addition, discrete domains are often accompanied by prespecified hard con-

straints denoting what constitutes a valid object. For example, molecular structures

represented as SMILES strings [90] must follow strict syntactic rules in order to be

decoded to a real compound. Recent work has aimed to improve the validity of gen-

erated samples by leveraging the SMILES grammar [52, 17] or encouraging validity

via reinforcement learning [42]. Operating directly on chemical graphs, Jin et al. [44]

leverage chemical substructures encountered during training to build valid molecular

graphs and De Cao and Kipf [18] encourage validity for small molecules via adversar-

ial training. In other graph-structured domains, strict topological constraints may be

encountered. For example, Laman graphs [54], a class of geometric constraint graphs,

require the relative number of nodes and edges in each subgraph to meet certain

conditions in order to represent well-constrained geometry.

In this work we take the broad view that graphs provide a universal abstraction

for reasoning about structure and constraints on discrete spaces. This is not a new

take on discrete spaces: graph-based representations such as factor graphs [50], error-

correcting codes [28], constraint graphs [69], and conditional random fields [53] are all

examples of ways that hard and soft constraints are regularly imposed on structured

prediction tasks, satisfiability problems, and sets of random variables.

We propose to model discrete objects by constructing a Markov chain where each

possible state corresponds to a valid object. Learned transitions are restricted to a

set of local inductive moves, here defined as minimal insert and delete operations
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Figure 2.1: Reconstruction model processing given an input molecule. Location-
specific representations computed via message passing are passed through fully-
connected layers outputting probabilities for each legal operation.

that maintain validity. Leveraging the generative model interpretation of denoising

autoencoders [3], the chain employed here alternatingly samples from two conditional

distributions: a fixed distribution over corrupting sequences and a learned distribution

over reconstruction sequences. The equilibrium distribution of the chain serves as the

generative model, approximating the target data-generating distribution.

This simple framework allows the learned component—the reconstruction model—

to be treated as a standard supervised learning problem for multi-class classification.

Each reconstruction step is parameterized as a categorical distribution over adjacent

objects, those that are one inductive move away from the input object. Given a local

corrupter, the target reconstruction distribution is also local, containing fewer modes

and potentially being easier to learn than the full data-generating distribution [3]. In

addition, various hard constraints, such as validity rules or requiring the inclusion of

a specific substructure, are incorporated naturally.

One limitation of the proposed approach is its expensive sampling procedure,

requiring Gibbs sampling at deployment time. Nevertheless, in many areas of engi-

neering and design, it is the downstream tasks following initial proposals that serve as
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Figure 2.2: Corruption and subsequent reconstruction of a molecular graph. Our
method generates discrete objects by running a Markov chain that alternates between
sampling from fixed corruption and learned reconstruction distributions that respect
validity constraints.

the time bottleneck. For example, in drug design, wet lab experiments and controlled

clinical trials are far more time intensive than empirically adequate mixing for the

proposed method’s Markov chain. In addition, as an implicit generative model, the

proposed approach is not equipped to explicitly provide access to predictive proba-

bilities. We compare statistics for a host of semantically meaningful features from

sets of generated samples with the corresponding empirical distributions in order to

evaluate the model’s generative capabilities.

We test the proposed approach on two complex discrete domains: molecules and

Laman graphs [54], a class of geometric constraint graphs applied in CAD, robotics,

and polymer physics. Quantitative evaluation indicates that the proposed method

can effectively model highly structured discrete distributions while adhering to strict

validity constraints.

2.2 Reversible Inductive Construction

Let p(x) be an unknown probability mass function over a discrete domain, D, from

which we have observed data. We assume there are constraints on what constitutes a

valid object, where V ⊆ D is the subset of valid objects in D, and ∀x /∈ V, p(x) = 0.

For example, in the case of molecular graphs, an invalid object may violate atom-

specific valence rules. Our goal is to learn a generative model pθ(x), approximat-

ing p(x), with support restricted to the valid subset.
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We formulate our approach, generative reversible inductive construction (Gen-

RIC),1 as the equilibrium distribution of a Markov chain that only visits valid ob-

jects, without a need for inefficient rejection sampling. The chain’s transitions are

restricted to legal inductive moves. Here, an inductive move is a local insert or delete

operation that, when executed on a valid object, results in another valid object.

The Markov kernel then needs to be learned such that its equilibrium distribution

approximates p(x) over the valid subspace.

2.2.1 Learning the Markov kernel

The desired Markov kernel is formulated as successive sampling between two condi-

tional distributions, one fixed and one learned, a setup originally proposed to extract

the generative model implicit in denoising autoencoders [3]. A single transition of

the Markov chain involves first sampling from a fixed corrupting distribution c(x̃ | x)

and then sampling from a learned reconstruction distribution pθ(x | x̃). While the

corrupter is free to damage x (push x off the data manifold), validity constraints

are built into both conditional distributions. The joint data-generating distribution

over original and corrupted samples is defined as p(x, x̃) = c(x̃ | x)p(x), which is

also uniquely defined by the corrupting distribution and the target reconstruction

distribution, p(x | x̃). We use supervised learning to train a reconstruction distribu-

tion model pθ(x | x̃) to approximate p(x | x̃). Together, the corruption and learned

reconstruction distributions define a Gibbs sampling procedure that asymptotically

samples from marginal pθ(x), approximating the data marginal p(x).

Given a reasonable set of conditions on the support of these two conditionals and

the consistency of the employed learning algorithm, the learned joint distribution can

be shown to be asymptotically consistent over the Markov chain, converging to the

true data-generating distribution in the limit of infinite training data and modeling

1https://github.com/PrincetonLIPS/reversible-inductive-construction

10

https://github.com/PrincetonLIPS/reversible-inductive-construction


capacity [3]. However, in the more realistic case of estimation with finite training data

and capacity, a valid concern arises regarding the effect of an imperfect reconstruction

model on the chain’s equilibrium distribution. To this end, Alain et al. [1] adapts

a result from perturbation theory [76] for finite state Markov chains to show that

as the learned transition matrix becomes arbitrarily close to the target transition

matrix, the equilibrium distribution also becomes arbitrarily close to the target joint

distribution. For the discrete domains of interest here, we can enforce a finite state

space by simply setting a maximum object size.

2.2.2 Sampling training sequences

Let c(s |x) be a fixed conditional distribution over a sequence of corrupting opera-

tions s = [s1, s2, ..., sk] where k is a random variable representing the total number

of steps and each si ∈ Ind(x̃i) where Ind(x̃i) is a set of legal inductive moves for a

given x̃i. The probability of arriving at corrupted sample x̃ from x is

c(x̃ | x) =
∑
s

c(x̃, s | x) =
∑

s∈S(x,x̃)

c(s | x), (2.1)

where S(x, x̃) denotes the set of all corrupting sequences from x to x̃. Thus, the joint

data-generating distribution is

p(x, s, x̃) = c(x̃, s | x)p(x) (2.2)

where c(x̃, s | x) = 0 if s /∈ S(x, x̃).

Given a corrupted sample, we aim to train a reconstruction distribution

model pθ(x | x̃) to maximize the expected conditional probability of recovering

the original, uncorrupted sample. Thus, we wish to find the parameters θ∗ that mini-
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mize the expected KL divergence between the true p(x, s | x̃) and learned pθ(x, s | x̃),

θ∗ = argmin
θ

Ep(x,s,x̃) [DKL(p(s, x | x̃) ‖ pθ(s, x | x̃))] , (2.3)

which amounts to maximum likelihood estimation of pθ(s, x | x̃) and likewise pθ(x | x̃).

The above is an expectation over the joint data-generating distribution, p(x, s, x̃),

which we can sample from by drawing a data sample and then conditionally drawing

a corruption sequence:

x ∼ p(x), x̃, s ∼ c(x̃, s | x). (2.4)

2.2.3 Fixed corrupter

In general, we are afforded flexibility when selecting a corruption distribution, given

certain conditions for ergodicity are met. We implement a simple fixed distribution

over corrupting sequences approximately following these steps: 1) Sample a number

of moves k from a geometric distribution. 2) For each move, sample a move type

from {Insert, Delete}. 3) Sample from among the legal operations available for the

given move type. We make minor adjustments to the weighting of available operations

for specific domains. See Section 2.6.6 for full details.

The geometric distribution over corruption sequence length ensures exponentially

decreasing support with edit distance, and likewise the support of the target recon-

struction distribution is local to the conditioned corrupted object. The globally non-

zero (yet exponentially decreasing) support of both the corruption and reconstruction

distributions trivially satisfy the conditions required in Corollary A2 from Alain et al.

[1] for the chain defined by the corresponding Gibbs sampler to be ergodic. Alterna-

tively, one could employ conditional distributions with truncated support after some

edit distance and still satisfy ergodicity conditions via the stronger Corollary A3 from

Alain et al. [1].
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Unless otherwise stated, the results reported in Sections 2.3 and 2.4, use a geo-

metric distribution with five expected steps for the corruption sequence length. In

general, we observe shorter corruption lengths lead to better samples, though we

did not seek to specially optimize this hyperparameter for generation quality. See

Section 2.6.1 for some results with other step lengths.

2.2.4 Reconstruction distribution

A sequence of corrupting operations s = [s1, s2, ..., sk] corresponds to a sequence of

visited corrupted objects [x̃1, x̃2, ..., x̃k] after execution on an initial sample x. We

enforce the corrupter to be Markov such that its distribution over the next corrup-

tion operation to perform depends only on the current object. Likewise, the target

reconstruction distribution is then also Markov, and we factorize the learned recon-

struction sequence model as the product of memoryless transitions culminating with

a stop token:

pθ(srev | x̃) = pθ(stop | x)pθ(x | x̃1)
k−1∏
i=1

pθ(x̃i | x̃i+1) (2.5)

where srev = [skrev , sk−1rev , ..., s1rev , stop], the reverse of the corrupting operation se-

quence. If a stop token is sampled from the model, reconstruction ceases and the

next corruption sequence begins. For the molecule model, an additional “revisit”

stop criterion is also used: the reconstruction ceases when a molecule is revisited (see

Section 2.6.4 for details).

For each individual step, the reconstruction model outputs a large conditional

categorical distribution over Ind(x̃), the set of legal modification operations that can

be performed on an input x̃. We describe the general architecture employed and

include domain-specific details in Sections 2.3 and 2.4.
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Any operation in Ind(x̃) may be defined in a general sense by a location on the

object x̃ where the operation is performed and a vocabulary element describing which

vocabulary item (if any) is involved (Fig. 2.1). The prespecified vocabulary consists

of domain-specific substructures, a subset of which may be legally inserted or deleted

from a given object. The model induces a distribution over all legal operations (which

may be described as a subset of the Cartesian product of the locations and vocabulary

elements) by computing location embeddings for an object and comparing those to

learned embeddings for each vocabulary element.

For the graph-structured domains explored here, location embeddings are gen-

erated using a message passing neural network structure similar to Duvenaud et al.

[22], Gilmer et al. [29] (see Section 2.6.3). In parallel, the set of vocabulary elements is

also given a learned embedding vector. The unnormalized log-probability for a given

modification is then obtained by computing the dot product of the embedding of the

location where the modification is performed and the embedding of the vocabulary

element involved. For most objects from the molecule and Laman graph domains,

this defines a distribution over a discrete set of operations with cardinality in the tens

of thousands.

We note that although our model induces a distribution over a large discrete

set, it does not do so through a traditional fully-connected softmax layer. Indeed,

the action space of the model is heavily factorized, ensuring that the computation

is efficient. The factorization is present at two levels: the actions are separated

into broad categories (e.g., insert at atom, insert at bond, delete, for molecules),

that do not interact except through the normalization. Additionally, actions are

further factorized through a location component and vocabulary component, that

only interact through a dot product, further simplifying the model.
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2.3 Application: Molecules

Molecular structures can be defined by graphs where nodes represent individual atoms

and edges represent bonds. In order for such graphs to be considered valid molec-

ular structures by standard chemical informatics toolkits (e.g., RDKit [55]), certain

constraints must be satisfied. For example, aromatic bonds can only exist within

aromatic rings, and an atom can only engage in as many bonds as permitted by its

valence. By restricting the corruption and reconstruction operations to a set of modi-

fications that respect these rules, we ensure that the resulting Markov chain will only

visit valid molecular graphs.

2.3.1 Legal operations

When altering one valid molecular graph into another, we restrict the set of possible

modifications to the insertion and deletion of valid substructures. The vocabulary

of substructures consists of non-ring bonds, simple rings, and bridged compounds

(simple rings with more than two shared atoms) present in training data. This is the

same type of vocabulary proposed in Jin et al. [44]. The legal insertion and deletion

operations are set as follows:

Insertion For each atom and bond of a molecular graph, we determine the

subset of the vocabulary that would be chemically compatible for attachment. Then,

for each compatible vocabulary substructure, the possible assemblies of it with the

atom or bond of interest are enumerated (keeping its already-connected neighbors

fixed). For example, when inserting a ring from the vocabulary via one of its bonds,

there is often more than one valid bond to select from. Here, we only specify the 2D

configuration of the molecular graph and do not account for stereochemistry.

