
Sculpting Representations for Deep Learning

by

Oren Rippel

B.Sc. Hons, University of British Columbia (2010)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

@ Massachusetts Institute of Technology 2016. All rights reserved.

Author ... Signature redacted

41
Department of Mathematics

April 22, 2016

Certified bSignature redacted

Certified by. Signature redacted

Ryan P. Adams
Professor

Thesis Supervisor

Ankur Moitra
Professor

Thesis Supervisor

Accepted by Signature redacted..................
Jonathan A. Kelner

Chair, Department Committee on Graduate Studies

MAssAHUSSES NSTITUTE
F ECHNOLOGY

JUN 1 61

LIBRARIES

2

Sculpting Representations for Deep Learning

by

Oren Rippel

Submitted to the Department of Mathematics
on April 22, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In machine learning, the choice of space in which to represent our data is of vital im-
portance to their effective and efficient analysis. In this thesis, we develop approaches
to address a number of problems in representation learning. We employ deep learning
as means of sculpting our representations, and also develop improved representations
for deep learning models.

We present contributions that are based on five papers and make progress in sev-
eral different research directions. First, we present techniques which leverage spatial
and relational structure to achieve greater computational efficiency of model opti-
mization and query retrieval. This allows us to train distance metric learning models
5-30 times faster; optimize convolutional neural networks 2-5 times faster; perform
content-based image retrieval hundreds of times faster on codes hundreds of times
longer than feasible before; and improve the complexity of Bayesian optimization to
linear in the number of observations in contrast to the cubic dependence in its naive
Gaussian process formulation.

Furthermore, we introduce ideas to facilitate preservation of relevant informa-
tion within the learned representations, and demonstrate this leads to improved su-
pervision results. Our approaches achieve state-of-the-art classification and transfer
learning performance on a number of well-known machine learning benchmarks.

In addition, while deep learning models are able to discover structure in high
dimensional input domains, they only offer implicit probabilistic descriptions. We
develop an algorithm to enable probabilistic interpretability of deep representations.
It constructs a transformation to a representation space under which the map of
the distribution is approximately factorized and has known marginals. This allows
tractable density estimation and.inference within this alternate domain.

Thesis Supervisor: Ryan P. Adams
Title: Professor

Thesis Supervisor: Ankur Moitra
Title: Professor

3

4

Acknowledgments

I would like to express my deep appreciation to a number of people who have had

strong impact on my life in the last few years.

First, I am indebted to my advisor, Ryan Adams. You shaped the way I think -

not only with respect to machine learning, but also beyond academia. Your guidance

enabled me to reach my full potential, and my best interests have always been your

primary concern. Throughout my Ph.D., I have many times over concluded that I

couldn't have wished for a better advisor.

I would like to thank my sister Noa, and my parents Dafna and Doron. You have

dedicated so much of your lives to enable me to actualize mine. Without your love,

support, and burekasim, I wouldn't be who I am today.

I am grateful to Manohar Paluri, Lubomir Bourdev and Piotr Dollar at Face-

book AI Research and Applied Machine Learning. I learned a great deal working at

Facebook, and my time with you was very meaningful and formative to me.

I would also like to express my gratitude to Ankur Moitra and Jonathan Kelner for

serving on my thesis committee. I would especially like to thank Ankur for valuable

advice and helpful discussions.

I would like to thank my collaborators and friends Jasper Snoek, Michael Gel-

bart, David Duvenaud, Matt Johnson, Diana Cai, Robert Nishihara, Adrian Jinich,

Scott Linderman, Polina Golland, Yakir Reshef, Jon Malmaud, Kevin Swersky, Hugo

Larochelle, Anna Huang, James Zou, Finale Doshi-Velez, Dougal Maclaurin, and

Prabhat. I learned a great deal working with you, and thoroughly enjoyed the time

spent with you.

I am also thankful to Gershon Ben Keren and the entirety of the Krav Maga

Yashir school for unparalleled companionship. After long days of work, training with

you has never failed to brighten me up.

Lastly but most importantly, I would like to thank Tania Saade. In the highs and

in the lows, you never stopped believing in me. Without your unwavering support,

encouragement, and warmth, this thesis would not have been possible.

5

6

Contents

1 Introduction 17

1.1 Contributions and Outline of Thesis 22

1.1.1 Chapter 3: Learning Ordered Representations

with Nested Dropout . 22

1.1.2 Chapter 4: Metric Learning with

Adaptive Density Discrimination 23

1.1.3 Chapter 5: Spectral Representations for

Convolutional Neural Networks 24

1.1.4 Chapter 6: Scalable Bayesian Optimization Using

Deep Neural Networks . 25

1.1.5 Chapter 7: High-Dimensional Probability Estimation

with Deep Density Models . 25

2 Background and Notation 27

2.1 General Model Formulation . 27

2.1.1 Intuitive interpretation . 29

2.2 Typical Architecture Choices . 30

2.3 Objective Optimization . 34

3 Learning Ordered Representations with Nested Dropout 39

3.1 Introduction . 39

3.2 Ordering with Nested Dropout . 42

3.2.1 Interpretation . 43

7

3.3 Exact Recovery of PCA

3.3.1 Problem definitions and prior results . . .

3.3.2 The nested dropout problem recovers PCA

3.4 Training Deep Models with Nested Dropout . . .

3.4.1 Unit sweeping for decaying gradients . . .

3.4.2 Adaptive regularization coefficients

3.4.3 Code binarization

3.5 Retrieval With Ordered Binary Codes

3.5.1 Binary tree on the representation space . .

3.5.2 Empirical results

3.6 Adaptive Compression

3.6.1 Empirical results

3.7 Discussion and Remaining Open Problems

exactly

4 Metric Learning with Adaptive Density Discrimination

4.1 Introduction .

4.2 Motivation: Challenges in Metric Learning

4.3 Magnet Loss for Distance Metric Learning

4.3.1 Model formulation

4.3.2 Training procedure

4.3.3 Evaluation procedure

4.3.4 Relation to existing models

4.4 Experiments .

4.4.1 Fine-grained classification

4.4.2 Attribute distribution

4.4.3 Hierarchy recovery

4.5 Discussion and Remaining Open Problems

5 Spectral Representations for

Convolutional Neural Networks

5.1 Introduction .

8

. 45

. 45

. 48

. 49

. 50

. 51

. 51

. 52

. 52

. 53

. 55

. 57

. 58

59

. 59

. 61

. 65

. 66

. 67

. 69

. 70

. 71

. 71

. 76

. 77

. 78

79

79

I | lll lip i ilM I l i ll~ lI l~ lf'l's l lill i l |0 1 1111 1 RI J1 4 11 nl l ip ,lll

5.2 The Discrete Fourier Transform

5.2.1 Conjugate symmetry constraints

5.2.2 Differentiation

5.3 Spectral Pobling

5.3.1 Information preservation

5.3.2 Regularization via resolution corruption

5.4 Spectral Parametrization of CNNs

5.4.1 Leveraging filter structure

5.5 Experiments .

5.5.1 Spectral pooling

5.5.2 Spectral parametrization of CNNs .

5.6 Discussion and Remaining Open Problems

6 Scalable Bayesian Optimization

Using Deep Neural Networks

6.1 Introduction .

6.2 Background and Related Work

6.2.1 Bayesian Optimization

6.2.2 Bayesian Neural Networks

6.3 Adaptive Basis Regression with

Deep Neural Networks

6.3.1 Model details

6.3.2 Incorporating input space constraints

6.3.3 Parallel Bayesian Optimization.....

6.4 Experiments .

6.4.1 HPOLib Benchmarks

6.4.2 Image Caption Generation

6.4.3 Deep Convolutional Neural Networks . .

6.5 Discussion and Remaining Open Problems . . .

83

84

85

86

87

88

88

90

90

92

93

95

. 95

. 97

. 97

99

. 99

. 102

. 105

. 105

. 107

. 107

.108

. 110

. 111

9

. 81

7 High-Dimensional Probability

Estimation with Deep Density Models 113

7.1 Introduction . 113

7.2 Bijections and Normalized Densities 115

7.3 The Deep Density Model 117

7.3.1 Regularizing the Transformations 118

7.3.2 Divergence Penalty: Sculpting the Latent Marginals 119

7.3.3 Invertibility: condition number penalty 122

7.3.4 Reconstruction and the independence of latent dimensions . . 122

7.4 Training . 126

7.4.1 Distribution sequencing and initialization 127

7.5 Empirical Results . 128

7.5.1 Density evaluation . 128

7.5.2 Generation . 129

7.6 Discussion and Remaining Open Problems 130

A Proofs for Exact Recovery of PCA by Nested Dropout 133

B Implementation Details for

Metric Learning with Adaptive Density Discrimination 137

B.1 Hyperparameter Tuning Specifications

and Optimal Configurations . 137

B.2 Specifications for ImageNet Attributes Dataset 138

C Implementation Details for Spectral Pooling 141

D Implementation Details for

Scalable Bayesian Optimization Using Deep Neural Networks 143

D.1 Convolutional neural network

experiment specifications . 143

D.1.1 Architecture . 143

D.1.2 Data augmentation . 143

10

D.1.3 Initialization and training procedure 145

D.1.4 Testing procedure . 145

D.2 Multimodal neural language

model hyperparameters . 145

D.2.1 Description of the hyperparameters 145

11

12

List of Figures

1-1 Toy example of exploitation of input structure for linear decision bound-

aries. 18

3-1 The 100.filters learned by a binarized 3072-100-3072 nested dropout

autoencoder on the raw CIFAR-10. 49

3-2 Nested neighborhoods for various examples in a 2D toy problem. . . . 52

3-3 Empirical timing tests for different retrieval algorithms. 54

3-4 Retrieval results for different terminal neighborhood cardinalities. . 55

3-5 Online reconstruction with ordered representations. 57

4-1 Distance metric learning approaches sculpt a representation space where

distance is in correspondence with a notion of similarity. 61

4-2 2D visualizations of representations attained by training triplet loss,

Magnet Loss and a softmax classifier on 10 classes of ImageNet. . . . 63

4-3 The intuition behind triplet loss and Magnet Loss. 64

4-4 Comparison of test set errors of various state-of-the-art approaches on

different fine-grained visual categorization datasets; evaluation of test

errors on the Stanford Dogs dataset under different metrics; exploration

whether each algorithm is able to recover a latent class hierarchy, pro-

vided only coarse superclasses. 72

4-5 Training curves for various DML experiments. 73

4-6 Visualization of t-SNE map for a typical Magnet representation. . . . 74

4-7 Visualization of t-SNE map for a typical triplet representation with

enforcement of semantic similarity. 75

13

4-8 Attribute concentration properties.

5-1 Properties of discrete Fourier transforms. 82

5-2 Approximations for different pooling schemes, for different factors of

dimensionality reduction. 86

5-3 Learning dynamics of CNNs with spectral parametrization. 89

5-4 Average information dissipation for the ImageNet validation set as a

function of fraction of parameters kept; Test errors on CIFAR-10/100

without data augmentation of the optimal spectral pooling architec-

ture, as compared to current state-of-the-art approaches. 90

5-5 Optimization of CNNs via spectral parametrization. 92

6-1 A comparison of the time per suggested experiment for DNGO com-

pared to the state-of-the-art GP based approach on the six dimensional

Hartmann function. 101

6-2 A comparison of the predictive means and uncertainties learned by

DNGO for differen activation functions. 103

6-3 Sample test images and generated captions from the best LBL model

on the COCO 2014 dataset. 107

6-4 Validation errors on CIFAR-100 corresponding to different hyperpa-

rameter configurations as evaluated over time using DNGO. 111

7-1 Histograms of the empirical distribution at Pxl(-), k = 1 with the

specified methods of regularization, upon training on MNIST. 123

7-2 Effects of diversification on deep density models. 125

7-3 Probabilities of a rotated 6 under a model trained only on 9's. 129

7-4 Generations from DDMs. 130

14

' 1 i i plill ilill RRI M H IIN I R"mOU I ilIl ' '" n1 1 ' mi upp" ' iiIp I

77

List of Tables

6.1 Evaluation of DNGO on global optimization benchmark problems ver-

sus scalable (TPE, SMAC) and non-scalable (Spearmint) Bayesian op-

timization methods. 104

6.2 Image caption generation results using BLEU-4 on the Microsoft COCO

2014 test set. 108

6.3 Test errors of the models with the optimal hyperparameter configu-

rations optimized by DNGO, as compared to current state-of-the-art

results. 110

7.1 Mean log-probabilities of points in the observed space as characterized

by D D M . 128

B.1 Optimal hyperparameter configurations for the different datasets and

m odel spaces. 138

D.1 Our convolutional neural network architecture. This choice was chosen

to be maximally generic. Each convolution layer is followed by a ReLU

nonlinearity. 144

D.2 Specification of the hyperparametrization scheme, and optimal hyper-

parameter configurations found. 147

D.3 Specification of the hyperparametrization scheme, and optimal hyper-

parameter configurations found for the multimodal neural language

model. 147

15

16

Chapter 1

Introduction

"The raw representations of my input data are perfectly suitable for

direct analysis."

- No one, ever

Machine learning is the science of pattern recognition in data. It explores algo-

rithms that automatically learn from data, as opposed to being explicitly programmed

to follow hard-coded rules. Typical problems in the field include discovering under-

lying structure in an input set of examples, and leveraging it to make predictions or

decisions.

Our success in performing any such task critically depends on the choice of space

in which to represent our inputs. However, the original input formats of our data are

often far from suitable for straightforward and efficient extraction of pertinent infor-

mation. Consider, for example, the space of 1024 x 1024 images in their pixel-RGB

formats. To start, this large dimensionality of ~ 3, 100, 000 coordinates prohibits

efficient processing. Moreover, this domain features significant redundancy due to

variation in directions not relevant to our task at hand: namely, natural images make

an infinitesimal fraction of all possible combinations of pixel values. This results in

conflation of signal and noise, which obfuscates analysis.

17

0. tit -AL

(a) Original input representation x. (b) Alternative representation z.

Figure 1-1: Toy example of exploitation of input structure for linear decision bound-

aries. Presented are distributions of samples generated from the toy model in Equa-

tion (1.1) under different input representations. The colors correspond to the two

different classes. (a) Scatter plot of x in raw input form. The two classes cannot be

separated by a linear classifier. (b) Scatter plot of z = [x, x||2]T. The classes can be

separated with a linear classifier -- namely, a horizontal plane.

On the other side of the spectrum, in our ideal world unplagued with the afore-

mentioned challenges, our hope is to conquer our problem at hand with very simple

approaches. For instance, if we were able to solve a categorization problem with a

linear classifier, we would be able to reap its benefits of efficiency, scalability, and

availability of theoretical guarantees. However, our raw data are often not amenable

to such simple solution.

As such, we are motivated to transform our inputs into alternative representations

embedded in a domain which empowers our tools of analysis. In real life, we will

clearly not always have a-priori insight to enable acute simplification; however, by

designing a suitable map to an alternative representation space. we can compromise

on a middle ground that will greatly facilitate our task to follow.

To solidify this discussion. consider, for example, the toy classification problem of

predicting binary class c C {0, 1} from label x E R2, where examples are generated

18

from the ground truth model

c ~ Bernoulli (1/2)

6 ~ Uniform ([0, 21r))

E ~A(0, ora) , .2 < Ro, R

r = Rolc=o+R1lc=i+c

x = [r sin 0, rcos l} . (1.1)

Here, 1 A is an indicator function for event A. Equation (1.1) has a simple intuitive

interpretation: for each example, we flip a coin c to generate its class; x is then

sampled as a vector with a uniform angle, and a particular radius Ro or R, as function

of the class. The radius is then perturbed with white noise e.

In Figure 1-1(a), we observe 100 input-output pairs sampled from this model.

From this plot, it can be seen that the two classes cannot be simply separated with a

linear decision boundary. However, let us assume we had the prescience to augment

our input representation with the transformation r(x) = |Ix11 2 as its third dimension.

Under these alternative representations, we would be able to easily separate the classes

with a horizontal plane. This can be observed in Figure 1-1(b).

In some cases, such as in this example, useful representations can be fashioned

via projections onto hand-crafted features. However, the success of such an approach

hinges on our ability to discover structure in our inputs, and manually design a

suitable basis tailored to leverage it. Our toy example is vastly oversimplified: in more

realistic scenarios, our inputs will be of high dimensionality, and their distribution

too complex to identify dependence by simple visualization.

Alternatively, the transformation to representation space can be learned adap-

tively as function of the input data; for instance, a simple and well-known adaptive

approach is Principal Component Analysis, which performs dimensionality reduction

via a linear projection optimized to preserve variance. However, given more complex

representational requirements, it is difficult to manually devise an appropriate map to

a space which conforms to them. Moreover, by fashioning alternative representations

19

for our inputs, our intent is to facilitate their subsequent use for prediction. As such,

we are interested to inform the algorithm used to construct them of their deployment

to follow in order optimize them accordingly.

A powerful approach, then, is to automatically learn our representations: we

formalize our representational and predictive demands into a single objective, which

can then be optimized over a flexible class of parametrized, transformations. This

enables us to avoid explicit feature engineering as a separate step; indeed, approaches

to feature learning have often found representations that outperform their hand-

crafted counterparts (e.g., LeCun & Bengio, 1995; Hinton & Salakhutdinov, 2006;

Vincent et al., 2010; Coates et al., 2011).

One natural and powerful framework for the construction of such parametrized

classes is deep learning. Deep learning is a subfield of machine learning, character-

ized by its employment of hierarchical feature extraction (LeCun et al., 2015; Bengio,

2009; LeCun et al., 1989). Deep learning models constitute rich, expressive and inter-

pretable parametrizations. Specifically, their modularity and compositionality render

them particularly effective for representation learning. That is, they enable us to

jointly train the end-to-end pipeline composed of the extraction of features and their

subsequent use for prediction.

In this thesis, we present contributions to representation learning that are based

on five papers; a complete summary of these can be found in Section 1.1 below. We

employ deep learning as means of sculpting our representations, and also develop

more salient representations for deep learning models. We develop approaches that

make progress in several different research directions. Briefly, these include:

REDUCTION OF COMPUTATIONAL COMPLEXITY. We develop algorithms to mold

the representation space for convenient descriptions by specialized data structures

which enable manipulations of lower computational complexity. For example, by

constructing a representation space suitable for description by a binary tree, we per-

20

form content-based image retrieval hundreds of times faster on codes hundreds of

times longer than feasible before. In a different work, we improve the complexity of

Bayesian optimization to linear in the number of observations contrast to the cubic

dependence in its naifve Gaussian process formulation.

INCREASED EFFICIENCY OF MODEL OPTIMIZATION. We design alternative repre-

sentations to leverage spatial structure in convolutional neural networks, which allows

us to optimize them 2-5 times faster. In another work, we exploit representational

similarity structure, which allows us to train distance metric learning models 5-30

times faster.

IMPROVED SUPERVISION AND TRANSFER LEARNING. We introduce ideas to facil-

itate preservation of relevant information within the learned representations. We

demonstrate in a number of instances that this leads to improved supervision results.

Our approaches achieve state-of-the-art classification and transfer learning perfor-

mance on an array of well-known machine learning benchmarks.