Deletion We define the leaves of a molecule to be those substructures that can

be removed while the rest of the molecular graph remains connected. Here, the set of
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leaves consists of either non-ring bonds, rings, or bridged compounds whose neighbors

have a non-zero atom intersection. The set of possible deletions is fully specified by

the set of leaf substructures. To perform a deletion, a leaf is selected and the atoms

whose bonds are fully contained within the leaf node substructure are removed from

the graph.

These two minimal operations provide enough support for the resulting Markov

chain to be ergodic within the set of all valid molecular graphs constructible via the

extracted vocabulary. As Jin et al. [44] find, although an arbitrary molecule may not

be reachable, empirically the finite vocabulary provides broad coverage over organic

molecules. Further details on the location and vocabulary representations for each

possible operation are given in the appendix.

2.3.2 Data

For molecules we test the proposed approach on the ZINC dataset, which contains

about 250K drug-like molecules from the ZINC database [85]. The model is trained

on 220K molecules according to the same train/test split as in Jin et al. [44], Kusner

et al. [52].

2.3.3 Distributional statistics

While predictive probabilities are not available from the implicit generative model,

we can perform posterior predictive checks on various semantically relevant metrics to

compare our model’s learned distribution to the data distribution. Here, we leverage

three commonly used quantities when assessing drug molecules: the quantitative es-

timate of drug-likeness (QED) score (between 0 and 1) [5], the synthetic accessibility

(SA) score (between 1 and 10) [27], and the log octanol-water partition coefficient

(logP) [15]. For QED, a higher value indicates a molecule is more likely to be drug-

like, while for SA, a lower value indicates a molecule is more likely to be easily

16



synthesizable. logP measures the hydrophobicity of a molecule, with a higher value

indicating more hydrophobic. Together these metrics take into account a wide array

molecular features (ring count, charge, etc.), allowing for an aggregate comparison of

distributional statistics.

Our goal is not to optimize these statistics but to evaluate the quality of our

generative model by comparing the distribution that our model implies over these

quantities to those in the original data. A good generative model would have novel

molecules but those molecules would have similar aggregate statistics to real com-

pounds. In Fig. 2.3, we display Gaussian kernel density estimates (KDE) of the

above metrics for generated sets of molecules from seven baseline methods, in addi-

tion to our own (see Section 2.6.4 for chain sampling details). A normalized histogram

of the ZINC training distribution is shown for visual comparison. For each method,

we obtain 20K samples either by running pre-trained models [44, 30, 52], by accessing

pre-sampled sets [61, 83, 57], or by training models from scratch [80].2 Only novel

molecules (those not appearing in the ZINC training set) are included in the met-

ric computation, to avoid rewarding memorization of the training data. In addition,

Table 2.1 displays bootstrapped Kolmogorov–Smirnov (KS) distances between the

samples for each method and the ZINC training set.

Our method is capable of generating novel molecules that have statistics closely

matched to the empirical QED and logP distributions. The SA distribution seems

to be more challenging, although we still report lower mean KS distance than some

recent methods. Because we allow the corrupter to uniformly select from the vocabu-

lary, even if a particular vocabulary element occurs very rarely in training data, it can

sometimes introduce molecules without an accessible synthetic route that the recon-

structor does not immediately recover from. One could alter the corrupter and have

it favor commonly appearing vocabulary items to mitigate this. We also note that

2We use the implementation provided by [8] for the SMILES LSTM [80].
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our approach lends itself to Markov chain transitions reflecting known (or learned)

chemical reactions.

Interestingly, the SMILES-based LSTM model [80] is effective at matching the

ZINC dataset statistics, producing a substantially better-matched SA distribution

than the other methods. However, as noted in [61], by operating on the linear SMILES

representation, the LSTM has limited ability to incorporate structural constraints,

e.g., enforcing the presence of a particular substructure.

In addition to the above metrics, we report a validity score (the percentage of sam-

ples that are chemically valid) for each method in Table 2.1. A sample is considered to

be valid if it can be successfully parsed by RDKit [55]. The validity scores displayed

are the self-reported values from each method. Our method, like Jin et al. [44], Liu

et al. [61], enforces valid molecular samples, and the model does not have to learn

these constraints. See Section 2.6.7 for additional evaluation using the GuacaMol

distribution-learning benchmarks [8].

We might also inquire how the reconstructed samples of the Markov chain compare

to the corrupted samples. See Fig. 2.6 in the appendix for a comparison. On average,

we observe corrupted samples that are less druglike and less synthesizable than their

reconstructed counterparts. In particular, the output reconstructed molecule has a

21% higher QED relative to the input corrupted molecule on average. Running the

corrupter repeatedly (with no reconstruction) leads to samples that severely diverge

from the data distribution.

2.4 Application: Laman Graphs

Geometric constraint graphs are widely employed in CAD, molecular modeling, and

robotics. They consist of nodes that represent geometric primitives (e.g., points, lines)

and edges that represent geometric constraints between primitives (e.g., specifying
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Figure 2.3: Distributions of QED (left), SA (middle), and logP (right) for sampled
molecules and ZINC.

Source QED KS SA KS logP KS % valid

ChemVAE [30] 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.7
GrammarVAE [52] 0.94 (0.00) 0.95 (0.00) 0.95 (0.00) 7.2

GraphVAE [83] 0.52 (0.00) 0.23 (0.00) 0.54 (0.00) 13.5
DeepGAR [57] 0.20 (0.00) 0.15 (0.00) 0.062 (0.002) 89.2

SMILES LSTM [80] 0.022 (0.003) 0.051 (0.004) 0.052 (0.004) 96.1
JT-VAE [44] 0.090 (0.003) 0.21 (0.00) 0.20 (0.00) 100
CG-VAE [61] 0.27 (0.00) 0.56 (0.00) 0.064 (0.002) 100

GenRIC 0.045 (0.003) 0.28 (0.00) 0.057 (0.002) 100

Table 2.1: Molecular property distributional statistics. For each source, 20K
molecules are sampled and compared to the ZINC dataset. For SA, QED, and logP, we
compute the two-sample Kolmogorov-Smirnov statistic (and its bootstrapped stan-
dard error) compared to the ZINC dataset. (Lower is better for the KS statistic.)
Self-reported validity percentages are also shown (the value for [30] is obtained from
[52]).

perpendicularity between two lines). To allow for easy editing and change propaga-

tion, best practices in parametric CAD encourage keeping a part well-constrained at

all stages of design [4]. A useful generative model over CAD models should ideally

be restricted to sampling well-constrained geometry.

Laman graphs describe two-dimensional geometry where the primitives have two

degrees of freedom and the edges restrict one degree of freedom (e.g., a system of

rods and joints) [54]. Representing minimally rigid systems, Laman graphs have the

property that if any single edge is removed, the system becomes under-constrained.

For a graph with n nodes to be a valid Laman graph, the following two simple con-
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Source DoD KS % valid

E-R [26] 0.95 (0.03) 0.08 (0.02)
GraphRNN [95] 0.96 (0.00) 0.15 (0.03)

GenRIC 0.33 (0.01) 100 (0.00)

Table 2.2: Laman graph distribu-
tional statistics. The mean and, in
parentheses, the standard deviation,
of the bootstrapped KS distance be-
tween the DoD distribution for each
set of sampled graphs and the train-
ing data are shown. In addition, we
display mean and standard deviations
for bootstrapped validity scores.

Henneberg type 1

Henneberg type 2

Figure 2.4: The legal inductive moves
for Laman graphs, derived from Hen-
neberg construction [38]. A single
node (and accompanying edges) may
be inserted or deleted in one of two
ways.

ditions are necessary and sufficient: 1) the graph must have exactly 2n− 3 edges,

and 2) each node-induced subgraph of k nodes can have no more than 2k − 3 edges.

Together, these conditions ensure that all structural degrees of freedom are removed

(given that the constraints are all independent), leaving one rotational and two trans-

lational degrees of freedom. In 3D, although the corresponding Laman conditions are

no longer sufficient, they remain necessary for well-constrained geometry.

2.4.1 Legal operations

Henneberg [38] describes two types of node-insertion operations, known as Henneberg

moves, that can be used to inductively construct any Laman graph (Fig. 2.4). We

make these moves and their inverses (the delete versions) available to both the cor-

rupter and reconstruction model. While moves #1 and #2 can always be reversed

for any nodes of degree 2 and 3 respectively, a check has to be performed to deter-

mine where the missing edge can be inserted for reverse move #2 [35]. Here, we use

the O(n2) Laman satisfaction check described in [41] to determine the set of legal

neighbors. At the rigidity transition, it runs in only O(n1.15).
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2.4.2 Data

For Laman graphs, we generate synthetic graphs randomly via Algorithm 7 from

Moussaoui [70], originally proposed for evaluating geometric constraint solvers em-

bedded within CAD programs. This synthetic generator allows us to approximately

control a produced graph’s degree of decomposability (DoD), a metric which indicates

to what extent a Laman graph is composed of well-constrained subgraphs. Such sub-

systems are encountered in various applications, e.g., they correspond to individual

components in a CAD model or rigid substructures in a protein. The degree of de-

composability is defined as DoD = g/n, where g is the number of well-constrained,

node-induced subgraphs and n is the total number of nodes. We generate 100K graphs

each for a low and high decomposability setting (see Section 2.6.5 for full details).

2.4.3 Distributional statistics

Table 2.2 displays statistics for Laman graphs generated by our model as well as

by two baseline methods all trained on the low decomposability dataset (we observe

similar results in the high decomposability setting). For each method, 20K graphs

are sampled. The validity metric is defined the same as for molecules (Section 2.3.3).

In addition, bootstrapped KS distance between the sampled graphs and training data

for DoD distribution is shown for each method.

While it is unsurprising that the simple Erdős–Rényi model [26] fails to meet

validity requirements (< 0.1% valid), we see that the recently proposed GraphRNN

[95] fails to do much better. While deep graph generative models have proven to

be very effective at reproducing a host of graph statistics, Laman graphs represent

a particularly strict topological constraint, imposing necessary conditions on every

subgraph. Today’s flexible graph generative models, while effective at matching local

statistics, are ill-equipped to handle this kind of global constraint. By leveraging

domain-specific inductive moves, the proposed method does not have to learn what a
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valid Laman graph is, and instead learns to match the distributional DoD statistics

within the set of valid graphs.

2.5 Conclusion and Future Work

In this work we have proposed a new method for modeling distributions of discrete

objects, which consists of training a model to undo a series of local corrupting opera-

tions. The key to this method is to build both the corruption and reconstruction steps

with support for reversible inductive moves that preserve possibly-complicated valid-

ity constraints. Experimental evaluation demonstrates that this simple approach can

effectively capture relevant distributional statistics over complex and highly struc-

tured domains, including molecules and Laman graphs, while always producing valid

structures. One weakness of this approach, however, is that the inductive moves must

be identified and specified for each new domain; one direction of future work is to

learn these moves from data. In the case of molecules, restricting the Markov chain’s

transitions to learned chemical reactions could improve the synthesizability of gen-

erated samples. Future work can also explore enforcing additional hard constraints

besides structural validity. For example, if a particular core structure or scaffold with

some desired baseline functionality (e.g., benzodiazepines) should be included in a

molecule, chain transitions can be masked to respect this. Coupled with other tech-

niques such as virtual screening, conditional generation may enable efficient searching

of candidate drug compounds.
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2.6 Appendix

2.6.1 Geometric Distribution for Corrupter

Fig. 2.3 displays distributions for molecular samples from models trained with varying

geometric distributions for the corruption sequence length. As the sequence length

increases (and the corruptions become less local), the models produces worse samples.

A short average corruption sequence length of one step seems to lead to a better-

matched SA distribution, albeit with slower observed mixing for the Markov chain.

Figure 2.5: Distributions of QED (left), SA (middle), and logP (right) for the ZINC
dataset and models trained with varying expected length corruption sequences.

2.6.2 Molecular Reconstruction Model Operations

We describe the representation assigned to each inductive operation. As described

in Section 2.3, each modification is associated with a location (molecule dependent)

and an operation type (molecule independent).

1. Stop: a global operation, naturally associated with the entire molecule. The

location embedding is produced by embedding the entire molecule.

2. Delete atom leaf: a deletion operation where the deletion target is a single atom.

The vocabulary is unique, and the location is associated with a single atom.
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3. Delete ring leaf: a deletion operation where the deletion target is a ring or

bridged compound. The vocabulary is unique, and the location is associated

with a ring.

4. Insert via atom fusion: an insertion operation where the insertion is performed

by attaching at an existing atom. The vocabulary is given by all atoms in each

molecule of the vocabulary, and the location is associated with a single atom.

5. Insert via bond fusion: an insertion operation where the insertion is performed

by attaching at an existing bond. The vocabulary is given by all bonds belonging

to rings in each molecule of the vocabulary, and the location is associated with

a single bond in a ring.

Embeddings for locations are computed in the following fashion. We follow a mes-

sage passing architecture similar to Duvenaud et al. [22], Gilmer et al. [29], which pro-

duces a message for each bond and for each atom. The atom messages are transformed

and pooled to produce the molecule embedding (used for stop prediction). Messages

for each leaf atom are also transformed to produce embeddings for delete leaf atom

actions. Messages for each bond in a leaf ring are transformed and pooled to produce

embeddings for delete leaf ring. Messages for atoms and bonds are transformed to

produce embeddings for insert via atom fusion and insert via bond fusion.

2.6.3 Training Details

In this section we give a brief description of the choices of parameters in training. We

refer the reader to the source code3 for a full description of the model architecture

and parameters.

3https://github.com/PrincetonLIPS/reversible-inductive-construction
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Molecule model

Molecules are converted into graphs in a manner identical to the representation used

by [44]. The message passing model runs five steps of message passing. An embedding

for the molecule is produced by transforming atom-level messages through a two-layer

fully connected network, and aggregating the result through an average-pooling and a

max-pooling operation (concatenated). For each task-relevant location, an embedding

is produced by transforming and pooling the relevant messages, concatenating those

with the molecule representation, and transforming with a two-layer fully-connected

network. All messages and hidden layers have size 384.

We train each model for 50 epochs, with the Adamax optimizer and a base learning

rate of 2× 10−3 at batch size 128. The base learning rate is scaled linearly with the

batch size. We also apply a learning rate schedule, dividing the learning rate by

10 after epochs 12, 24 and 36. Additionally, we apply learning rate warm-up by

linearly scaling the learning rate from 0 to its base value during the first five epoch.

The training is performed with a batch size of 1024, although we did not see any

difference with smaller batch sizes (we did notice some issues with larger batches).

Laman model

Laman graphs are encoded for the message passing model with a single node degree

feature. That feature is encoded with a Fourier encoding of the node degree. The

message passing model runs five step of message passing. An embedding for the graph

is produced by transforming the node messages with a two-layer fully-connected net-

work, and aggregated using average and max pooling. Location-specific embeddings

are produced in the same fashion as in the molecule model.

We train each model for 30 epochs, with the same optimizer settings as in the

molecule model. We use a batch size of 256.

All models are trained using a Nvidia Titan X Pascal (12 GB) graphics card.
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2.6.4 Sampling Details

Our proposed models require a Markov sampling step. We describe the details below.

For both the molecule and Laman models, we sample from the chain defined by the

trained reconstructor by starting from a random object in the training dataset. The

chain then alternatively samples sequences from the corrupter and the reconstructor.

In both cases, the results reported in the main text use a corrupter that performs an

average of 5 moves (with a geometric distribution).

As we sample from a Markov chain, we do not gather i.i.d. samples. In fact,

sometimes the reconstructor returns to the same molecule on adjacent transitions

due to perfect reconstruction. The results reported here use every sample from the

Markov chain without thinning.

Although validity is maintained through the inductive moves, for both the

molecule and Laman models, we in fact encode an action space slightly larger than

the true set of valid inductive moves (to make the space more regular). When such

an invalid action is sampled by the reconstructor, it is ignored, and another sample

is taken. In some very rare instances, the reconstructor repeatedly samples invalid

actions, in which case the entire transition (including the corruption) is resampled.

For both the molecule and Laman model, a minimal size is set (one leaf for

molecules, and three nodes for Laman), to prevent the chain from deleting the entire

object (which would cause problems in terms of the representation). For molecules,

we also set a maximum size (in terms of the number of atoms), at 25 atoms, although

we found values between 25 and 35 to have little effect on the results.

Revisit Stop Criterion

In the molecule setting, we make use of an additional stop criterion which is necessary

as our model exhibits high precision and does not have access to any recurrent state
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which would enable it to increase the probability of stopping as the length of the

reconstruction sequence increases.

At each reconstruction step, we keep a history of all the molecules visited by

the reconstructor so far, and stop the reconstruction process when the output of the

reconstruction model already exists in its history.

We interpret this “revisit” as the model implicitly indicating that the obtained

molecule is realistic enough (on average) that it is willing to return to it, despite not

indicating stop itself due to the high precision of the model.

2.6.5 Dataset Details

Laman

As we did not find high-quality real-world datasets for Laman graphs, we considered

some synthetic datasets generated by inductively sampling Henneberg moves in a

random fashion. More explicitly, each graph in the dataset is generated using Algo-

rithm 7 of [70], reproduced here as Algorithm 1, where the size n and the probability

of selecting Henneberg type I moves p are sampled randomly. For all datasets, we

sample n from a normal distribution with mean 30 and standard deviation 5. The

distribution of p determines the distribution of the degree of decomposability of the

graphs in the dataset. We choose the following distributions of p for each dataset:

p ∼ U(0, 0.1) for low decomposability and p ∼ U(0.9, 1) for high decomposability.

2.6.6 Corrupter Details

Molecule Corrupter

We use a single fixed corrupter for all molecule models. To corrupt a molecule, we

sample a number of corruption steps from a geometric distribution with the given

mean, and iteratively apply Algorithm 2 to the molecule. We made no attempt to
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Algorithm 1: Procedure for generating a Laman graph

input : n, the number of nodes in the graph. p, the probability of choosing
a move of type I.

output: A Laman Graph.
Initialize from complete graph on three elements ;
G← K3 ;
for i← 4 to n do

move ← Sample (Bernoulli(p));
if move = 0 then

G← ApplyRandomTypeI (G) ;
else

G← ApplyRandomTypeII (G) ;
end

end

Algorithm 2: Algorithm for single molecule corruption step

input : mol: molecule to corrupt
output: mol: corrupted molecule
if uniform() < 0.5 then

mol ← DeleteRandomLeaf (mol);
else

atom ← GetRandomAtom (mol);
if IsInRing (atom) and uniform() < 0.25 then

bond ← GetRandomBondAtAtom (atom);
mol ← InsertRandomAtBond (mol, bond);

else
mol ← InsertRandomAtAtom (mol, atom);

end

end
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optimize the corrupter to produce better samples from the generative model or ease

the learning process.

Laman Corrupter

We use a single a single corrupter for all our Laman models. For a single corruption

sub-step, this corrupter first chooses among the four action types (Henneberg type

I and type II, and their inverses) uniformly at random, and then uniformly samples

among the valid actions of the chosen type. As with the molecule corrupter, the

number of sub-steps is sampled from a geometric distribution with given mean.

2.6.7 GuacaMol Benchmarks

We also evaluate our model on the new GuacaMol distribution-learning benchmarks

[8] after training on the ChEMBL dataset [66]. Using the same hyperparameters

as for the ZINC model, we obtain validity: 1.0, uniqueness: 0.933, novelty: 0.942,

KL divergence: 0.771, and FCD: 0.058 (see [8] for a description of each metric and

comparisons with a few other methods). Note that the FCD score [73] is not directly

applicable to our model’s samples due to inherent autocorrelation in the generated

chains. In part, the FCD score assesses diversity of samples compared to the training

set by computing the activation covariance of the penultimate layer of ChemNet.

The autocorrelation limits the sample diversity but may be addressed by standard

techniques for Markov chains such as thinning. Here, we report results using the same

sampling framework as for the ZINC model.

2.6.8 Reconstructed vs. Corrupted Samples

In Fig. 2.6, we display QED and SA score distributions for the reconstructed molecules

(x) and the corrupted molecules (x̃) visited during Gibbs sampling as well as molecules
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generated by solely running the corrupter (with no reconstruction). The corruption-

only samples severely diverge from the data distribution.
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Figure 2.6: Distributions of QED (left) and SA (right) scores for reconstructed
molecules (x) and corrupted molecules (x̃) visited during Gibbs sampling as well
as molecules generated via corruption-only.

2.6.9 Example Chains

Below, we display three example chains for the molecular model.
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Figure 2.7: Example chain. The molecule is displayed after each transition of the
Markov chain.
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Figure 2.8: Example chain. The molecule is displayed every five transitions.
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Figure 2.9: Example chain. The molecule is displayed every ten transitions.
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Chapter 3

SketchGraphs: A Large-Scale

Dataset for Modeling Relational

Geometry in Computer-Aided

Design

3.1 Introduction

The modern design paradigm for physical objects typically resembles modular

programming, where simple subcomponents are connected to yield a composed

part/assembly with more complex properties [4]. In parametric computer-aided

design (CAD), parts generally begin as a collection of 2D sketches composed of

geometric primitives (line segments, circles, etc.) with associated parameters (coor-

dinates, radius, etc.). Primitives and parameters interact via imposed constraints

(e.g., equality, symmetry, perpendicularity, coincidence) determining their final

configuration. Edits made to any parameter will propagate along these specified

dependencies, updating other properties of the sketch accordingly. A collection of 3D
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Figure 3.1: Example sketches from the dataset containing at least six geometric
primitives. Dashed lines indicate construction geometry, which is used as a reference
for other primitives but not physically realized.

operations, e.g., extruding a circle into a cylinder, then enable the creation of solids

and surfaces from these 2D sketches.

Training machine learning models to construct and reason about object designs

has the potential to enable new and more efficient design workflows. This is an

important but challenging domain that sits at the interface of graphics, relational

reasoning, and program synthesis. Recent progress in probabilistic generative model-

ing of both continuous (e.g., images and audio [48, 6, 87]) and discrete (e.g., graphs

and source code [95, 57, 71]) domains has demonstrated the potential for both sam-

pling high-dimensional objects and, in the case of explicit models, estimating their

densities/probabilities. If adapted to CAD, such models may be incorporated into the

design workflow by, for example, suggesting next steps based on partially specified

geometry or offering corrections of implausible operations. In addition, if provided

with visual observations of a part or sketch, a model may be trained to infer the

underlying feature history, allowing for direct modification in CAD software.
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Beyond the applicability to design itself, reasoning about human-designed struc-

tures is fundamental to artificial intelligence research. One of the challenges of com-

puter vision, for example, is developing rich priors of objects in scenes. It is important

to construct priors for the kind of “stuff” encountered in the world, which may exhibit

significant symmetry and modularity, properties that are difficult to capture directly.

By developing models for the design process and learning to reason about the creation

of objects, it may become possible to identify hierarchical structures, long-range sym-

metries, and functional constraints that would be difficult to infer from vision alone.

Outside of computer vision, a long-horizon goal of artificial intelligence is the task

of program induction [58, 40, 19]. In program induction, the objective is to discover

computer programs from examples of their inputs and outputs. Closely related to this

are the ideas of programming by demonstration (e.g., Cypher and Halbert [16], Menon

et al. [67]) and the problem of program synthesis (e.g., Ellis et al. [23], Gulwani et al.

[33]). Part of the challenge of program induction is identifying a rewarding “sweet

spot” in the coupled space of program representation and induction task; it is difficult

to move beyond simple toy problems. We can view the design of physical objects in a

parametric CAD system, however, as an example of constraint programming in which

rich geometric structures are specified by an implicit program rather than, e.g., imper-

atively. It is a highly appealing domain for the study of program induction/synthesis

because it is relatively well-scoped and low-order, but clearly requires the discovery

of modularity to be effective. Moreover, progress on CAD program synthesis and

induction leads to useful tools on a relatively short horizon.

To support these community research goals, we introduce SketchGraphs,1 a

dataset of 15 million sketches extracted from parametric CAD models hosted on

Onshape,2 a cloud-based CAD platform. Each sketch is represented with the ground

truth geometric constraint graph specifying its construction, where edges denote

1https://github.com/PrincetonLIPS/SketchGraphs
2https://www.onshape.com
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precise relationships imposed by the designer that must be preserved between specific

primitives, the nodes of the graph (Fig. 3.2). Along with the dataset, we provide an

open-source tool suite for data processing, removing obstacles to model development

for other researchers.

Existing CAD datasets of voxel or mesh-based representations of 3D geometry

[12, 93] have enabled work on sampling realistic 3D shapes [92, 62, 72]. Samples from

such models, while impressive, are not modifiable in a parametric design setting and

therefore are not directly usable in most engineering workflows. The recent ABC

dataset [49] extracts parametric CAD models from Onshape’s public platform, as

do we, but is geared towards 3D modeling of curves and surfaces, supporting tasks

such as patch segmentation and normal estimation. Explicit modeling of the rela-

tional structure exhibited by parametric CAD sketches, the target of SketchGraphs,

is currently underexplored.

The SketchGraphs dataset may be used to train models directly for various target

applications aiding the design workflow, including conditional completion (autocom-

pleting partially specified geometry) and automatically applying natural constraints

reflecting likely design intent (autoconstrain). In addition, by providing a set of ren-

dering functions for sketches, we aim to enable work on CAD inference from images.

Off-the-shelf noisy rendering options allow for sketches to appear hand-drawn. This

setup is similar to that proposed in Ellis et al. [24], where TikZ figures are rendered

with a hand-drawn appearance to provide training data for a model inferring LaTeX

code from images. Here, our sketches are not synthetically produced but rather ex-

tracted from real-world parametric CAD models. See Section 3.4 for further details

on the target applications supported by SketchGraphs.

This chapter makes the following contributions:
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Figure 3.2: Example sketch (left) and a portion of its geometric constraint graph
(right). Constraints are denoted as edges that either act on a primitive as a whole or
some subcomponent of the primitive. Dots represent either a primitive’s endpoints
(left and right dots) or its center point (bottom dot).

• We collect a dataset of 15 million parametric CAD sketches including ground

truth geometric constraint graphs denoting the primitives present and their

imposed relationships.

• We develop an open-source pipeline for data processing, conversion, and inte-

gration with deep learning frameworks in Python. These technical contributions

include:

– Specific domain types to enable manipulation of the sketches and their

representations in a structured manner.

– A local renderer to enable visualization of sketches obtained from the

dataset or generated by models.