PROBABILISTIC INTERPRETABILITY. The distribution of data in their raw input

space tends to be multi-modal and ill-conditioned, and of dimensionality prohibitively

large for effective probabilistic analysis. On the other end of the spectrum, deep

learning models are able to discover structure in such domains, but only offer implicit

probabilistic descriptions. We propose an algorithm to construct a transformation

to a representation space under which the map of the distribution is approximately

factorized and has known marginals. This allows tractable density estimation and

inference within this alternate domain.

21

1.1 Contributions and Outline of Thesis

1.1.1 Chapter 3: Learning Ordered Representations

with Nested Dropout

In this work, we present results on ordered representations of data in which different

dimensions have different degrees of importance. To learn these representations we

introduce nested dropout, a procedure for stochastically removing coherent nested

sets of hidden units in a neural network. We first present a sequence of theoretical

results for the special case of a semi-linear autoencoder. We rigorously show that the

application of nested dropout enforces identifiability of the units, which leads to an

exact equivalence with PCA.

We then extend the algorithm to deep models and demonstrate the relevance of

ordered representations to a number of applications. Specifically, we use the ordered

property of the learned codes to construct hash-based data structures that permit

very fast retrieval, achieving retrieval in time logarithmic in the database size and

independent of the dimensionality of the representation. This allows codes that are

hundreds of times longer than currently feasible for retrieval. We therefore avoid the

diminished quality associated with short codes, while still performing retrieval that

is competitive in speed with existing methods.

We also show that ordered representations are a promising way to learn adaptive

compression for efficient online data reconstruction.

This chapter is based on the following paper:

Rippel, Oren, Gelbart, Michael A., and Adams, Ryan P. Learning ordered repre-

sentations with nested dropout. In International Conference on Machine Learning,

2014

22

1.1.2 Chapter 4: Metric Learning with

Adaptive Density Discrimination

Distance metric learning (DML) approaches learn a transformation to a representation

space where distance is in correspondence with a predefined notion of similarity. While

such models offer a number of compelling benefits, it has been difficult for these to

compete with modern classification algorithms in performance and even in feature

extraction.

In this work, we propose a novel approach explicitly designed to address a number

of subtle yet important issues which have stymied earlier DML algorithms. It main-

tains an explicit model of the distributions of the different classes in representation

space. It then employs this knowledge to adaptively assess similarity, and achieve

local discrimination by penalizing class distribution overlap.

We demonstrate the effectiveness of this idea on several tasks. Our approach

achieves state-of-the-art classification results on a number of fine-grained visual recog-

nition datasets, surpassing the standard softmax classifier and outperforming triplet

loss by a relative margin of 30-40%. In terms of computational performance, it al-

leviates training inefficiencies in the traditional triplet loss, reaching the same error

in 5-30 times fewer iterations. Beyond classification, we further validate the saliency

of the learnt representations via their attribute concentration and hierarchy recovery

properties, achieving 10-25% relative gains on the softmax classifier and 25-50% on

triplet loss in these tasks.

This chapter is based on the following paper:

Rippel, Oren, Paluri, Manohar, Dollar, Piotr, and Bourdev, Lubomir. Metric

learning with adaptive density discrimination. In International Conference on Learn-

ing Representations, 2016

23

1.1.3 Chapter 5: Spectral Representations for

Convolutional Neural Networks

Discrete Fourier transforms provide a significant speedup in the computation of con-

volutions in deep learning. In this work, we demonstrate that, beyond its advantages

for efficient computation, the spectral domain also provides a powerful representation

in which to model and train convolutional neural networks (CNNs).

We employ spectral representations to introduce a number of innovations to CNN

design. First, we propose spectral pooling, which performs dimensionality reduction

by truncating the representation in the frequency domain. This approach preserves

considerably more information per parameter than other pooling strategies and en-

ables flexibility in the choice of pooling output dimensionality. This representation

also enables a new form of stochastic regularization by randomized modification of

resolution. We show that these methods achieve competitive results on classification

and approximation tasks, without using any dropout or max-pooling.

Finally, we demonstrate the effectiveness of complex-coefficient spectral parame-

terization of convolutional filters. While this leaves the underlying model unchanged,

it results in a representation that greatly facilitates optimization. We observe on a

variety of popular CNN configurations that this leads to significantly faster conver-

gence during training.

This chapter is based on the following paper:

Rippel, Oren, Snoek, Jasper, and Adams, Ryan P. Spectral representations for

convolutional neural networks. In Advances in Neural Information Processing Systems

28, 2015

24

1.1.4 Chapter 6: Scalable Bayesian Optimization Using

Deep Neural Networks

Bayesian optimization is an effective methodology for the global optimization of func-

tions with expensive evaluations. It relies on querying a distribution over functions

defined by a relatively cheap surrogate model. An accurate model for this distribution

over functions is critical to the effectiveness of the approach, and is typically fit using

Gaussian processes (GPs). However, since GPs scale cubically with the number of

observations, it has been challenging to handle objectives whose optimization requires

many evaluations, and as such, massively parallelizing the optimization.

In this work, we explore the use of neural networks as an alternative to GPs to

model distributions over functions. We show that performing adaptive basis function

regression with a neural network as the parametric form performs competitively with

state-of-the-art GP-based approaches, but scales linearly with the number of data

rather than cubically. This allows us to achieve a previously intractable degree of

parallelism, which we apply to large scale hyperparameter optimization, rapidly find-

ing competitive models on benchmark object recognition tasks using convolutional

networks, and image caption generation using neural language models.

This chapter is based on the following paper:

Snoek, Jasper, Rippel, Oren, Swersky, Kevin, Kiros, Ryan, Satish, Nadathur, Sun-

daram, Narayanan, Patwary, Md. Mostofa Ali, Prabhat, and Adams, Ryan P. Scalable

Bayesian optimization using deep neural networks. In International Conference on

Machine Learning, 2015

1.1.5 Chapter 7: High-Dimensional Probability Estimation

with Deep Density Models

One of the fundamental problems in machine learning is the estimation of a probability

distribution from data. Many techniques have been proposed to study the structure

25

of data, most often building around the assumption that observations lie on a lower-

dimensional manifold of high probability. It has been more difficult, however, to

exploit this insight to build explicit, tractable density models for high-dimensional

data.

In this work, we introduce the deep density model (DDM), a new approach to

density estimation. We exploit insights from deep learning to construct a bijective

map to a representation space, under which the transformation of the distribution of

the data is approximately factorized and has identical and known marginal densities.

The simplicity of the latent distribution under the model allows us to feasibly ex-

plore it, and the invertibility of the map to characterize contraction of measure across

it. This enables us to compute normalized densities for out-of-sample data. This

combination of tractability and flexibility allows us to tackle a variety of probabilis-

tic tasks on high-dimensional datasets, including: rapid computation of normalized

densities at test-time without evaluating a partition function; generation of samples

without MCMC; and characterization of the joint entropy of the data.

This chapter is based on the following paper:

Rippel, Oren and Adams, Ryan P. High-dimensional probability estimation with

deep density models. arXiv preprint arXiv:1302.5125, 2013

26

Chapter 2

Background and Notation

In this chapter, we provide a general introduction to deep learning. We start by

describing the philosophy of model construction, and proceed to describe particular

architectural choices. The concepts are not theoretically challenging, but there is

field-specific jargon that requires translation.

Deep learning is a subfield of machine learning, defined by its sequential pro-

jections onto learned bases (LeCun et al., 2015; Bengio, 2009; LeCun et al., 1989).

In the last few years, deep learning has undergone a renaissance: even though neu-

ral networks have existed for several decades, only recently has computational power

reached a caliber sufficient to implement them at scale. Since the field's resuscitation,

deep learning models have achieved competitive empirical performance on an array of

notorious benchmarks across a spectrum of domains in science and industry. These

include tasks in visual recognition, object detection, video, audio and text analysis,

and more (e.g., Glorot et al., 2011a; Hinton et al., 2012a; Krizhevsky et al., 2012;

Ouyang & Wang, 2013; Taigman et al., 2014; Szegedy et al., 2015). In this chapter,

we will demystify on some of the factors behind the success of this framework.

2.1 General Model Formulation

The particular model architecture employed is specialized to suit the problem it seeks

to address. For specificity and simplicity of exposition, we consider as an example a

27

generic recognition task; the ideas presented generalize to other forms of input and

other objectives beyond simple classification.

INPUT DATA Let us assume a training set consisting of N input-label pairs D

{Xn, yn}I 1 c RKO X 1, . . ., C}, that is, with datum dimensionality Ko and ground

truth label belonging to one of C classes. In real-life settings, N may vary from

thousands to tens of millions of examples, and C from 2 classes in the case of binary

classification to hundreds of thousands.

MODEL CONSTRUCTION We proceed to propagate an input x through a sequence of

layers, corresponding to transformations f(m) (.; Om) : RKm _ 1+Km m I

r(m) f(m)(r(m-); em) Vm =, ... ,M ' (2.1)

where we denote r(0) x. For each layer m =1,..., M, particular output di-

mensions fkm) for k 1,..., Km are referred to as units, and instantiations r "m) of

these for particular examples as activations. The parameters for layer m, denoted

Em c RDm, are learned during training of the model. In total, a model can have as

many as billions of parameters. The transformations fm(-; -) take a variety of func-

tional forms, such as linear transformations, where the parameters correspond to a

learned matrix, or sigmoidal maps which carry no learnable parameters at all. We

discuss in detail various common choices for these in Section 2.2.

OBJECTIVE DEFINITION Ultimately, following propagation through the network, in

the case of classification, the output r(M) is then contracted to a scalar via some

loss function f(-, y) : RKm -+ R which characterizes the quality of the prediction

performed by the model with respect to the ground truth label y.

The objective function to be optimized, then, is taken (in this instance) as the

28

average of all individual penalties

.(e,..eI= Z rM)y.) (2.2)N=

and its optimal solution is given by

0*, ... ,-* = arg min Y (81,..., OM) (2-3)

Much like the architecture itself, there are many choices for the evaluation metric.