• We establish baseline models for two initial use cases of the dataset: genera-

tive modeling of sketches and inferring likely constraints conditioned on uncon-

strained geometry.
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3.2 Related Work

CAD datasets Existing large-scale CAD datasets have tended to focus on 3D shape

modeling. ModelNet [93] and ShapeNet [12], for example, offer voxel and mesh-based

representations of 3D geometry, enabling the generative modeling work of Wu et al.

[92], Liu et al. [62], Nash et al. [72]. Note that these representations do not store

the construction route employed by the original designer of each CAD model. The

ABC dataset [49], in contrast to the above, contains parametric representations of

3D CAD models. Like SketchGraphs, the ABC models are obtained from public

Onshape documents. However, the processing pipeline and benchmarks of the ABC

dataset support 3D modeling of curves and surfaces. In contrast, we extract the 2D

sketches that form the basis of 3D CAD models, enabling modeling of the geometric

constraints used to ensure design intent.

Sketch datasets The word sketch is a term of art in the context of CAD, referring

specifically to the 2D basis of 3D CAD models, storing both geometric primitives

and imposed constraints. Large-scale datasets related instead to the colloquial usage

of this term have been proposed in recent years, specifically focusing on hand-drawn

sketches of general image categories (cat, bus, etc.). The QuickDraw dataset was

constructed in Ha and Eck [34] from the Quick, Draw! online game [45] to train an

RNN to produce vector image sketches as sequences of pen strokes. Pairings of pixel-

based natural images and corresponding vector sketches are collected in the Sketchy

dataset [74], intended to train models for sketch-based image retrieval. Like these

datasets based on vector images, our SketchGraphs dataset is also fundamentally

focused on the construction of sketches, not simply their raster appearance. However,

here we focus on the relational geometry underlying parametric CAD sketches, not

drawings of general categories.
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Primitive type %

Line 68.47
Circle 9.97
Arc 9.45
Point 8.58
Spline 2.57
Ellipse 0.08

Constraint type %

Coincident 42.17
Projected 9.71
Distance 6.72
Horizontal 6.45
Mirror 5.54
Vertical 4.78
Parallel 4.37
Length 3.68
Perpendicular 3.24
Tangent 2.94

Table 3.1: Frequencies of the most common primitives (left) and constraints (right).

Graph-structured generative modeling Modern message passing networks

(e.g., Gilmer et al. [29], Duvenaud et al. [22] extending the earlier work of Scarselli

et al. [75]) have enabled progress in modeling of domains that exhibit relational

structure, e.g., molecular chemistry and social networks. In the context of generative

modeling, these networks are often coupled with node and edge-specific prediction

modules that incrementally build a graph [57, 61]. We take a similar approach for two

example applications demonstrated in Section 3.4. Several alternative architectures

have been studied, such as LSTMs on linearized adjacency matrices [95] or decoding

soft adjacency matrices with elements containing probabilities of edge existence [83].

In general, graph modeling is subject to significant representation ambiguity (up to n!

node orderings for a graph containing n nodes). Recent work leveraging normalizing

flows [60] proposes a permutation-invariant approach for generating node features.

We identify the CAD sketch domain as one which admits a natural ordering over

construction operations for the underlying geometric constraint graphs, which we

describe in Section 3.3.

Geometric program induction Geometric program induction comprises a prac-

tical subset of problems in program induction where the goal is to learn to infer a
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set of instructions to reconstruct input geometry. For example, Ellis et al. [24] cou-

ples a learned shape detector with program search to infer LaTeX code for synthetic

images of TikZ figures and Sharma et al. [82] trains a reinforcement learning agent

to reconstruct simple 3D shapes with constructive solid geometry. We view this as

a fundamental area of study in order to develop machine learning models that can

aid in design and engineering. Work on generating programs interactively, e.g., al-

lowing a model to assess the current program’s output [25], shows particular promise.

Our processing pipeline includes functionality for sketch rendering and querying a

geometric constraint solver to aid research in this direction.

3.3 The SketchGraphs Dataset

SketchGraphs is aimed towards questions not just concerning the what but in particu-

lar the how of CAD design; that is, not simply what geometry is present but how was

it constructed. To this end, we leverage a data source that provides some insight into

the actual operations and commands selected by the designer at each stage of con-

struction. Whereas generic CAD file formats are widely available online, e.g., STEP

for 3D models and DXF for 2D drawings, these do not store any information regard-

ing constraints. In recent years, the cloud-based CAD platform Onshape has amassed

a large collection of publicly available models from which detailed construction his-

tories may be queried. For each CAD sketch, we extract ground truth construction

operations regarding both the geometric primitives present and constraints applied

to them.

3.3.1 Acquisition

Using Onshape’s API, we gather metadata for all public documents created within a

five-year period from 2015 to 2020, leading to over two million unique document IDs.
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Figure 3.3: Top-Left: Histogram of
sketch sizes as measured by the num-
ber of primitives and constraints they
contain. Top-Right: Number of con-
straints as a function of number of
primitives in the sketch (opacity repre-
sents respectively median, 69th, 84th
and 93rd percentile). Lower-Left:
Average node degree depicted as a
function of sequence position. Note
that primitives placed earlier in the se-
quence tend to serve as common an-
chors for subsequent primitives to con-
strain against.

Each document may contain multiple PartStudios, each specifying the design of an

individual component of a CAD model. We download each PartStudio and extract

all sketches present, resulting in over 15 million sketches. Note that the PartStudios

also contain non-sketch features, e.g., 3D operations, that we do not store in our

final dataset. Here, we focus only on the 2D sketches comprising each part and their

underlying constraint graph representations.

To be included in the dataset, each sketch must contain at least one geometric

primitive and one constraint. The dataset thus ranges from those sketches with larger

constraint graphs, which tend to be more visually interesting, to some very simple

sketches, e.g., sketches comprised of a single circle. See Section 3.3.1 and Table 3.1

for an overview of the sketch sizes and other dataset statistics.
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3.3.2 Geometric constraint graphs

Geometric constraint graphs offer a succinct representation of 2D CAD sketches. For

each sketch, we extract a graph G = (V,E) with a set of nodes, V , and a set of edges,

E, denoting primitives and constraints between them, respectively. In general, these

are multi-hypergraphs, where multiple edges are permitted to share the same member

nodes and each edge may join one or more nodes. When a constraint operates on

a single primitive, e.g., a scale constraint such as setting the radius of a circle, we

represent the constraint as a loop, an edge connecting the node of interest with itself.

In addition, hyperedges indicate constraints that operate on three or more nodes.

For example, a mirror constraint must specify a third primitive to act as an axis of

symmetry.

Primitives and constraints are described not just by their type but also by param-

eters dictating their behavior. For primitives, parameters consist of the coordinates

denoting their placement within a sketch and an isConstruction Boolean indicating

if a primitive is to be physically realized (when false) or serve as a reference for other

primitives (when true). Note that the initial values of a primitive’s coordinates do

not necessarily satisfy any of the constraints present; rather, the task of adjusting

primitives’ coordinates is left to a geometric constraint solver included in standard

CAD software.

Constraint parameters indicate the primitive(s) acted upon as well as any other

numerical or categorical values necessary to fully specify their behavior. For instance,

a distance constraint includes a number indicating the Euclidean distance that two

primitives must satisfy. Further details on primitive and constraint parameters may

be found in the appendix.

Often, constraints are applied to a specific point on a primitive. For example, two

endpoints from different line segments may be constrained to be a certain distance
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Figure 3.4: Left: Histogram of approximated degrees of freedom (DOF) remaining
among sketches in the SketchGraphs dataset. Right: DOF removed by constraints in
a sketch as a function of total DOF from its primitives before constraints are applied
(opacity represents median, 69th, 84th, and 93rd percentiles).

apart. In order to unambiguously represent these constraints, we include these sub-

primitives as separate nodes in the constraint graph.

Best practice in CAD encourages maintaining fully-constrained sketches, meaning

a minimally sufficient set of constraints removes all degrees of freedom (DOF) from

the sketch primitives [4]. This allows for edit propagation and better expression of

design intent. Overall, we observe a Pearson correlation coefficient of 0.598 between

the total DOF in each sketch and the total DOF removed by constraints3 (Fig. 3.4).

Users of SketchGraphs may query for sketches adhering to different thresholds of

constrainedness depending on their application.

3.3.3 Construction sequence extraction

For certain problem settings, a sequence representation of the constraint graphs may

be desired. In generative modeling, for example, graph-structured objects are often

modeled autoregressively as sequences of construction steps [57, 95]. In the generic

case, a canonical node ordering for graphs may not be available, leading to ambiguity

regarding sequential modeling. Here, however, we have access to certain informa-

3We exclude constraints directly involving a sketch’s axes in this calculation. Unfortunately, one
limitation of our dataset is that these external constraints (constraints involving default geometry
not defined by the user) are not currently retrievable via Onshape’s API. This is consistent, however,
with the common assumption that designs be fully-constrained up to rigid body transformation.
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tion about each sketch’s construction history that leads to natural sequence-based

representations.

In particular, we may access the order in which primitives were added to a sketch

by the user, conveying a ground truth node ordering (see Fig. 3.5 and Section 3.6.3 for

examples). Rather than being an arbitrary choice among factorially many, we observe

two trends that support this route: 1) Nodes with greater degree tend to occur earlier,

serving as integral building blocks of the sketch (Section 3.3.1). 2) Adjacent nodes in

the ordering have a greater probability of being adjacent in the graph than randomly

selected nodes (0.70 vs. 0.38, respectively).

While the ordering of primitives and constraints are both known separately, the

relative ordering (interleaving) of primitives and constraints is not recorded in the

Onshape models. We canonicalize the entire sequence by placing an edge’s insertion

step immediately following the insertion of its member nodes. This emulates the

standard design route of constraining primitives as they are added to a sketch. When

there are ties, such as when multiple nodes share more than one edge, or multiple

edges share the most recently added node, we may simply revert to the standalone

edge ordering.

An alternative sequence option stems from the setting where unconstrained ge-

ometry is imported into CAD software, for instance from a drawing scan, and the

software attempts to apply intended constraints. In this case, the corresponding se-

quence places all constraints at the end, after specifying all primitives. We note that

there will likely be additional sequence extraction methods of interest to users of the

dataset. Our pipeline may be easily extended to handle custom conversions.
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Figure 3.5: Construction of a dataset sketch proceeding from top left to bottom right.

3.4 Case Studies of Supported Applications

We identify several target applications for which SketchGraphs data may be used to

train and develop models and describe some initial methods to tackle these applica-

tions. In addition to mechanical design-focused applications, a domain underexplored

in the machine learning community, we note that these problems share properties

with similar tasks in program synthesis and induction. We intend for SketchGraphs

to serve as a test bed for these related lines of work and for the models below to

provide baselines for future research.

3.4.1 Autoconstrain

CAD packages such as Onshape, AutoCAD, and Solidworks typically contain built-

in constraint inferencing. However, these functions are based on manually-defined

heuristics, catered towards interactive sketching (for example placing a coincidence

constraint when a user drags a new primitive from an existing one). A sought-after
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feature is the ability to upload unconstrained geometry, such as from a drawing or

document scan, and infer the design intent and corresponding set of constraints. By

treating the primitives in the dataset’s sketches as input, the ground truth constraints

may serve as a predictive target. This may be viewed as an instance of program

induction in constraint programming.

The autoconstrain task, then, is to predict a set of constraints given an input

configuration of geometric primitives. Here, we are particularly interested in predict-

ing the “natural” set of constraints that would have been input by a human user.

However, we note that other target constraint sets may be considered, by e.g., requir-

ing them to be minimal in some mathematical sense [97, 96, 56]. The autoconstrain

problem can also be viewed as an example of a link prediction task in which the in-

duced relationships are the constraints; see e.g., Taskar et al. [86], Liben-Nowell and

Kleinberg [59], Lü and Zhou [64].

Model

We propose an autoregressive model based on message passing networks (MPNs)

[22, 29] where information about the input geometric primitives is propagated along a

growing set of constraints, iteratively building a constraint graph. The model is tasked

with predicting the sequence of edges corresponding to the given node sequence, and

proceeds in a recurrent fashion by iteratively predicting the next edge (represented

as a pair of the edge partner node and the edge label) for each node (or a stop token

indicating to move to the next node).

Edge prediction is trained in a supervised fashion simultaneously via two related

tasks:

• (partner prediction) Given the primitives (nodes) in the sketch, and the graph

representing the constraints at the given step of the construction sequence,

predict which node should be attached to the current node in order to create
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a new constraint (or choose to move to the next node by predicting a sentinel

node to attach).

• (constraint label prediction) Given the above, and the target partner of the

current constraint, predict the type of the current constraint.

At inference time, the model is additionally given a mask indicating (approxi-

mately) which constraints are satisfied in the sketch (these may be satisfied because

they were originally imposed in the dataset, or they may be a consequence of the

original constraints). This ensures that the model only selects valid constraints and

does not deform the sketch under consideration.

The model may conceptually be divided into three components: 1) an input rep-

resentation component, responsible for embedding the features from the primitives

and constraints, 2) a message-passing component, responsible for transforming these

features using the graph structure, and 3) a readout component, which outputs prob-

abilities for the specific tasks according to the transformed features. We describe each

one in turn.