We discuss these in Section 2.2.

2.1.1 Intuitive interpretation

Each layer in the network can be considered a simple building block, which either

independently transforms each activation, or mixes between them. As such, the end-

to-end network can be loosely perceived to apply a sequence of logic operators. The

level of abstraction, then, increases as function of layer index.

In a convolutional neural network applied to image data, for example, this inter-

pretation can be observed more concretely. Let us, again, consider a generic visual

recognition task. Assume that the input is processed by repeated alternation between

applications of convolutional layers and nonlinearities. In this case, the first layer of

the model tends to learn edge detectors, often colloquially referred to as "Gabor fil-

ters". While filtering of an image by these does not provide any prediction of its

contents, it does provide representations more suitable for further processing. The

second layer, in turn, is then able to aggregate spatial proximity of edges to detect

parts of objects. The third layer, then, aggregates parts of objects to infer identity.

For example, in a binary classification problem where we seek to determine whether

each input is a cow or a tractor, this layer can be empirically observed to reason that

"if I detect 4 legs, a tail, and a head, this is a cow with high probability".

Note, on the other hand, that if we instead sought to distinguish between cows

and cheetahs, the above condition would not suffice to uniquely characterize cows.

29

To achieve discrimination, then, this last layer, then, would adapt to further eval-

uate whether the input is also yellow and spotted. This observation accentuates a

significant appeal in our framework: our pipeline of filtering and decision-making is

learned completely autonomously as function of the task at hand. It is true that the

hierarchical filtering procedure introduced indeed constitutes an inductive bias hard-

coded into the model setup; the particular transformations, however, are optimized

to achieve the specific goal defined by e(-,.). As such, deep learning can be perceived

as adaptive basis function regression.

2.2 Typical Architecture Choices

We now briefly introduce different types of layers that will be employed throughout

this thesis.

There are many choices for each component of the architecture, it is often not clear

what the optimal arrangement is. There is a substantial body of work exploring these

choices; however, the optimal solution varies substantially across domain applications

and problems, and the search space is often prohibitively large - even for merely tens

of hyperparameters explored. This motivates the need for principled hyperparameter

optimization techniques, such as Bayesian Optimization. See Chapter 6 for more

information.

Neural network architecture components tend to fall into five principal categories:

parametrized layers, pooling layers, nonlinearities, stochastic regularization layers and

losses.

Parametrized layers

These layers include a set of parameters that are to be learned during optimization.

FULLY-CONNECTED This linear layer simply computes a matrix product: f(x; W) =

Wx for learnable parameters W E RKxD. The K rows of this matrix are known as

filters. This layer is a main building block of deep models due to its wide applicability.

30

However, it should be employed along with strong regularization, as it tends to result

in overfitting.

CONVOLUTIONAL Networks that include this layer are known as convolutional neu-

ral networks (CNNs). This is a special case of a fully-connected layer, which allows

exploiting spatial structure in images, temporal structure in audio or text, spatiotem-

poral structure in videos, and so on. In its 2-dimensional map size specialization, for

example, this layer has K learnable filters, each a tensor Wk E RCX'PQ for C input

channels, and map size P x Q. Each such filter is then convolved across every input:

it is slid across the input map with some fixed stride S (for simplicity of exposition

assumed to be the same across both dimensions), and at each point contracts across

its spatial window as well as all channels:

f(x,Wk)h. = [x*Wk]lh (2.4)
C P Q

E SE S Wepq Xc, hS+p, wS+q (2.5)
c-1 p=1 q=1

for an input x E RCxHxW, and h = 1,..., LS J + 1,w -... ,[wsJ +1. The

above is given for zero padding around the input, but can be easily generalized to

include it.

Note that these filters have clear spatial coherence: as such, it is appealing to

learn these in their spectral representations. In this thesis, we introduce spectral

representations for CNNs, which indeed allows expediting their training by 2-5 times:

see Chapter 5.

Pooling layers

Pooling layers project onto a particular basis, and truncate the resultant represen-

tation. The goal of this operation is to perform dimensionality reduction, as well as

imbue some desirable property such as translation invariance or reduced noise into

the resultant output. The pooling itself is often performed across spatial components,

and typically does not offer any parameters to be learned.

31

MAX POOLING Max pooling summarizes the contents of spatial windows via their

maximal elements. More specifically, for a kernel of size P x Q and stride S, this is

given by

f(x)chW -- max Xc,hS+p, wS+q (2.6)
1<Pp<P,1<q<Q

Max pooling allows introducing translational invariance, since the maximum element

in a particular window is invariant to its location within it. However, this property

comes at the sacrifice of loss of information.

AVERAGE POOLING Average pooling is identical to max pooling, apart from the

fact that the reduction operator is an average rather than a maximum. This form of

pooling is linear, and in fact can be trivially reduced to a simple convolution with a

constant kernel.

We remark that in this thesis, we introduce spectral pooling, which performs di-

mensionality reduction in the frequency domain. This approach allows preserving

considerably more information per parameter than other pooling strategies, and en-

ables flexibility in the choice of pooling output dimensionality. We expand on this in

Chapter 5.

Nonlinearities

Nonlinearities allow us to introduce sparsity, contract to particular output ranges,

and inject complexity. Without interlacing these between linear transformations, the

entire network could be reduced to a single linear layer. Nonlinearities typically have

no learnable parameters and are applied element-wise given an input tensor.

SIGMOID A sigmoidal nonlinearity is often denoted by o-(-), and corresponds to the

transformation o-(x) := 1/(1 + e~X) E (0, 1).

32

HYPERBOLIC TANGENT (TANH) As its name suggests, this nonlinearity is given by

TanH (x) := -$ " ' (- 1, 1).-

RECTIFIED LINEAR UNIT (RELU) The Rectified linear unit (ReLU) (Jarrett et al.,

2009; Glorot et al., 2011b) is another name for the hinge function ReLU(x) :=

max(0, x). This nonlinearity allows achieving sparsity "easily" without requiring large

domain values, and its piece-wise linear structure implies it does not saturate like

bounded nonlinearities. The latter property allows it to better handle the vanishing

gradient problem.

Stochastic regularization layers

DROPOUT Dropout has been introduced in Hinton et al. (2012b) to prevent over-

fitting resulting from co-adaptation of units. In its original formulation, at every

iteration of training, a Bernoulli mask is sampled for each unit in the network, de-

termining whether it is dropped from the network for that iteration. This implies

that units cannot depend on the presence of others. During test-time, no dropout is

applied, and the activations are halved to compensate for their joint presence.

NESTED DROPOUT In Chapter 3 of this thesis, we introduce Nested Dropout. This

allows using a masking idea to attain representations that are inherently ordered by

their importance. Such representations have a number of pleasing applications.

Losses

4, This class of losses is very popular in deep learning due to its ease of interpretation

and implementation. For parameter p and x E RK, this loss is given by

K /

I1XI1p = : 1 XkP)". (2.7)
(k=1

Average E2 loss is known as mean-square error (MSE), and is commonly used to

penalize spatial reconstructions by measuring mean discrepancy per input, channel

33

and pixel. Despite its ubiquitous adoption for this task, its use has been criticized,

as it does not align well with the human perceptual system.

Another common loss in this family is fl, which is often employed as regularization

to encourage sparsity.

SOFTMAX & CROSS-ENTROPY The combination of SoftMax and cross-entropy is

often used to as a loss to assess classification accuracy. Given a classification task

with C classes, the inputs of this loss are a vector r C RC produced by the network,

and label y E {1, . . , C}. The vector is then mapped to an array of probabilities of

belonging to the different classes:

ereLVy~~r] Z ,- e/ c=1,...,C. (2.8)
Ec,_=etc

This implies p > 0 and Ei pc = 1. The final objective for the particular input is

then given by the cross-entropy between the Kronecker delta ground truth distribution

and the computed probability:

C

e(r, y) = - 1,=, log P[y = c I r] . (2.9)
C= 1

Note that this combination of SoftMax and cross-entropy is often colloquially re-

ferred to as SoftMax, but this is technically incorrect: this term only describes the

transformation in Equation (2.8).

2.3 Objective Optimization

Having fixed an architecture and objective for our problem, we proceed to optimize

our loss from Equation (2.3):

N

= arg min f(r-A),ly) . (2.10)
n=1

34

This is a notoriously difficult optimization problem: the objective is non-convex and

non-stationary, and its minimization is commonly performed over hundreds of millions

of parameters. Moreover, for very large datasets, only a tiny fraction of the inputs

can in fact fit in memory, and as such only stochastic approaches are computationally

feasible.

In practice, this optimization is performed iteratively via gradient-based approaches.

The gradient can be computed efficiently using back-propagation (Rumelhart et al.,

1986), which refers to computation of the chain rule via reverse mode differentiation.

Stochastic optimization

Oftentimes, larger datasets cannot fit in memory, and this prohibits direct computa-

tion of the objective _, N 1(r"), y,). This necessitates stochastic optimization, in

which the global objective is approximated via minibatches of examples sampled at

each iteration of optimization:

N1

NK n(r),yn) Y f(r(M),y) , B C D7 « DI (2.11)
n=1 (x,y)EI3

=: C(8) (2.12)

for model parameters 8. Minibatch size provides a tradeoff between computational

expense and accurate approximation of the objective. While the cost of gradient

computation is linear as function of minibatch size, the returns in terms of expedited

convergence diminish. Typical minibatch size is on the order of magnitude of tens

or hundreds of examples. This loss, and its gradient, could be computed by accu-

mulating results over different minibatches. However, estimating the objective with

individual minibatches and applying respective updates is significantly more efficient.

Minibatches are often sampled uniformly from the training set; however, there exists

work on curriculum learning, where examples are presented to the optimizer in a

particular sequence, ordered by metrics such as difficulty (Bengio et al., 2009).

35

Common gradient-based optimizers

Gradient-based optimizers correspond to different update rules for adjusting the

model parameters E given the gradient VqC(E) and possibly second-order infor-

mation at the current location.

There exist many optimizers, motivated by exploitations of different assumptions

with respect to the structure of the objective in order to facilitate convergence. While

these optimizers are often backed by theoretical guarantees, these are often proven

under very constraining assumptions. However, these methods are then deployed

in the wild in settings where the premises do not hold: as such, their respective

advantages are often subdued in real-life optimization circumstances. Hence, the

evaluation of different optimization strategies often reduces to empirical assessment

across different objectives and hyperparameter configurations.

Irrespective of the optimizer, weight decay is often applied to the non-bias weights

at each iteration as element-wise rescaling Ot = (1 - E)Et_1 , 0 < E < 1. This

corresponds to an f2 regularization objective on the weights. This wipes out irrelevant

coefficients, and as such acts as a form of regularization.

STOCHASTIC GRADIENT DESCENT (SGD) This is the simplest optimizer. It is

based on the following update rule for iteration t:

E, = Et_1 - aetVeCs(Et_1). (2.13)

Here, at > 0 is the learning rate. The learning rate determines the weight of the

current update. For this optimizer, it varies as function of objective lengthscale,

and is often annealed over time to produce gentler updates as the procedure nears

convergence.

36

SGD WITH MOMENTUM This is one of the most common optimizers in deep learn-

ing. It is based on the following update rule for iteration t:

At = vpA_1 - cQtVeCB(8 t) , (2.14)

Ot = E8t_1 + yt . (2.15)

Here, v E (0, 1) is the momentum. For momenutum v = 0, this reduces exactly to the

SGD update rule in Equation (2.13). The learning rate determines the weight of the

current update. The momentum enables accruing gradients across iterations, which

serves as a form of variance reduction: it ameliorates stability, which is often harmed

due to the stochastic objective approximation. In practice, momentum is canonically

taken as v ~ 0.9.

ADAM This optimizer was introduced in Kingma & Ba (2015), where its implemen-

tation details can be found. It is a robust extension of AdaGrad (Duchi et al., 2011).

It is a first-order method invariant to diagonal rescaling of the gradients. It enables

element-wise rescaling of the learning rate, which significantly expedites convergence

and counters the vanishing gradient pathology exhibited by SGD and similar optimiz-

ers. In our experiments, we found Adam to be a versatile optimizer, suitable for model

prototyping: it is able to optimize a range of problems with a fixed out-of-the-box

hyperparameter configuration.

37

38

Chapter 3

Learning Ordered Representations

with Nested Dropout

3.1 Introduction

One frustration associated with current representation learning techniques is redun-

dancy from non-identifiability in the resulting encoder/decoder. That is, under stan-

dard models such as autoencoders, restricted Boltzmann machines, and sparse coding,

any given solution is part of an equivalence class of solutions that are equally optimal.

This class emerges from the invariance of the models to various transformations of

the parameters. Permutation is one clear example of such parameter transformation,

leading to a combinatorial number of equivalent representations for a given dataset

and architecture. There exist many other types of redundancies as well; the optimal-

ity of an autoencoder solution is preserved under any invertible linear transformation

of the innermost set of weights (Bourlard & Kamp, 1987). This degeneracy also

poses a difficulty when comparing experiments, due to the lack of repeatability: a

solution attained by the optimization procedure is extremely sensitive to the choice

of initialization.

This large number of equivalent representations has an advantage, however: it

provides flexibility in architecture design. This freedom allows us to impose desirable

structural constraints on the learned representations, without compromising their

39

expressiveness. These constraints can imbue a number of useful properties, including

the elimination of permutation non-identifiability. In this work we propose one such

structural constraint: we specify a priori the quantity of information encapsulated in

each dimension of the representation. This choice allows us to order the representation

dimensions according to their information content.

The intuition behind our proposed approach to learning ordered representations is

to train models such that the information contained in each dimension of the represen-

tation decreases as a function of the dimension index, following a pre-specified decay

function. To this end, we introduce the nested dropout algorithm. As with the original

dropout formulation (Hinton et al., 2012b), nested dropout applies a stochastic mask

over models. However, instead of imposing an independent distribution over each

individual unit in a model, it assigns a distribution over nested subsets of representa-

tion units. More specifically, given a representation space of dimension K, we define a

distribution pB(-) over the representation index subsets Sb = {1, . . . , b}, b = 1, . . . , K.

This has the property that if the j-th unit appears in a particular mask, then so do

all "earlier" units 1, . . . , j - 1, allowing the j-th unit to depend on their values. This

nesting leads to an inherent ordering over the representation dimensions. The distri-

bution pB(-) then governs the information capacity decay by modulating the relative

frequencies of these masks. We motivate such ordered representations in several ways,

described below.

IDENTIFIABILITY As discussed above, many current representation learning tech-

niques suffer from non-identifiability of the solutions. We can remedy this by intro-

ducing strict representation ordering, which enforces distinguishability. We rigorously

demonstrate this for the special case of a semi-linear autoencoder. We prove that the

application of nested dropout leads to a significant reduction in the solution space

complexity without harming the solution quality. Under an additional weak con-

straint, we further prove that, modulo sign flips, the model has a single and unique

global optimum. We show that this solution is exactly the set of eigenvectors of the

covariance matrix of the data, ordered by eigenvalue magnitude. This demonstrates

40

exact equivalence between semi-linear nested dropout autoencoders and principal

component analysis (PCA).

FAST RETRIEVAL Current information retrieval procedures suffer from an intrinsic

tradeoff between search speed and quality: representation dimensionality and dataset

size must be sacrificed to gain search tractability (Grauman & Fergus (2013) of-

fers an excellent overview of modern retrieval procedures). Given a query datum,

a naive brute force retrieval based on Hamming distance requires a linear scan of

the database, which has complexity 0 (KN) where K is the code length and N the

database size. Semantic hashing (Salakhutdinov & Hinton, 2009) retrieves examples

within a Hamming neighborhood of radius R by directly scanning through all mem-

ory locations associated with them. This results in retrieval time complexity 0((K)).

While this is independent of the database size, it grows rapidly in K and therefore is

computationally prohibitive even for codes tens of bits long; code length of 50 bits,

for example, requires a petabyte of memory be addressed. Moreover, as the code

length increases, it becomes very likely that many queries will not find any neighbors

for any feasible radii. Locality sensitive hashing (Datar et al., 2004) seeks to preserve

distance information by means of random projections; however, this can lead to very

inefficient codes for high input dimensionality.

By imposing an ordering on the information represented in a deep model, we

can learn hash functions that permit efficient retrieval. Because the importance of

each successive coding dimension decays as we move through the ordering, we can

naturally construct a binary tree data structure on the representation to capture a

coarse-to-fine notion of similarity. This allows retrieval in time that is logarithmic

with the dataset size and independent of the representation space dimensionality.

This enables very fast retrieval on large databases without sacrificing representation

quality: we are able to consider codes hundreds of times longer than currently feasible

with existing retrieval methods. For example, we perform retrieval on a dataset of a

million entries of code length 2048 in an average time of 200ps per query-about 4

orders of magnitude faster than a linear scan or semantic hashing.

41

ADAPTIVE COMPRESSION Ordered representations can also be used for "continuous-

degradation" lossy compression systems: they give rise to a continuous range of bi-

trate/quality combinations, where each additional bit corresponds to a small incre-

mental increase in quality. This property can in principle be applied to problems such

as video streaming. The representation only needs to be encoded a single time; then,

users of different bandwidths can be adaptively sent codes of different length that

exactly match their bitrates. The inputs can then be reconstructed optimally for the

users' channel capacities.

3.2 Ordering with Nested Dropout

Dropout (Hinton et al., 2012b) is a regularization technique for neural networks that

adds stochasticity to the architecture during training. At each iteration, Bernoulli

coins are flipped independently for each unit in the network, determining whether it is

"dropped" or not. Every dropped unit is deleted from the network for that iteration,

and an optimization step is taken with respect to the resulting network.

Nested dropout diverges from this in two main ways. First, only representation

units are dropped. Second, instead of flipping independent coins for different units, we

instead assign a distribution PB() over the representation indices 1, .. ., K. We then

sample an index b ~ PB(-) and drop units b+1, .. ., K. The sampled units then form

nested subsets: if unit j appears in a network sample, then so do units 1,... , j - 1.

This nesting results in an inherent importance ranking of the representation dimen-

sions, as a particular unit can always rely on the presence of its predecessors. For

PB(-) we select a geometric distribution: pB(b) - pb~(l - p). We make this choice

due to the exponential decay of this distribution and its memoryless property (see

Section 3.4).

We construct our model as an autoencoder, which is a parametric composition of

an encoder and a decoder. We are given a set of N training examples {yj}N 1 lying in

space 3(C R . We then transform the data into the representation space X C RK

via a parametric transformation fe : -+ X. We denote this function as the en-

42

coder, and label the representations as {X, C X. The decoder map g, : -+

then reconstructs the inputs from their representations as {y,}n1.

A SINGLE NESTED DROPOUT SAMPLE Let us assume that we sample some b ~ PB(-)

and drop the last K - b representation units; we refer to this case as the b-truncation.

This structure is equivalent to an autoencoder with a representation layer of dimension

b. For a given representation x E RK, we define Xib as the truncation of the vector x

where the last K - b elements are removed.

Denoting the reconstruction of the b-truncation as yJ - g, (fe (Y)b), the recon-

struction cost function associated with a b-truncation is then

1 N
Cab(E, = N (Yyl, y:) . (3.1)

n= 1

In this work, we take the reconstruction loss f(-,-) to be the E2 norm. Although we

write this cost as a function of the full parametrization (8, xI), due to the truncation

only a subset of the parameters will contribute to the objective.