Input representation Constraints are only identified by their referenced prim-

itives and their type. At the current stage, we embed their type using an m-

dimensional4 embedding layer. Primitives are a sequence of heterogenous discrete

elements, and thus require a little more care. The type of the primitive (i.e. Point,

Line etc.) is embedded similarly using an m-dimensional embedding layer. How-

ever, each primitive type may have a different number of parameters, which must

represented similarly. Continuous parameters are quantized and represented by their

quantized value, which is embedded using an m-dimensional layer. For a given primi-

tive, all of its parameters are embedded and averaged to form a parameter embedding

4Our model is parameterized by a global complexity parameter m (we use m = 384 in the results
we present).
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of size m (if a primitive has no parameters, the parameter embedding is set to zero).

The embedding for the primitive is then computed by concatenating the embedding

corresponding to the type, and that of the parameters, and projecting this 2m vector

onto one of size m through a dense layer.

Message passing Prior to message passing, the node embeddings are transformed

with a 3-layer recurrent neural network employing the GRU architecture [13] (and

with the hidden size set to m). The node embeddings are then recursively transformed

using a message passing network, such that at stage s, we perform the update:

a(s+1)
v =

∑
u:(u,v)∈E

fe(m
(s)
u , c(u,v)),

m(s+1)
v = fn(a(s+1)

v ,m(s)
v ),

where here c(u,v) denotes the representation for the constraint computed previously,

and m
(0)
u is the representation for the primitive computed previously. We set fe as a

linear layer that concatenates m
(s)
u and c(u,v) and set fn to take the functional form

of a GRU cell. We use 3 message passing steps in our presented results.

A global representation for the graph is also obtained by computing a weighted

sum of the final node messages, where the weights are computed using a learned

function comprised of a sigmoid applied to a linear layer. This representation is

combined with the final state of the GRU using a linear layer again to obtain a final

global representation for the problem.

Readout The readout for predicting the partner takes as input the final repre-

sentations for each node in the graph, the final representation for the current node,

and the global representation. These representations are concatenated and fed to a

fully-connected two-layer network (with ReLU non-linearity) which produces a scalar

value for each node in the graph. This value is interpreted as an unnormalized log-
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probability for the partner selected being the given node, where an implicit 0 value

is assigned to a sentinel node representing a request to move to the next node.

The label prediction readout takes as input the final representations for both the

current node and partner node, as well as the global representation. These repre-

sentations are concatenated and input to a three-layer fully-connected network. The

output of that network is then interpreted as unnormalized log-probabilities for pre-

dicted constraint type.

Training

The model is trained on a subset of SketchGraphs consisting of about 2.2M sketches,

limited to the most common types of primitives (Point, Line, Circle, and Arc) and at

most 16 primitive primitives per sketch. We exclude hypergraphs from consideration

here and only model two-node and single-node edges. During training, the model is

presented with random edges (or “stop” edges representing a request to move to the

next node), selected uniformly among all possible edges in the graphs (this implies

that the training is weighted towards larger graphs). We use the Adam optimizer

[47] with a batch size of 8192 and a learning rate of 10−5, where the learning rate is

understood to apply to the loss as expressed as a sum over the batch (rather than an

average). The training is performed over 150 epochs of the data, with the learning

rate decaying by a factor of 10 at epochs 50 and 150. The training is performed on

a server equipped with 4 Nvidia Titan X (Pascal) and dual Intel Xeon E5-2667 v4

(total 32 logical cores) and takes 3 hours and 30 minutes.

Evaluation

We evaluate the model on a separate held-out set of 50K sketches. During the evalu-

ation stage, invalid edge predictions are masked from the model. Although the model
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Figure 3.6: Autoconstraining a sketch. On the left is the original input sketch (only
primitives are provided to the model). Two user modifications are shown with the
blue arrows: dragging the top circle upwards (modification A) and both enlarging
and dragging it to the right (modification B). Our model correctly picks up on a
host of coincident, distance, equality, and other constraints. It fails to infer a 7
mm distance constraint between the top and bottom of the rectangle, but the circle
correctly maintains midpoint alignment with it (modification A).

naturally operates in a factorized fashion:

P (edge | X) = P (edge label | edge partner, X)P (edge partner | X)

we note that the mask itself does not factorize in the given fashion (as the validity of a

partner may depend on the specific constraint being considered). We thus reconstruct

the full joint distribution over the candidate partners and labels according to the

given conditionals, and mask and re-scale the predictions using the joint distribution

directly.

We obtain an average edge recall of 0.74(±0.00), an average edge precision of

0.74(±0.00), and an average F1 score of 0.71(±0.00) (where the brackets indicate

the standard error of the estimate). We also evaluate the test negative log-likelihood

at an average of 0.495 bits per edge. For reference, a uniform choice among valid

constraints scores an average entropy of 6.09 bits per edge.

We also demonstrate the inferred constraints qualitatively by editing a test sketch

and observing the resulting solved state Fig. 3.6.
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3.4.2 Generative modeling

A variety of target tasks may be approached under the broader umbrella of gener-

ative modeling. By learning to predict sequences of sketch construction operations,

for example, models may be employed for conditional completion, interactively sug-

gesting next steps to a CAD user. In addition, explicit generative models, estimating

probabilities (or densities) of examples, may be used to assess the overall plausibility

of a sketch via its graph or construction sequence, offering corrections of dubious

operations (similar to “autocorrect”). This also provides a path to a CAD analog of

inductive programming support that has been deployed in Microsoft Excel [32].

Here we develop an initial model and benchmark for unconditional generative

modeling. We train a model on full construction sequences for the sketch graphs,

both nodes and edges. While we model constraint parameters (edge features), we only

model the primitive type parameter for the nodes, leaving the task of determining

the final configuration of primitive coordinates to a constraint solver.

Model

The model resembles that from the autoconstrain task above, with an additional node-

adding module. When edge sampling for a given node has completed, the model

outputs a distribution over possible primitive types to add to the graph. After a

node’s insertion, any sub-primitive nodes associated with the new node (e.g., end-

points of a line segment) are deterministically added to the graph with corresponding

edges denoting the sub-primitive relationship. Alternatively, a stop token may be

selected that ceases graph construction. We highlight the major differences from the

autoconstrain model below.
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Input representation The input representation is similar to that of the auto-

constrain model, with the exception that primitive parameters are ignored whereas

constraint parameters are represented.

Message passing The message passing process is similar to that of the autocon-

strain model, except no recurrent model is used, and the node embeddings are used

directly. In contrast to the autoconstrain problem, all nodes present in the generative

problem are included in the graph, and hence we do not require a preprocessing step

for the node embeddings.

Readout In addition to the readout networks presented for the autoconstrain

model, readout models are present for the primitive prediction task and predicting

constraint parameters. The primitive prediction readout is given the global embed-

ding for the graph and is tasked to predict the type of the next primitive to be

added to the construction sequence. It is implemented as a 3-layer fully-connected

network. The constraint parameter readout is given the constraint type as well as

a representation computed from the primitives participating in the constraint. The

parameters are then read-out sequentially using a recurrent neural network.

Training

The training set is the same as that for the autoconstrain model. Numerical constraint

parameters adhering to the most frequent schemas (Section 3.6.2) are included as

targets. The model is trained using the Adam optimizer, with a batch size of 6144

and a learning rate of 10−5, where the learning rate is understood to apply to the

loss as expressed as a sum over the batch. The training is performed for 150 epochs

of the data, with the learning rate decaying by a factor of 10 at epochs 50 and 150.

The training is performed on a server equipped with 4 Nvidia Titan X (Pascal) and
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dual Intel Xeon E5-3667 v4 (total 32 logical cores), although only 3 GPUs were used

due to a CPU bottleneck. The training takes 3 hours and 50 minutes.

Evaluation

The evaluation of high-dimensional generative models is an open problem. Here we

provide quantitative evaluation consisting of likelihood on the held-out test set as

well as distributional statistics. Using the same train-test split as in Section 3.4.1,

the average negative log-likelihood of test examples according to the trained model is

28.2 bits per sketch. In comparison, a standard LZMA compressor, applied to a short

canonical representation of the data (explained below), yields an average entropy of

85.6 bits per sketch.

LZMA comparison To estimate the performance of the LZMA compressor on the

data, we represent the construction sequence as a sequence of integers (representing

all labels and features). Such sequences are then concatenated and compressed using

Python’s implementation of LZMA with preset 9 and LZMA_EXTREME. Letting sn de-

note the compressed size (in bits) of the the first n elements of the dataset, we report

an estimate of the average entropy rate by computing (s100000 − s50000)/50000.

Distributional statistics We compare a host of statistics for the ground-truth

training dataset to statistics on 10K generated samples. Fig. 3.8 depicts sketch-

size distributions in terms of primitive and constraint counts, and Fig. 3.9 depicts

the distribution of degrees of freedom in each set of sketches. Error bars in these

histograms represent 5th and 95th percentiles acquired by resampling the generated

sketches with replacement 2K times. We also compare the distribution of primitive

and constraint types in Fig. 3.10.

For depictions of generated sketches, see Fig. 3.7. While this baseline model

produces primitive types, constraint types, and constraint parameters, it is not trained
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Figure 3.7: Random samples from the trained generative model containing at least
two primitives. A solver is used to determine the final configuration of the sketch
after the model samples the geometric constraint graph. Each primitive is initialized
uniformly (e.g., all lines initially lie on the x-axis from 0 to 1) and their coordinates
are updated by the solver. This baseline model, which does not output primitive
parameters, is able to capture some of the patterns observed for small sketches but
does not produce many sophisticated sketches.
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Figure 3.8: Distributions of sampled and training set sketch sizes. Error bars represent
bootstrapped 5th and 95th percentiles.

to initialize the primitive coordinates. The solver determines the final configuration

starting from a uniform initialization, which limits the visual diversity of the observed

samples. Future work will include modeling the primitive coordinates.

55



0 20 40 60 80 100
Total DOF

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

samples
dataset

0 10 20 30 40 50 60
DOF removed by constraints

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

samples
dataset

0 5 10 15 20 25 30 35 40
Net DOF

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

samples
dataset

Figure 3.9: Degrees of freedom statistics for sampled and training set sketches. Error
bars represent bootstrapped 5th and 95th percentiles.
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Figure 3.10: Average number of primitives and constraints of each type per sketch in
training set and sampled sketches.

3.4.3 Other potential applications

CAD inference from images

A highly-sought feature for CAD software is the ability to input a noisy observation of

an object (2D drawing, 3D scan, etc.) and infer its design steps, producing a plausible

parametric CAD model. Inferring sketch primitives and constraints, which form the

2D basis of 3D CAD models, is an integral component of this application. Our

pipeline includes rendering functions for producing images of the sketches, including

noisy rendering to simulate a hand-drawn appearance. This allows generating millions

of training pairs of rendered sketches and corresponding geometric constraint graphs.

Learning semantic representations

New models trained on the SketchGraphs data can lead to vectorial latent represen-

tations that capture important semantic content in sketches. Such vector representa-

tions have been developed for natural language processing [2, 68], speech recognition

[37], computer vision [46], and computational chemistry [31]. These representations
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have opened up a space of creative new possibilities for downstream tasks from search

to content recommendation. Unsupervised learning on the SketchGraphs data enables

such possibilities for CAD designs.

3.5 Conclusion and Future Work

This chapter has introduced SketchGraphs, a large-scale dataset of parametric CAD

sketches and processing pipeline intended to facilitate research in ML-aided design

and broader problems in relational reasoning and program induction. Each sketch is

accompanied by the ground truth geometric constraint graph denoting its configura-

tion. We demonstrate two use cases of the dataset, unconditional generative modeling

and conditionally inferring constraints given primitives, providing initial benchmarks

for these applications.

While we focus on 2D sketches here, which serve as the anchors for full para-

metric CAD models, future work will aim to make the complete set of construction

operations accessible to modeling. We will also be providing benchmarks for addi-

tional applications supported by the dataset, including parametric CAD inference

from images, a potentially powerful design aid.

3.6 Appendix

3.6.1 Primitive Parameters

Primitives are accompanied by both numerical and Boolean parameters specifying

their initial positions within a sketch. For certain primitives, Onshape and other

CAD programs employ an overparameterized description that aids in constraint solv-

ing. In our pipeline, the classes representing each primitive type contain attributes
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corresponding to Onshape’s parameterization but include methods for conversion to

standard parameterizations.

As mentioned in the main text, all primitives have an isConstruction Boolean

parameter indicating if a primitive is to be physically realized or simply serve as a

reference for other primitives. We provide the remaining parameterization for com-

mon primitive types below.