THE NESTED DROPOUT PROBLEM Given our distribution PB(), we consider the

mixture of the different b-truncation objectives:

K

(8, IQ) =EB [Ci(8 , E)]= PB(b)Cb(E, 4). (3.2)
b=1

We formulate the nested dropout problem as the optimization of this mixture with

respect to the model parameters:

(e*, 4,*) = arg min C(E, I). (3.3)

3.2.1 Interpretation

Nested dropout has a natural interpretation in terms of information content in repre-

sentation units. It was shown by Vincent et al. (2010) that training an autoencoder

43

corresponds to maximizing a lower bound on the mutual information I(y; x) between

the input data and their representations. Specifically, the objective of the b-truncation

problem can be written in the form

CO(E, *) - Ey [- logpyx,, (y I f (Y); ; (3.4)

where we assume our data are sampled from the true distribution py(-). The choice

PY x (Y I X; 'F) = (y ; 9g(X), o'fliD), for example, leads to the familiar autoen-

coder 2 reconstruction penalty.

Now, define Ib(y; x) := -Ca(8 , *) < I(y; x) as the approximation of the true

mutual information which we maximize for a given b. Then we can write the (negative)

nested dropout problem in the form of a telescopic sum:

K

-C(8, A) = pB(b)Ib(y; x) (3.5)
b=1

K

=1(y; x) + [FB(K) - FB(b- 1)] Ab,
b=2

where FB(b) = ZI'=a PB(b) is the cumulative distribution function of PB(-) , and

Ab := Ib(y; x) - ib- 1(y; x) is the marginal information gained from increasing the

representation dimensionality from b units to b + 1.

This formulation provides a connection between the nested dropout objective and

the optimal distribution of information across the representation dimensions. Note

that the coefficients FB(K) - FB(b) of the marginal mutual information are positive

and monotonically decrease as a function of b regardless of the choice of distribu-

tion PB(-). This establishes the ordering property intuitively sought by the nested

dropout idea. We also see that if for some b we have PB(b) = 0, i.e., index b has no

support under PB(-), then the ordering of representation dimensions b and b - 1 no

longer matters. If we set PB(1) = 0, . .. , PB(K - 1) = 0 and PB(K) = 1, we recover

the original order-free autoencoder formulation for K latent dimensions. In order to

achieve strict ordering, then, the only assumption we must make is that PB(-) has

44

support over all representation indices. Indeed, this will be a sufficient condition for

our proofs in Section 3.3. Equation (3.5) informs us of how our prior choice of PB(-)

dictates the optimal information allocation per unit.

3.3 Exact Recovery of PCA

In this section, we apply nested dropout to a semi-linear autoencoder. This model has

a linear or a sigmoidal encoder, and a linear decoder. The relative simplicity of this

case allows us to rigorously study the ordering property implied by nested dropout.

First, we show that the class of optimal solutions of the nested dropout autoen-

coder is a subset of the class of optimal solutions of a standard autoencoder. This

means that introducing nested dropout does not sacrifice the quality of the autoen-

coder solution. Second, we show that equipping an autoencoder with nested dropout

significantly constrains its class of optimal solutions. We characterize these restric-

tions. Last, we show that under an additional orthonormality constraint, the model

features a single, unique solution that is exactly the set of K eigenvectors with the

largest magnitudes arising from the covariance matrix of the inputs, ordered by de-

creasing eigenvalue magnitude. Hence this recovers the PCA solution exactly. This

is in contrast to a standard autoencoder, which recovers the PCA solution up to an

invertible linear map.

3.3.1 Problem definitions and prior results

THE STANDARD LINEAR AUTOENCODER PROBLEM Given our inputs, we apply the

linear encoder f 9 (y) := fy + w with parameters 11 E RKxD and bias vector W E RK

for K < D. Our proofs further generalize to sigmoidal nonlinearities applied to the

output of the encoder, but we omit these for clarity. The decoder map g,: X -+ is

similarly taken to be gp (x) := rx + -y with parameters F E RDxK and E E RD. We

also define the design matrices Y and X whose columns consist of the observations

and their representations, respectively.

The reconstruction of each datum is then defined as the composition of the encoder

45

and decoder maps. Namely, y, = F(fy, + w) + y Vn 1,... , N. A semi-linear

autoencoder seeks to minimize the reconstruction cost

N

0(0, '') S ly. - g,(fe(Yn))I 2 (3.6)
n=1

1Y - (poY + w) +7)12 (3.7)

where by 11-IIF we denote the Frobenius matrix norm. From this point on, without

loss of generality we assume that w = 0, -y = 0, and that the data are zero-centered.

All our results hold otherwise, but with added shifting constants.

A SINGLE b-TRUNCATION PROBLEM We continue to consider the b-truncation prob-

lem, where the last K - b units of the representation are dropped. As before, for a

given representation x E RK, we define xjb to be the truncation of vector x. Defining

the truncation matrix Jm-+, E R"'r as [Jm-+nlab = 6
ab, then Xgb = JK-+bX. The de-

coder is then written as g, a(xgb) = rTbXtb, where we write F'b = J in which

the last K - b columns of r are removed. The reconstruction cost function associated

with a b-truncation is then

C b(O4b, 'b) = 1 - 1t7bX bI||F (3.8)

We define (9 *, 'b) arg mineb,b Cj(6Qb, I4b) to be an optimal solution of the

b-truncation problem; we label the corresponding optimal cost as Cb. Also, let

V y = yyT be (proportional to) the empirical covariance matrix of {y,}4N with

eigendecomposition Vy = QE2QT, where E2 is the diagonal matrix constituting of

the eigenvalues arranged in decreasing magnitude order, and Q the orthonormal ma-

trix of the respective eigenvectors. Similarly, let R be the orthonormal eigenvector

matrix of yTy, arranged by decreasing order of eigenvalue magnitude.

The b-truncation problem exactly corresponds to the original semi-linear autoen-

coder problem, where the representation dimension is taken to be b in the first place.

As such, we can apply known results about the form of the solution of a standard

46

autoencoder. It was proven in Bourlard & Kamp (1987) that this optimal solution

must be of the form

X* = TbEYRT *= QbT- 1 (3.9)

where Tb E Rbxb is an invertible matrix, E2 b = JK-+bE E R'xD the matrix with the

b largest-magnitude eigenvalues, and Qjb QKab E RDxb the matrix with the b

corresponding eigenvectors. This result was established for an autoencoder of rep-

resentation dimension b; we reformulated the notation to suit the nested dropout

problem we define in the next subsection.

It can be observed from Equation (3.9) that the semi-linear autoencoder has a

strong connection to PCA. An autoencoder discovers the eigenvectors of the empirical

covariance matrix of {y'}N corresponding to its b eigenvalues of greatest magnitude;

however, this is up to to an invertible linear transformation. This class includes

rotations, scalings, reflections, index permutations, and so on. This non-identifiability

has an undesirable consequence: it begets a huge class of optimal solutions.

THE NESTED DROPOUT PROBLEM We now introduce the nested dropout problem.

Here, we assign the distribution b - PB(-) as a prior over b-truncations. For our

proofs to hold our only assumption about this distribution is that it has support over

the entire index set, i.e., pB(b) > 0, V 1, .. , K. To that end, we seek to minimize

the nested dropout cost function, which we define as the mixture of the K truncated

models under pB(-):

C(8, I) = EB [11Y - F lbX;b1] (3.10)
K

PB(b -- =1bXs| . (3.11)
b=1

47

3.3.2 The nested dropout problem recovers PCA exactly

Below we provide theoretical justification for the claims made in the beginning of this

section. All of the proofs can be found in Appendix A.

Theorem 1. Every optimal solution of the nested dropout problem is necessarily an

optimal solution of the standard autoencoder problem.

Definition. We define matrix T E RKxK to be commutative in its truncation and

inversion if each of its leading principal minors JK-+bTJKb, b =1,.. ., K is invert-

ible, and the inverse of each of its leading principal minors is equal to the leading

principal minor of the inverse T-, namely

JK-+bTJ K-b = (JK-+bTK-+b) (3.12)

The below theorem, combined with Lemma 1, establishes tight constraints on the

class of optimal solutions of the nested dropout problem. For example, an immediate

corollary of this is that T cannot be a permutation matrix, as for such a matrix there

must exist some leading principal minor that is not invertible.

Theorem 2. Every optimal solution of the nested dropout problem must be of the

form

X* = TER J* = QT- 1 (3.13)

for some matrix T E RKXK that is commutative in its truncation and inversion.

Denote the column and row submatrices respectively as Ab = [Tlb,..., T(b- 1),b

and Bb = [Tb1,... ,T,(b_ 1)]T.

Lemma 1. Let T E RKxK be commutative in its truncation and inversion. Then all

the diagonal elements of T are nonzero, and for each b = 2,..., K, either Ab = 0

or Bb = 0.

48

(a) Without unit sweeping

Figure 3-1: The 100 filters learned by a binarized 3072-100-3072 nested dropout

autoencoder oin the raw CIFAR-10 pixels where pB(-) is a geometric distribution

with rate of 0.9. For this rate, the proI)bability of sampling any index greater than

50 is ~ 0.005, and the probability of sampling the 100th unit is ~ 0.00003: it is

very unlikely to ever sample these without unit sweeping. Note the increase of filter

fineness as a function of the index.

In the result below we see that nested dropout coupled witi an orthonormality

constraint effectively eliminates non-identifial)ility. The added constraint pins down

any possil)le rotations and scalings.

Theorem 3. Under the art honormality constraint rT lil. the nested dropout

problem features a unique global opti mum, and tis solution is exactly the set of the K

top cigenvectors of the covariance of Y. ordered by cigenvalue magnitude. Namely.

X* = RT *= Q.

3.4 Training Deep Models with Nested Dropout

In this section we discuss our extension of the nested dropout approach to deep archi-

tectures. Specifically, we applied this to deep autoencoders having tens of millions of

parameters, which we trained on the 80 Million Tiny Images (80MTI) dataset (Tor-

ralba et al., 2008) on two GPUs. Training models with nested dropout introduces a

nummber of' unconventional technical challenges. Im the following sections we describe

these challenges, and present strategies to overcomie them.

We first describe our general architecture and optiization setup. The 80MTI are

49

(b) With unit, sweeping

79,302,017 color images of size 32 x 32. We pre-processed the data by subtracting

from each pixel its mean and normalizing by its variance across the dataset. We

optimize our models with the nonlinear conjugate gradients algorithm and select

step sizes using a strong Wolfe conditions line search. For retrieval-related tasks,

we seek to produce binary representations. In light of this we use rectified linear

units for all nonlinarities in our encoder, as we find this leads to better binarized

representation (see Subsection 3.4.3). We train for 2 epochs on minibatches of size

10,000. We inject noise to promote robustness, as in (Vincent et al., 2010); namely,

with probability 0.1 we independently corrupt input elements to 0. For all layers

other than the representation layer, we apply standard dropout with probability 0.2.

At each iteration, we sample nested dropout truncation indices for each example in

our minibatch, and take a step with respect to the corresponding network mask.

3.4.1 Unit sweeping for decaying gradients

By the virtue of the decaying distribution PB(-), it becomes increasingly improbable

to sample higher representation indices during training. As such, we encounter a phe-

nomenon where gradient magnitudes vanish as a function of representation unit index.

This curvature pathology, in its raw formulation, means that training representation

units of higher index can be extremely slow.

In order to combat this effect, we develop a technique we call unit sweeping. The

idea stems from the observation that the covariance of two latent units sharply de-

creases as a function of the of the difference of their indices. When PB () is a geometric

distribution, for example, the probability of observing both units i and j given that

one of them is observed is P[b>max(i,j) I b>min(i,j)] = P [b i-jl] = p-iI by

the memoryless property of the distribution. In other words, a particular latent unit

becomes exponentially desensitized to values of units of higher index. As such, this

unit will eventually converge during its training. Upon convergence, then, this unit

can be fixed in place and its associated gradients can be omitted. Loosely speaking,

this elimination reduces the "condition number" of the optimization. Applying this

iteratively, we sweep through the latent units, fixing each once it converges. In Figure

50

3-1 we compare filters from training a nested dropout model with and without unit

sweeping.

3.4.2 Adaptive regularization coefficients

The gradient decay as a function of representation index poses a difficulty for regular-

ization. In particular, the ratio of the magnitudes of the gradients of the reconstruc-

tion and the regularization vanishes as a function of the index. Therefore, a single

regularization term such as A 1k | 1 ion the weights of the layer mapping to our

representations would not be appropriate for nested dropout, since the regulariza-

tion gradient would dominate the high-index gradients. As such, the regularization

strength must be a function of representation index. For weight decay, for example,

this would of the form EKI Ak k I 2 ki . Choosing the coefficients Ak manually is chal-

lenging, and to that end we assign them adaptively. We do this by fixing in advance

the ratio between the magnitude of the reconstruction gradient and the regulariza-

tion gradient, and choosing the Ak to satisfy this ratio requirement. This corresponds

to fixing the relative contributions of the objective and regularizations terms to the

gradient for each step of the optimization procedure.

3.4.3 Code binarization

For the task of retrieval, we would like to obtain binary representations. Several

binarization methods have been proposed in prior work (Salakhutdinov & Hinton,

2009; Krizhevsky & Hinton, 2011). We have empirically achieved good performance by

tying the weights of the encoder and decoder, and thresholding at the representation

layer. Although the gradient itself cannot propagate past this threshold, some signal

does: the encoder can be trained since it is linked to the decoder, and its modifications

are then reflected in the objective. To attain fixed marginal distributions over the

binarized representation units, i.e., Xk~ Bern() for k = 1, . . . , K, we compute the

quantile for each unit, and use this value for thresholding.

51

r'I

Figure 3-2: Nested neighborhoods for various examples in a 2D toy problem. The

synthetic pinwheel training data is on the top left. The trained model is a 2-16-32-
16-2 nested dropout autoencoder. The red dots correspond to the retrieved queries.

The shades of blue correspond to different nested neighborhoods for these queries,
with color lightness signifying neighborhood depth.

3.5 Retrieval With Ordered Binary Codes

In this section we discuss how ordered representations can be exploited to construct

data structures that permit fast retrieval while at the same time allowing for very

long codes.

3.5.1 Binary tree on the representation space

The ordering property. coupled with the ability to control information capacity decay

across representation units. motivates the construction of a binary tree over large data

sets. Each node in this tree contains pointers to the set of examples that share the

same path down the tree up to that point. Guaranteeing that this tree is balanced is

not feasible, as this is equivalent to completely characterizing the joint distribution

over the representation space. However, by the properties of the training algorithm,

we are able to fix the marginal distributions of all the representation bits as Xk

Bern(3) for some hyperparameter 3 E (0. 1).

Consistent with the training procedure, we encode our database as X {x N}; C

{0. 1}' for x, = fe(y). We then construct a binary tree on the resulting codes.

Given a query y. we first encode it as 5c fe(yn). We then conduct retrieval

by traveling down the binary tree with each branching determined by the next bit of

x. We define the b-truncated Hamming ncighborhood of 5 as the set of all examples

52

whose codes share the first b bits of k:

NW(R) = {y E Y : I|xgb - RbII| =O} . (3.14)

It is clear that Ny1 (R) 9 NK(R) Vb = 1,..., K - 1. Our retrieval procedure then

corresponds to iterating through this family of nested neighborhoods. We expect the

cardinality of these to decay approximately exponentially as a function of index. We

terminate the retrieval procedure when IN (R) < R for some pre-specified terminal

neighborhood cardinality, R E N. It outputs the set N' 1 (i).

Assuming marginals Xk ~ Bern(S) and neglecting dependence between the Xk, this

results in expected retrieval time O(*,g NIR) where 7W(Bern(#3)) is the Bernoulli en-

tropy. If # = }, for example, this reduces to the balanced tree travel time O(log N/R).

This retrieval time is logarithmic in the database size N, and independent of the rep-

resentation space dimensionality K. If one wishes to retrieve a fixed fraction of the

dataset, this renders the retrieval complexity also independent of the dataset size.

In many existing retrieval methods, the similarity of two examples is measured

by their Hamming distance. Here, similarity is rather measured by the number of

leading bits they share. This is consistent with the training procedure, which produces

codes with this property by demanding reconstructive ability under code truncation

variation.

3.5.2 Empirical results

We empirically studied the properties of the resulting codes and data structures in a

number of ways. First, we applied ordered retrieval to a toy problem where we trained

a tiny 2-16-32-16-2 autoencoder on 2D synthetic pinwheel data (Figure 3-2). Here we

can visualize the nesting of neighborhood families for different queries. Note that, as

expected, the nested neighborhood boundaries are orthogonal to the direction of local

variation of the data. This follows from the model's reconstruction loss function.

We then trained on 80MTI a binarized nested dropout autoencoder with layer

widths 3072-2048-1024-512-1024-2048-3072 with f, weight decay and invariance reg-

53

\Ve chose pp(-) ~ Geom(0.97) and the binarization

quantile 3 = 0.2.

Empirical retrieval speeds for various models are shown in Figure 3-3. We per-

formed retrieval by measuring Hamming distance in a linear scan over the database.

and by means of semantic hashing for a number of radii. We also performed ordered

retrieval for a number of terminal neighborhood cardinalities. Although semantic

hashing is independent of the database size, for a radius greater than 2 it requires

more time than a brute force linear scan even for very short codes. In addition., as

the code length increases, it becomes very likely that many queries will not find any

neighbors for any feasible radii. It can be seen that ordered retrieval carries a very

small computational cost which is independent of the code length. Note that each

multiplicative variation in the terminal neighborhood size R, from 2 to 32 to 512,

leads to a constant shift downward on the logarithmic scale plot. This observation is

consistent with our earlier analysis that the retrieval time increases logarithmically

with N/R.

In Figure 3-4, we show retrieval results for varying terminal neighborhood sizes.

As we decrease the terminal neighborhood size, the similarity of the retrieved data

C/) 1

10

C= 10 -

1010 - -- SR 1
SR 2

10-
SR 3

- U SR 4
> OR 2

S3 . .- O-- OR 32

0

0) -5> 10
< 32128 256 512 1024 2048

Code length

Figure 3-3: Empirical timing tests for different retrieval algorithms. SR: semantic

retrieval, OR: ordered retrieval. The nunbers next to "SR" and "OR" in the figure

legend correspond to the semantic hashing radius and the terminal ordered retrieval

neighborhood cardinality, respectively. As the code length increases. Hamming balls

of very small radii become prohibitive to scan. Ordered retrieval carries a small fixed

cost that is independent of code length.

54

ularization (see Section 3.4).

As'

It0

N3

N1128 -
Figure 3-4: Retrieval results for different terminal neighborhood cardinalities. Note
the increase in retrieval fineness as a function of neighborhood index. Examples

presented in the order in which they app1ear in the dataset. When neighborhood sizes
are greater than 32, only the first 32 images in tihe neighborhood are shown. The last

neighb orhood contains only the query itself.

to the cquery increases. As more hits arc added to the relpresentation in the pr~Ocess

of retrieval, the resolution of the query increases, andl thus it is better resolved from

similar images.