Point (dof: 2)

• x (float): x coordinate

• y (float): y coordinate

Line (dof: 4)

• dirX (float): x component of unit direction vector

• dirY (float): y component of unit direction vector

• pntX (float): x coordinate of any point on the line

• pntY (float): y coordinate of the same point as above

• startParam (float): signed distance of starting point relative to (pntX, pntY)

• endParam (float): signed distance of ending point relative to (pntX, pntY)

Circle (dof: 3)

• xCenter (float): x coordinate of circle center

• yCenter (float): y coordinate of circle center

• xDir (float): x component of unit direction vector5

• yDir (float): y component of unit direction vector

5Circles are considered to have an angular direction in order to account for rotation of sketch
components involving circles.
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• radius (float): radius

• clockwise (bool): orientation of the unit direction vector

Arc (dof: 5)

• xCenter (float): x coordinate of corresponding circle’s center

• yCenter (float): y coordinate of corresponding circle’s center

• xDir (float): x component of unit direction vector

• yDir (float): y component of unit direction vector

• radius (float): radius of corresponding circle

• clockwise (bool): orientation of the unit direction vector

• startParam (float): starting angle relative to unit direction vector

• endParam (float): ending angle relative to unit direction vector

Ellipse (dof: 5)

• xCenter (float): x coordinate of ellipse’s center

• yCenter (float): y coordinate of ellipse’s center

• xDir (float): x component of unit direction vector

• yDir (float): y component of unit direction vector

• radius (float): greater (major) radius

• minorRadius (float): smaller radius

• clockwise (bool): orientation of the unit direction vector
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3.6.2 Constraint Parameters

All constraints act on at least one primitive, indicated by the corresponding edge’s

member nodes. A subset of constraints require additional numerical, enumerated, or

Boolean parameters to fully specify their behavior. Here we list the general parame-

ters that may accompany constraints followed by the schemata for common constraint

types. We exclude any external constraints (e.g., constraints involving projected ge-

ometry) and describe only those that act on user-defined geometry within a sketch.

Numerical parameters follow user-specified units.

Note that constraint parameters are considered internal to Onshape and thus

external documentation is sparse. We determine parameter functionality based on

discussions with Onshape developers and usage of the solver.

Parameters

• local# (reference): a reference to a primitive. A constraint may have one

or more of these (e.g., local0, local1, ...). The alternative parameter names

localFirst and localSecond are used interchangeably in the data with local0

and local1, respectively.

• length (float): quantity for a numerical constraint (e.g., a 3 cm distance)

• angle (float): quantity for an angular constraint (e.g., 45 degrees)

• clockwise (bool): orientation of an angular constraint

• aligned (bool): whether the start and end points of primitives in an angular

constraint are aligned in the angle computation

• direction (enum): the measurement type for a distance value (must be on of

minimum, vertical, or horizontal)
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• halfSpace# (enum): the relative positioning to be maintained by primitives in

distance-based constraints (must be one of left or right)

Schemata

Below, we list each parameter schema and the constraints adhering to it. Note that

some constraints can appear with more than one schema. For example, a horizontal

constraint may act on a single primitive (specifying only local0) or two primitives

(specifying both local0 and local1). Numerical constraints are listed here with

their most frequent schema, although a few other schemas may appear in the dataset.

(local0)

Horizontal, Vertical

(local0, local1)

Coincident, Horizontal, Vertical, Parallel, Perpendicular, Tangent, Midpoint, Equal,

Offset, Concentric

(local0, local1, local2)

Mirror

(local0, length)

Diameter, Radius

(local0, direction, length)

Length

(local0, local1, direction, halfSpace0, halfSpace1, length)

Distance

(local0, local1, aligned, clockwise, angle)

Angle
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Length %

5 mm 3.51
1 cm 3.35
3 mm 2.76
0.5 in 2.41
2 mm 2.30
1 in 2.29
2 cm 2.17
4 mm 2.03
8 mm 1.89
0.25 in 1.88

Angle (deg) %

45 18.02
15 7.93
60 6.58
120 6.58
30 6.42
135 5.87
90 4.00
10 2.72
20 2.69
150 1.50

Table 3.2: Frequencies of the most common values observed for length (left) and
angle (right) parameters. All values are converted to common units for frequency
computation. For length, we display the values in the units requiring the fewest
digits. Note that although the standalone Perpendicular constraint is generally
used for 90-degree angles, perpendicularity is sometimes imposed with an angular
constraint as seen here.

Numerical parameter distributions

We examine the values observed for the two constraint parameters specifying a quan-

tity: length and angle. As described above, the length parameter is used in several

numerical constraints.

See Table 3.2 for the frequencies of the most common parameter values. Un-

surprisingly, the most common angles tend to evenly divide 360 degrees. The most

common length parameters tend to correspond to standard sizes of common parts

(e.g., a 5 mm screw). Fig. 3.11 displays the cumulative frequency of parameter values

when sorted from most to least frequent. The 300 most frequent values for angle

and length account for 95.8% and 82.1% of all occurrences, respectively. angle, as

a scale-invariant parameter, exhibits a bit less diversity than length.
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Figure 3.11: Cumulative frequency of unique parameter values when sorted from most
to least frequent.

3.6.3 Example sketch constructions

Below, we render the construction steps for some of the example sketches in Fig. 3.1

according to the user-defined primitive orderings.

Figure 3.12: Construction of a dataset sketch proceeding from top left to bottom
right.
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Figure 3.13: Construction of a dataset sketch proceeding from top left to bottom
right.
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Figure 3.14: Construction of a dataset sketch proceeding from top left to bottom
right.
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Figure 3.15: Construction of a dataset sketch proceeding from top left to bottom
right.
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Chapter 4

Vitruvion: A Generative Model of

Parametric CAD Sketches

4.1 Introduction

Parametric computer-aided design (CAD) tools are at the heart of the design process

in mechanical engineering, aerospace, architecture, and many other disciplines. These

tools enable the specification of two- and three-dimensional structures in a way that

empowers the user to explore parameterized variations on their designs, while also

providing a structured representation for downstream tasks such as simulation and

manufacturing. In the context of CAD, parametric refers to the dominant paradigm

for professionals, in which the software tool essentially provides a graphical interface

to the specification of a constraint program which can be then solved to provide a geo-

metric configuration. This implicit programmatic workflow means that modifications

to the design—alteration of dimensions, angles, etc.—propagate across the construc-

tion, even if it is an assembly with many hundreds or thousands of components.

At an operational level, parametric CAD starts with the specification of two-

dimensional geometric representations, referred to as “sketches” in the CAD com-
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Figure 4.1: Example CAD design workflow enabled by our model. Our model first con-
ditions on a raster image of a hand-drawn sketch (left) and generates sketch primitives
(middle). Given the primitives, are set of constraints are then generated and the entire
parametric sketch is imported, solved, and edited in CAD software, ultimately producing a
3D model (right).

munity [81, 10, 14]. A sketch consists of a collection of geometric primitives (e.g.,

lines, circles), along with a set of constraints that relate these primitives to one an-

other. Examples of sketch constraints include parallelism, tangency, coincidence, and

rotational symmetry. Constraints are central to the parametric CAD process as they

reflect abstract design intent on the part of the user, making it possible for numerical

modifications to coherently propagate into other parts of the design. These constraints

are the basis of our view of parametric CAD as the specification of a program; indeed

the actual file formats themselves are indistinguishable from conventional computer

code.

This design paradigm, while powerful, is often a challenging and tedious process.

An engineer may execute similar sets of operations many dozens of times per de-

sign. Furthermore, general motifs may be repeated across related parts, resulting in

duplicated effort. Learning to accurately predict such patterns has the potential to

mitigate the inefficiencies involved in repetitive manual design. In addition, engineers

often begin visualizing a design by roughly drawing it on paper. The automatic and

reliable conversion of such hand-drawings, or similarly noisy inputs such as 3D scans,

to parametric, editable models remains a highly sought feature.
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Constraint ModelPrimitive Model

⋮ ⋮

Circle(x, y, r) Circle(x, y, r)

Line(x1, y1, x2, y2) Line(x1, y1, x2, y2)

Tangent(1, 3) Coincident(1, 3.start)

Equal(3, 4)Tangent(1, 4)

Figure 4.2: We factorize CAD sketch synthesis into two sequence modeling tasks: prim-
itive generation (left) and constraint generation (right). The constraint model conditions
on the present primitives and outputs a sequence of constraints, serving as edges in the
corresponding geometric constraint graph. A separate solver (standard in CAD software)
is used to adjust the primitive coordinates, if necessary.

In this work, we introduce Vitruvion,1 a generative model trained to synthesize

coherent CAD sketches by autoregressively sampling geometric primitives and con-

straints. The model employs self-attention [88] to flexibly propagate information

about the current state of a sketch to a next-step prediction module. This next-step

prediction scheme is iterated until the selection of a stop token signals a completed

sample. The resultant geometric constraint graph is then handed to a solver that

identifies the final configuration of the sketch primitives. By generating sketches via

constraint graphs, we allow for automatic edit propagation in standard CAD soft-

ware. Constraint supervision for the model is provided by the SketchGraphs dataset

[78], which pairs millions of real-world sketches with their ground truth geometric

constraint graphs.

In addition to evaluating the model via log-likelihood, we demonstrate the model’s

ability to aid in three application scenarios when conditioned on specific kinds of con-

text. In autocomplete, we first prime the model with an incomplete sketch (e.g.,

1Our model’s nickname, Vitruvion, is derived from “The Vitruvian Man”, a 1490 drawing by
Leonardo da Vinci depicting a man inscribed in a circle and square.
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with several primitives missing) and query for plausible completion(s). In autocon-

strain, the model is conditioned on a set of primitives (subject to position noise),

and attempts to infer the intended constraints. We also explore image-conditional

synthesis, where the model is first exposed to a raster image of a hand-drawn sketch.

In this case, the model is tasked with inferring both the primitives and constraints

corresponding to the sketch depicted in the image. Overall, we find the proposed

model is capable of synthesizing realistic CAD sketches and exhibits potential to aid

the mechanical design workflow.

4.2 Related Work

CAD sketch generation may be viewed via the broader lens of geometric program

synthesis. This comprises a practical subset of program synthesis generally concerned

with inferring a set of instructions (a program) for reconstructing geometry from some

input specification. Recent examples include inferring TikZ drawing commands from

images [24] and constructive solid geometry programs from voxel representations [82].

Related to these efforts is the highly-sought ability to accurately reverse engineer a

mechanical part given underspecified and noisy observations of it (e.g,. scans, photos,

or drawings). These applications depend on effective representation learning of raster

and vector graphics [11]. We explore a variety of conditional settings in this work,

for example, training a version of our model that generates parametric sketches when

given a raster hand-drawing.

Generative modeling of CAD sketches has recently been studied using the Sketch-

Graphs dataset [78], which provides ground truth geometric constraint graphs (and

thus the original design steps) for millions of real-world CAD sketches. Initial models

are trained in Seff et al. [78] for constraint graph generation, but without any learned

attributes for the positions of the primitives in the sketch; the sketch configuration is
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determined via constraints alone, limiting the diversity and sophistication of output

samples. Willis et al. [91] models the primitive positions, but without specifying any

geometric constraints. In contrast to both of the above, our model generates sketches

via both learned primitive positions and constraints between them. The explicitly

defined constraints enable edit propagation in standard CAD software; components

of our generated sketches are updated appropriately in response to user-imposed

changes.

This work is also related to modeling of graph structures, as we model CAD

sketches as geometric constraint graphs. Graphs constitute a natural representation

of relational structure across a variety of domains, including chemistry, social net-

works, and robotics. In recent years, message-passing networks [29, 22], building

off of Scarselli et al. [75], have been extensively applied to generative modeling of

graph-structured data, such as molecular graphs [43, 61]. These networks propagate

information along edges, learning node or graph-level representations that serve as

input to node and edge prediction modules.

While message passing between adjacent nodes can be a useful inductive bias, it

can also be an impediment to effective learning when communication between distant

nodes is necessary, e.g., in sparsely connected graphs [51]. The constraint graphs of

concern in our work are sparse, as the constraints (edges) grow at most linearly in

the number of primitives (nodes). Recent work leverages the flexible self-attention

mechanism of transformers [88] to generate graph-structured data without the lim-

itations of fixed, neighbor-to-neighbor communication paths, such as for polygonal

mesh generation [72]. Our work similarly bypasses edge-specific message passing,

using self-attention to train a generative model of geometric constraint graphs repre-

senting sketches.
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4.3 Method

We aim to model a distribution over parametric CAD sketches. Each sketch is com-

prised of both a sequence of primitives, P , and a sequence of constraints, C. We

note that these are sequences, as opposed to unordered sets, due to the ground truth

orderings included in the data format [78]. Primitives and constraints are repre-

sented similarly in that both have a categorical type (e.g., Line, Arc, Coincidence)

as well as a set of additional parameters which determine their placement/behavior

in a sketch. Despite this similarity, primitives are fundamentally constructions which

specify what is present, while constraints determine how these constructions are ar-

ranged by specifying geometric relationships between primitives. Rather than serving

as static geometry, CAD sketches are intended to be dynamic—automatically updat-

ing in response to altered design parameters. Likewise, equipping our model with the

ability to explicitly constrain generated primitives serves to ensure the preservation

of various geometric relationships during downstream editing.

We divide the sketch generation task into three subtasks: primitive generation,

constraint generation, and constraint solving. In our approach, the first two tasks uti-

lize learned models, while the last step may be conducted by any standard geometric

constraint solver.2 We find that independently trained models for primitives and

constraints allows for a simpler implementation. This setup is similar to that of Nash

et al. [72], where distinct vertex and face models are trained for mesh generation.

The overall sketch generation proceeds as

pθ(P , C | ctx) = pθ(C | P)pθ(P | ctx)

S = solve(P , C)
(4.1)

where:

2We use D-Cubed (Siemens PLM) for geometric constraint solving via Onshape’s public API.
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• P is a sequence of primitives, including parameters specifying their positions;

• C is a sequence of constraints, imposing mandatory relationships between prim-

itives;

• S is the resulting sketch, formed by invoking a solve routine on the (P , C) pair;

and

• ctx is an optional context for conditioning, such as an image or prefix (primer).

This factorization assumes C is conditionally independent of the context given P .

For example, in an image-conditional setting, access to the raster representation of

a sketch is assumed to be superfluous for the constraint model given accurate iden-

tification of the portrayed primitives and their respective positions in the sketch.

Unconditional samples may be generated by providing a null context.

4.3.1 Primitive Model

The primitive model is tasked with autoregressive generation of a sequence of geomet-

ric primitives. For each sketch, we factorize the distribution as a product of successive

conditionals,

pθ(P | ctx) =

NP∏
i=1

pθ(Pi | {Pj}j<i, ctx), (4.2)

where NP is the number of primitives in the sequence. Each primitive is represented

by a tuple of tokens indicating the type of primitive and its parameters. The primi-

tive type may be one of four possible shapes (here either arc, circle, line, or point),

and the associated parameters include both continuous positional coordinates and

an isConstruction Boolean.3 We use sequence to emphasize that our model treats

sketches as constructions arising from a step-by-step design process.

3Construction or virtual geometry is employed in CAD software to aid in applying constraints to
regular geometry. isConstruction specifies whether the given primitive is to be physically realized
(when false) or simply serve as a reference for constraints (when true).
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Arc (x0, y0, xmid, ymid, x1, y1)

Circle (x, y, r)

Line (x0, y0, x1, y1)

Point (x, y)

Table 4.1: Primitive parameteriza-
tions. We convert the native On-
shape numerical parameters to the
above forms for modeling. Sub-
scripts of 0, mid, and 1 indicate
start, mid, and endpoints, respec-
tively.

Ordering. Abstractly, the mapping from con-

structions sequences to final sketch geometries is

clearly non-injective; it is typical for many con-

struction sequences to result in the same final ge-

ometry. Nevertheless, empirically, we know that

the design routes employed by engineers often ad-

mit evident patterns, e.g., greater involvement of

earlier “anchor” primitives in constraints [78]. In

our training data from SketchGraphs, the order

of the design steps taken by the original sketch

creators is preserved. Thus, instead of enforcing order-invariance in our model, we

specifically expose it to this ordering, training our model to autoregressively predict

subsequent design steps conditioned on prefixes. By following an explicit represen-

tation of this ordering, our model remains amenable to applications in which condi-

tioning on such a prefix of design steps is required, such as autocompleting a sketch.

Finally, ordering substantially constrains the target distribution in the sense that the

model is not required to distribute its capacity among all possible orderings.

Parameterization. SketchGraphs provides the original parameterization for each

primitive as employed by Onshape.4 In order to accommodate the interface to the

Onshape constraint solver, these are often over-parameterizations ; line segments, for

example, are defined by six continuous parameters rather than four. We compress

the original Onshape parameterizations into minimal canonical parameterizations for

modeling and inflate them back to the original encoding prior to constraint solving.

Normalization. The sketches in SketchGraphs exhibit widely varying scales in

physical space, spanning orders of magnitude from millimeters to meters. In addition,

4https://www.onshape.com
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because Onshape users are free to place sketches anywhere in the coordinate plane,

they are often not centered with respect to the origin in the coordinate space. To

reduce modeling ambiguity, for each sketch we modify the primitive coordinates such

that the sketch’s square bounding box has a width of one meter and is centered at

the origin.

Quantization. The sketch primitives are inherently described by continuous pa-

rameters such as x, y Cartesian coordinates, radii, etc. As is now a common approach

in various continuous domains, we quantize these continuous variables and treat them

as discrete. This allows for more flexible, yet tractable, modeling of arbitrarily shaped

distributions [87, 72]. Following the sketch normalization procedure described in Sec-

tion 4.3.1, we apply 6-bit uniform quantization to the primitive parameters. Lossy

quantization is tolerable as the constraint model and solver are ultimately responsible

for the final sketch configuration.

Tokenization. Each parameter (whether categorical or numeric) in the input prim-

itive sequence is represented using a three-tuple comprised of three different token

types: value, ID, and position. Value tokens play a dual role. First, a small portion

of the range for value tokens is reserved to enumerate the primitive types. Second,

the remainder of the range is treated separately as a set of (binned) values to specify

the numerical value of some parameter, for example, the radius of a Circle primitive.

ID tokens specify the type of parameter being described by each value token. For

example, an ID token xCenter indicates that the corresponding value token is the

x coordinate of a circle’s center. Position tokens specify the ordered index of the

primitive that the current element belongs to (e.g., a position of 3 means the given

token is part of the third primitive).
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Embeddings. We use learned embeddings for all tokens. That is, each value, ID,

and position token associated with a parameter is independently embedded into a

fixed-length vector. Then, we compute an element-wise sum across each of these three

token embedding vectors to produce a single, fixed-length embedding to represent the

parameter embedding. The sequence of parameter embeddings are then fed as input

to the decoder described below.

Architecture. The unconditional primitive model is based on a decoder-only trans-

former [88] operating on the flattened primitive sequences. To respect the temporal

dependencies of the primitive sequence during parallel training, the transformer de-

coder leverages standard triangular masking during self-attention. The last layer of

the transformer outputs a final representation for each token that then passes through

a linear layer to produce a logit for each possible value token. Taking a softmax over

these logits gives the categorical distribution for the next token prediction task. We

discuss conditional variants in Section 4.3.3. See the appendix for further architec-

tural and hyperparameter details.

4.3.2 Constraint Model

Given a sequence of primitives, the constraint model is tasked with autoregressive

generation of a sequence of constraints. As with the primitive model, we factorize the

constraint model as a product of successive conditionals,

pθ(C | P) =

NC∏
i=1

pθ(Ci | {Cj}j<i,P), (4.3)

where NC is the number of constraints. Each constraint is represented by a tuple of

tokens indicating its type and parameters.

Here, we focus our constraint modeling on handling all categorical constraints

containing one or two reference parameters. This omits constraints with numerical
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parameters (such as scale constraints) as well as “hyperedge” constraints that have

more than two references.

Ordering. We canonicalize the order of constraints according to the order of the

primitives they act upon, similar to Seff et al. [78]. That is, constraints are sorted

according to their latest member primitive. For each constraint type, we arbitrarily

canonicalize the ordering of its tuple of parameters. Constraint tuples specify the

type of constraint and its reference parameters.

Tokenization. The constraint model employs a similar tokenization scheme to the

primitive model in order to obtain a standardized sequence of integers as input. For

each parameter, a triple of value, ID, and position tokens indicate the parameter’s

value, what type of parameter it is, and which ordered constraint it belongs to,

respectively.

Architecture. The constraint model employs an encoder-decoder transformer ar-

chitecture which allows it to condition on the input sequence of primitives. A chal-

lenge with the constraint model is that it must be able to specify references to the

primitives that each constraint acts upon, but the number of primitives varies among

sketches. To that end, we utilize variable-length softmax distributions (via pointer

networks [89]) over the primitives in the sketch to specify which primitives the con-

straint references. This is similar to the methodology utilized in PolyGen [72], but

importantly distinct in that our constraint model is equipped to reference hierarchical

entities (i.e., primitives or sub-primitives).

Embeddings. Two embedding schemes are required for the constraint model. Both

the input primitive token sequence as well as the target output sequence (constraint

tokens) must be embedded. The input primitive tokens are embedded in identical
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fashion as with the standalone primitive model, leveraging standard lookup tables. A

transformer encoder then produces a sequence of final representations for the primitive

tokens. These representation vectors serve a dual purpose: conditioning the constraint

model and embedding references in the constraint sequence. The architecture of the

encoder is similar to that of the primitive model, except it does not have the output

linear layer and softmax.

From the tuple of representations for each primitive, we extract reference em-

beddings for both the primitive as a whole (e.g., a line segment) and each of its

sub-primitives (e.g., a line endpoint) that may be involved in constraints.

Noise injection. The constraint model must account for potentially imperfect gen-

erations from the preceding primitive model. Accordingly, the constraint model is

conditioned on primitives whose parameters are subjected to independent Gaussian

noise during training.

4.3.3 Context Conditioning

Our model may be optionally conditioned on a context. As described below Eq. (4.1),

we directly expose the primitive model to the context while the constraint model is

only implicitly conditioned on it via the primitive sequence. Here, we consider two

specific cases of context evocative of two applications: primers and images of hand-

drawn sketches, corresponding to autocompletion and image-conditional generation

applications, respectively.

Primer-conditional generation. Here, a primer is a sequence of primitives rep-

resenting the prefix of an incomplete sketch. Conditioning on a primer consists of

presenting the corresponding sequence prefix to a trained primitive model; the re-

mainder of the primitives are sampled from the model until a stop token is sampled,

indicating termination of the sequence. This emulates a component of an “auto-
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complete” application, where CAD software interactively suggests next construction

operations to the user.

Image-conditional generation. In the image-conditional setting, we are inter-

ested in accurately recovering a parametric sketch from a raster image of a hand-drawn

sketch. This setup is inspired by the fact that engineers often draw a design on paper

or whiteboard from various orthogonal views prior to investing time building it in a

CAD program. Accurate inference of parametric CAD models from images or scans

remains a highly-sought feature in CAD software, with the potential to dramatically

reduce the effort of translating from rough paper scribble to CAD model.

When conditioning on an image, the primitive model is augmented with an image

encoder. We leverage an architecture similar to a vision transformer [21], first linearly

projecting flattened local image patches to a sequence of initial embeddings, then

using a transformer encoder to produce a learned sequence of context embeddings. In

order to condition on the image, the primitive decoder cross-attends into the image

context embeddings. The overall model is trained to maximize the probability of

the ground truth primitives portrayed in the image. In preliminary experiments, we

found conditioning on a sequence of patch embeddings to be more effective than a

single, global embedding per image. This is a similar setup to the image-conditioning

route taken in Nash et al. [72] for mesh generation, which also leverages a sequence

of context embeddings (instead produced by residual networks [36]).

Hand-drawn simulation. We aim to enable generalization of the image-

conditional model described above to hand-drawn sketches, which can potentially

support a much wider array of applications than only conditioning on perfect ren-

derings. This requires the specification of a noise model to emulate the distortions

introduced by imprecise hand drawing, as compared to the precise rendering of

a parametric sketch using software. Two reasonable noise injection targets are
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the parameters underlying sketch primitives and the raster rendering procedure.

Our noise model takes a hybrid approach, subjecting sketch primitives to random

translations/rotations in sketch space, and augmenting the raster rendering with a

Gaussian process model. A full description is provided in Section 4.6.1.

4.4 Experiments

We evaluate several versions of our model in both primitive generation and constraint

generation settings. Quantitative assessment is conducted by measuring negative log-

likelihood (NLL) and predictive accuracy on a held-out test set. We also examine the

model’s performance on conditional synthesis tasks.

4.4.1 Training Dataset

Our models are trained on the SketchGraphs dataset [78], which consists of several

million CAD sketches collected from Onshape. We use the filtered version, which is

restricted to sketches comprised of the four most common primitives (arcs, circles,

lines, and points), a maximum of 16 primitives per sketch (convenient for mini-batch

training), and a non-empty set of constraints. We further filter out any sketches with

fewer than six primitives to eliminate most trivial sketches (e.g., a simple rectangle).

We randomly divide the filtered collection of sketches into a 92.5% training, 2.5%

validation, and 5% testing partition. Training is performed on a server with four

Nvidia V100 GPUs, and our models take between three and six hours to train. See

Section 4.6.2 for full details of the training procedure.

Deduplication. A portion of the examples in SketchGraphs may be considered to

be duplicates. These can result from Onshape’s native document-copying function-

ality, online tutorials, files imported from popular online CAD collections, or just by
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coincidence. We note that there are several reasonable notions of what may constitute

duplicate sketches.

• Exact duplicates, the most conservative concept of duplicates, refers to sketches

whose construction sequences are identical (including primitive coordinates).

• Translation duplicates differ only by their placement in the coordinate plane.

• Primitive duplicates differ only by constraints, but with identical primitives.

• Permutation duplicates encompass any of the above, but allow for a different

ordering (e.g., two sketches where permuting the primitives of one results in

exact duplicates).

Sketches may also exhibit non-identical yet visually similar configurations of primi-

tives.

To ensure a diversity of training data as well as distinct partitions of training,

validation, and test sets, we devise a straightforward deduplication procedure. We

first normalize each sketch via centering and uniform rescaling. The numerical pa-

rameters in the primitive sequence are quantized to six bits, effectively mapping their

coordinates to a 64×64 grid. At this stage, two sketches with the same concatenated

sequence of primitives are considered duplicates, and we keep only one, resulting in

a collection of 1.7 million unique sketches.

The above procedure removes all sketches that have similar geometry with the

same ordering of construction operations. We deliberately elect to not remove permu-

tation duplicates from our training. As described in Section 4.3.1, the order in which

engineers execute CAD operations often contains meaningful information. Model-

ing the sketches according to these orderings is helpful in applications, particularly

autocomplete.
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Bits per Primitive Bits per Sketch Accuracy

Uniform 33.41 (10.13) 350.2 (111.4) 1.3%
Compression 15.34 160.7 — %
Unconditional 6.35 (7.15) 66.6 (41.7) 71.7%
Unconditional (permuted) 7.84 (6.92) 82.1 (42.4) 62.8%
Image-conditional 3.80 (5.06) 39.8 (34.5) 80.2%

Table 4.2: Primitive model evaluation. We express negative log-likelihood on the
test set in both bits per primitive and bits per sketch. Next-step prediction accuracy
(per-token average) is also provided. Parentheses denote standard deviation.

4.4.2 Baselines

Because the few existing methods aimed at CAD sketch generation do not handle

the generality of the modeling task we consider, we report the performance of two

baselines: 1) A uniform sampler that randomly selects tokens with equal probability

at each time step. 2) A compression baseline based on a LZMA compressor (see

Section 4.6.3 for details). These baselines are accompanied by several ablation and

conditional variants of our model.

4.4.3 Primitive Model Performance

Unconditional model. The unconditional variant of our model is trained to ap-

proximate the raw distribution over primitive sequences without regard to any con-

text. As shown in Table 4.2, the unconditional primitive model achieves a sub-

stantially lower NLL than both the uniform and compression baselines. We employ

nucleus sampling [39] with a commonly used cumulative probability parameter of

p = 0.9 to remove low-probability tokens at each sampling step and avoid sample

degradation. Fig. 4.3 displays a set of random samples from the unconditional prim-

itive model.

To assess the degree to which the predictive performance of the model depends

on information exposed through the sequence order, we conduct the following ab-
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Figure 4.3: Unconditional samples from our raw primitive model.

lation study. We train an unconditional primitive model on sequences where the

order of primitives has been shuffled uniformly randomly, removing the model’s ex-

posure to the ground truth ordering. As shown in Table 4.2, this results in significant

performance degradation on next-step prediction. Importantly, the erasure of prim-

itive ordering removes useful local hierarchical structure (e.g., high-level primitive

constructions like rectangles) as well as global temporal structure.

Image-conditional generation. Table 4.2 displays the performance of the basic

image-conditional variant of the primitive model. By taking a visual observation of

the primitives as input, this model is able to place substantially higher probability

on the target sequence.
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Bits per Primitive Bits per Sketch Accuracy

Image-conditional 22.8 (15.26) 292.3 (115.4) 47.0%
Image-conditional (hand-drawn) 10.59 (9.53) 135.5 (49.7) 65.5%
Image-conditional (hand-drawn + affine) 6.14 (6.80) 78.6 (36.8) 75.9%

Table 4.3: Image-conditional primitive model evaluated on real hand-drawn sketches.
The hand-drawn variant includes noise injected by our Gaussian process noise model,
while the affine augmentation introduces small affine transformations as a data aug-
mentation strategy during training.

In Table 4.3, we evaluate the performance of several image-conditional models on a

set of human-drawn sketches. These sketches were hand-drawn on a tablet computer

in a 128 × 128-pixel bounding box, where the drawer first eyeballs a test set sketch,

and then attempts to reproduce it. Likewise, each image is paired up with its ground

truth primitive sequence, enabling log-likelihood evaluation.

We test three versions of the image-conditional model on the human hand-

drawings which are trained on three different types of renderings: precise renderings,

renderings from the hand-drawn simulator, and renderings with random affine

augmentations of the hand-drawn simulator. Both the hand-drawn simulation and

augmentations substantially improve performance. Despite never observing a real

hand drawing during training, the model is able to effectively interpret these.

Figure 4.4 displays random samples from the primitive model when conditioned

on images of hand-drawn sketches. For each drawing, four independent samples are

generated.

Primer-conditional generation. We assess the model’s ability to complete prim-

itive sequences when only provided with an incomplete sketch. Here, we randomly

select a subset of test set sketches, deleting 40% of the primitives from the suffix of

the sequence. Four example, a sketch with ten primitives has the last four primitives

deleted. The remaining sequence prefix then serves to prime the primitive model.
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Figure 4.4: Image-conditional samples from our primitive model. Raster images of real
hand-drawn sketches (left) are input to the primitive model. Four independent samples are
then generated for each input. The model makes occassional mistakes, but tends to largely
recover the depicted sketch.

Figure 4.5 displays random examples of priming the primitive model with incom-

plete sketches. Because just over half of the original primitives are present in the

primer, there is a wide array of plausible completions. In some cases, despite only

six completions for each input, the original sketch is recovered. We envision this type

of conditioning as part of an interactive application where the user may query for k

completions from a CAD program and then select one if it resembles their desired

sketch.
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Original Primer Inferred

Figure 4.5: Primer-conditional generation. We take held-out sketches (left column) and
delete 40% of their primitives, with the remaining prefix of primitives (second column from
left) serving as a primer for the primitive model. To the right are the inferred completions,
where the model is queried for additional primitives until selecting the stop token. Note
that only the primitive model is used in these examples.

4.4.4 Constraint Model Performance

We train and test our constraint model with two different types of input primitive

sequences: noiseless primitives and noise-injected primitives. Noise-injection proves

to be a crucial augmentation in order for the constraint model to generalize to im-

precise primitive placements (such as in the image-conditional setting). As shown

in Table 4.4, while both versions of the model perform similarly on a noiseless test

set, the model trained according to the original primitive locations fails to generalize

outside this distribution. In contrast, exposing the model to primitive noise during

training substantially improves performance.

Sketch editing. Figure 4.6 illustrates an end-to-end workflow enabled by our

model. Our model is first used to infer primitives and constraints from a hand-

drawn sketch. Subsequently, we show how editing the resulting solved sketch keeps
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Noiseless Testing Noisy Testing

Model Perplexity Accuracy Perplexity Accuracy

Uniform 4.984 0.6% 4.984 0.6%
Noiseless training 0.184 91.5% 0.903 68.6%
Noisy training 0.198 90.3% 0.203 90.6%

Table 4.4: Constraint model evaluation. We express per-token negative log-likelihood
(perplexity) and accuracy, for both noisy and noiseless input. We note that a model
trained only on noiseless input degrades very quickly in the presence of noise.

Figure 4.6: Hand-drawn sketches converted to Onshape editable models. We take raster
images of hand-drawn sketches (left), infer the sketch using our image-conditional primi-
tive model and constraint model (center), then solve the resultant sketch in Onshape and
illustrate the edit propagation arising from the constraints (right).

the sketch in a coherent state due to edit propagation arising from the inferred

constraints.

87



4.5 Conclusion and Future Work

In this work, we have introduced a method for modeling and synthesis of parametric

CAD sketches, the fundamental building blocks of modern mechanical design. Adapt-

ing recent progress in modeling irregularly structured data with graph and attention-

based models, our model leverages the flexibility of self-attention to propagate sketch

information during autoregressive generation.

Avenues for future work include extending the generative modeling framework

to capture the more general class of 3D inputs; including modeling 3D construction

operations and synthesis conditioned on noisy 3D scans or voxel representations.

The goal of this work is to automate a tedious process and enable greater cre-

ativity in design, but we acknowledge the potential societal impact from eliminating

human labor. Moreover, there is the potential risk in high-stakes applications for

automatically synthesizing mechanical systems that do not meet human structural

standards. We view this work, however, as being part of a larger human-in-the-loop

process which will still involve human expertise for validation and deployment.

4.6 Appendix

4.6.1 Hand-drawn Noise Model

The noise model renders lines as drawn from a zero-mean Gaussian process with a

Matérn-3/2 kernel that have been rotated into the correct orientation. Arcs are ren-

dered as Matérn Gaussian process paths in polar coordinates with angle as the input

and the random function modulating the radius. No additional observation noise is

introduced beyond the standard “jitter” term. The length-scale and amplitude are

chosen, and the Gaussian process truncated, so that scales are consistent regardless

of the length of the line or arc.
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4.6.2 Experimental Details

This section provides details of the model architecture and training regime.

Model Architecture

Our models all share a main transformer responsible for processing the sequence of

primitives or constraints which is the target of the inference problem. This trans-

former architecture is identical across all of the models, using a standard transformer

decoder with 12 layers, 8 attention heads, and a total embedding dimension of 256.

No significant hyper-parameter optimization was performed. The raw primitive gen-

erative model is only equipped with the decoder on the primitive sequence, and is

trained in an autoregressive fashion. The constraint model, in addition to the trans-

former decoder on the constraint sequence, also performs standard cross-attention

into an encoded representation of the primitive sequence.

The image-to-primitive model is additionally equipped with an image encoder

based on a vision transformer [21], which is tasked with producing a sequence of im-

age representations into which the primitive decoder performs cross-attention. We

use 128× 128-sized images as input to the model. Non-overlapping square patches of

size 16 × 16 are extracted from an input image and flattened, producing a sequence

of 64 flattened patches. Each then undergoes a linear transformation to the model’s

embedding dimension (in this case, 256) before entering a standard transformer en-

coder. This transformer encoder has the same size as the decoder used in our other

models.

Training

Training was performed on cluster servers equipped with four Nvidia V100 GPUs.

Total training time was just under 2 hours for the primitive model, and 5.5 hours for

the image-to-primitive model and the constraint model. The primitive model and the

89



constraint model were each trained for 30 epochs, and the image-to-primitive model

was trained for 40 epochs, although the total number of epochs did not appear to

cause significant differences in performance. The models were trained using the Adam

optimizer with “decoupled weight decay regularization” [63], with the learning rate

set according to a “one-cycle” learning rate schedule [84]. The initial initial learning

rate was set to 3e-5 (at reference batch size 128, scaled linearly with the total batch

size). The batch size was set according to the memory usage of the different models

at 1024 / GPU for the raw primitive model, 512 / GPU for the image-to-primitive

model, and 384 / GPU for the constraint model.

Image-to-primitive data

Prior to training the image-to-primitive model, we generate samples from our hand-

drawn noise model (see Section 4.6.1) in a separate process. Five samples are gener-

ated for each sketch in the dataset, taking a total of approximately 160 CPU-hours.

This process is parallelized on a computing cluster. During each training epoch, one

random image (out of the five generated samples) is selected to be used by the model.

An additional data augmentation process is used during training, whereby random

affine transformations are applied to the images. The augmentation is chosen ran-

domly among all affine transformations which translate the image by at most 8 pixels,

rotate by at most 10 degrees, shear the image by at most 10 degrees, and scale the

image by at most 20%.

4.6.3 Compression Baseline

The compression baseline is computed by first tokenizing primitives according to the

tokenization scheme described in section 4.3.1, representing the token sequences as 8-

bit integers, and compressing the given data using the LZMA compression algorithm.

The compression is performed over the entire dataset (including training, validation
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and test splits), and the reported quantities are averages over the entire dataset. In

particular, note that we may expect the entropy rate of the data to be lower than

reported.
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Chapter 5

Open Directions

Learning-aided design is very much in its infancy. Systems that learn from domain-

specific data and assist humans in engineering new solutions have the potential to

fundamentally alter current design processes. But developing such systems is no

simple task. A key challenge is the irregular and highly specific data structures often

accompanying engineering and scientific domains.

In this thesis, we took a probabilistic perspective, examining the role that gen-

erative modeling over arbitrarily structured spaces may begin to play in this sphere.

In Chapter 2, we discussed a general framework for modeling discrete objects with

strict validity requirements and unknown construction histories. Such objects are

prevalent in molecular and other graph-structured domains. In Chapters 3 and 4,

we focused our attention on mechanical design, an area where learned systems are

only just beginning to penetrate. We constructed SketchGraphs, the first large-scale

CAD sketch dataset with geometric constraint supervision, in an effort to facilitate

machine learning research in this underexplored domain. The dataset has already

been used by several engineering firms to develop new models. We also presented

Vitruvion, a model that is trained to autoregressively generate CAD sketches as

a sequence of primitives and constraints, matching the data structure employed in
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CAD software. This allows for direct importing and downstream editing. Evaluation

demonstrated the potential for this approach to aid design, particularly in image and

primer-conditional settings.

However, probabilistic generative modeling only addresses one piece of the puz-

zle. Such models are, in a sense, simply regurgitating the patterns observed during

training. While their utility is substantial, they are ill-equipped for goal-oriented

design on their own. Ultimately, a system should be capable of taking some high-

level design criteria and proceeding to search for plausible solutions. Of course, given

appropriate training data, we can always develop conditional generative models that

construct attribute-specific examples, but these are not sufficient for finding an opti-

mal design under several interacting constraints. Rather than serving as a standalone

tool, generative models may be used in tandem with search techniques incorporat-

ing knowledge of functionality and causality to find promising designs while adhering

to the “realistic” data manifold. This constitutes a compelling paradigm for future

investigation.

Today’s generative models are also quite inflexible. By default they must adhere to

the factorization employed during training; a standard autoregressive model trained

to output sequence tokens from left to right may only be directly primed on left-

prefixes at deployment time. This often requires multiple versions of the same model,

each with a different factorization, to be trained for separate applications on the same

domain. For example, the factorization of our Vitruvion model expects all primitives

to be generated prior to any constraints. In a real CAD product, one may desire

a trained autocomplete model that efficiently conditions on any subset of a sketch.

Ultimately, models that support this type of arbitrary conditioning at deployment

will enable more flexible usage.

Aside from direct design applications, endowing machines with the capability to

reason about “how stuff is made” may unlock new routes in tangential areas of ar-
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tificial intelligence. The compositional reasoning required in design may lead to, for

example, rich priors in computer vision and robotics or the discovery of modularity

in general program induction tasks. The human imagination extends beyond the

consideration of “what is”, pondering “what may be”. An artificial reproduction of

human-like intelligence should be capable of the same.
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