3.6 Adaptive Compression

Anothcr application of ordered representations is continuous-degradation iossy coin-

pressionl systems. By "continuous-degradation" we mean that the message can be de-

coded for any nunber, b. of l!its received, and that tihe reconstruction error 1(y, ygb)

55

______________________________ L________

decreases monotonically with b. Such representations give rise to a continuous (up to

a single bit) range of bitrate-quality combinations, where each additional bit corre-

sponds to a small incremental increase in quality.

The continuous-degradation property is appealing in many situations. First, con-

sider, a digital video signal that is broadcast to recipients with varying bandwidths.

Assume further that the probability distribution over bandwidths for the population,

PB(-), is known or can be estimated, and that a recipient with bandwidth b receives

only the first b bits of the transmission. We can then pose the following problem:

what broadcast signal minimizes the expected distortion over the population? This

is formulated as

() = arg min EB [t(Yn, i V4b) (3.15)

This is precisely the optimization problem solved by our model; Equation (3.15) is

simply a rewriting of Equation (3.3). This connection gives rise to an interpretation

of pB(-), which we have set to the geometric distribution in our experiments. In

particular, PB(-) can be interpreted as the distribution over recipient bandwidths

such that the system minimizes the expected reconstruction error.

This intuition in principle applies as well to online video streaming, in which the

transmitted signal is destined for only a single recipient. Given that different recip-

ients have different bandwidths, it is acceptable to lower the image quality in order

to attain real-time video buffering. Currently, one may specify in advance a small

number of fixed encodings for various bandwidths: for example, YouThbe offers seven

different definitions (240p, 360p, 480p, 720p, 1080p, 1440p, and 2160p), and auto-

matically selects one of these to match the viewer's bitrate. Ordered representations

offer the ability to fully utilize the recipient's bandwidth by truncating the signal

to highest possible bitrate. Instead of compressing a handful of variants, one needs

only to compute the ordered representation once in advance, and truncate it to the

appropriate length at transmission time. If this desired bitrate changes over time, the

quality could be correspondingly adjusted in a smooth fashion.

56

102

0
I' 0

1 0

I * 0
0c10) -None

- OBD
C\1 -OR

-JPEG

200 400 600 800 1024
Number of representation bytes

(a) ReconstructiOlns (b) Reconstruction rates

Figre 3-5: Online reconstruction with ordered representations. (a) Reconstructions

for code lengths 16, 64, 128, 256, and 1024 using a nested dropout autoencoder. The

original inages are 24576 bits each. (b) Reconstruction rates as a function of code

length for four different truncation techniques: ordered representation. Optimal Brain

Damage, a standard autoencoder, and JPEG.

3.6.1 Empirical results

In Figure 3-5(a), we qualitatively evaluate continuous-degradation lossy compression

with ordered representations. We trained a single-layer 3072-1024-3072 autoencoder

with nested dropout on CIFAR-10, and produced reconstructions for different code

lengths. Each cohnn represents a different image and each row represents a different

code length. As the code length increases (downwards in the figure), the reconstruc-

tion quality increases. The images second-to-bottomn row look very similar to the

original unconlmressed images in the bottom row (24576 bits each).

Figure 3-5(b) shows ordered rel)resentation reconstruction rates as a function of

code length for different al)proaches to the)roblen. In addition to the above, we

also trained a standard autoencoder with the same architecture but without nested

dropout . On this we applied 2 different truncation approaches. The first is a simple

truncation on the uni-ordered bits. The second is Optimal Brain Damage truncation

(LeCun et al., 1990), which removes units in decreasing order of their influence on

the reconstruction objective, measured in ternis of the first and second order terms

in its Taylor expansion. This is a clever way of ordering units. but is disjoint from

the training procedure and is only applied retroactively. We also compare with JPEG

compression. We use the libjpeg library and vary the JPEG quality parameter. Higher

quality parameters result in larger file sizes and lower reconstruction error. Note

that JPEG is not well-suited for the 32x32 pixel- images we use in this study; its

assumptions about the spectra of natural images are violated by such highly down-

sampled images.

3.7 Discussion and Remaining Open Problems

We have presented a novel technique for learning representations in which the dimen-

sions have a known ordering. This procedure is applicable to deep networks, and in

the special case of shallow autoencoders is provably exactly equivalent to PCA. This

enables learned representations of data that are adaptive in the sense that they can be

truncated with the assurance that the shorter codes contain as much information as

possible. Such codes are of interest in applications such as retrieval and compression.

The ordered representation retrieval approach can also be used for efficient super-

vised learning. Namely, it allows performing k-nearest-neighbors on very long codes in

logarithmic time in their cardinality. This idea can be combined with various existing

approaches to metric learning of kNN and binarized representations (Norouzi et al.,

2012; Salakhutdinov & Hinton, 2007; Weinberger & Saul, 2009). The purely unsuper-

vised approaches we have described here have not been empirically competitive with

state of the art supervised methods from deep learning. We are optimistic that nested

dropout can be meaningfully combined with supervised learning, but leave this for

future work.

In addition, ordered representations provide a practical way to train models with

an infinite number of latent dimensions, in the spirit of Bayesian nonparametric meth-

ods. For example, the distribution PB(-) can be chosen to have infinite support, while

having finite mean and variance.

58

Chapter 4

Metric Learning with Adaptive

Density Discrimination

4.1 Introduction

The problem of classification is a mainstay task in machine learning, as it provides

us with a coherent metric to gauge progress and juxtapose new ideas against existing

approaches. To tackle various other tasks beyond categorization, we often require

alternative representations of our inputs which provide succinct summaries of rele-

vant characteristics. Here, classification algorithms often serve as convenient feature

extractors: a very popular approach involves training a network for classification on

a large dataset, and retaining the outputs of the last layer as inputs transferred to

other tasks (Donahue et al.; Sharif Razavian et al., 2014; Qian et al., 2015; Snoek

et al., 2015).

However, this paradigm exhibits an intrinsic discrepancy: we have no guarantee

that our extracted features are suitable for any task but the particular classification

problem from which they were derived. On the contrary: in our classification pro-

cedure, we propagate high-dimensional inputs through a complex pipeline, and map

each to a single, scalar prediction. That is, we explicitly demand our algorithm to,

ultimately, dispose of all information but class label. In the process, we destroy intra-

and inter-class variation that would in fact be desirable to maintain in our features.

59

In principle, we have no reason to compromise: we should be able to construct a

representation which is amenable to classification, while still maintaining more fine-

grained information. This philosophy motivates the class of distance metric learning

(DML) approaches, which learn a transformation to a representation space where dis-

tance is in correspondence with a notion of similarity. Metric learning offers a number

of benefits: for example, it enables zero-shot learning (Mensink et al., 2013; Chopra

et al., 2005), visualization of high-dimensional data (van der Maaten & Hinton, 2008),

learning invariant maps (Hadsell et al., 2006), and graceful scaling to instances with

millions of classes (Schroff et al., 2015). In spite of this, it has been difficult for DML-

based approaches to compete with modern classification algorithms in performance

and even in feature extraction.

Admittedly, however, these are two sides of the same coin: a more salient repre-

sentation should, in theory, enable improved classification performance and features

for task transfer. In this work, we strive to reconcile this gap. We introduce Mag-

net Loss, a novel approach explicitly designed to address subtle yet important issues

which have hindered the quality of learnt representations and the training efficiency

of a class of DML approaches. In essence, instead of penalizing individual examples

or triplets, it maintains an explicit model of the distributions of the different classes in

representation space. It then employs this knowledge to adaptively assess similarity,

and achieve discrimination by reducing local distribution overlap. It utilizes cluster-

ing techniques to simultaneously tackle a number of components in model design,

from capturing the distributions of the different classes to hard negative mining. For

a particular set of assumptions in its configuration, it reduces to the familiar triplet

loss (Weinberger & Saul, 2009).

We demonstrate the effectiveness of this idea on several tasks. Using a soft k-

nearest-cluster metric for evaluation, this approach achieves state-of-the-art classi-

fication results on a number of fine-grained visual recognition datasets, surpassing

the standard softmax classifier and outperforming triplet loss by a relative margin of

30-40%. In terms of computational performance, it alleviates several training ineffi-

ciencies in traditional triplet-based approaches, reaching the same error in 5-30 times

60

Standard DML

Cats Dogs

Magnet .
Dogsan Cats Cats

Figure 4-1: Distance metric learning approaches sculpt a representation space where
distance is in correspondence with a notion of similarity. Traditionally, similarity is
specified a-priori and often strictly semantically. In contrast, Magnet Loss adaptively
sculpts its representation space by autonomously identifying and respecting intra-class
variation and inter-class similarity.

fewer iterations. Beyond classification, we further validate the saliency of the learnt

representations via their attribute concentration and hierarchy recovery properties,

achieving 10-25% relative gains on the softinax classifier and 25-50% on triplet loss

in these tasks.

4.2 Motivation: Challenges in Metric Learning

We start by providing an overview of challenges which we believe have been impeding

the success of existing distance metric learning approaches. These will motivate our

work to follow.

ISSUE #1: PREDEFINED TARGET NEIGHBOURHOOD STRUCTURE All metric learn-

ing approaches must define a relationship between similarity and distance, which

prescribes neighbourhood structure. The corresponding training algorithm, then,

learns a transformation to a representation space where this property is obeyed. In

existing approaches, similarity has been canonically defined a-priori by integrating

available supervised knowledge. The most coninion is semantic, informed by class la-

bels. Finer assignment of neighbourhood structure is enabled with access to additional

prior information, such as similarity ranking (Wang et al., 2014) and hierarchical class

taxonomy (Verma et al.. 2012).

61

In practice, however, the only available supervision is often in the form of class

labels. In this case, a ubiquitous solution is to enforce semantic similarity: examples

of each class are demanded to be tightly clustered together, far from examples of

other classes (for example, Schroff et al. (2015); Norouzi et al. (2012); Globerson &

Roweis (2006); Chopra et al. (2005)). However, this collapses intra-class variation

and does not embrace shared structure between different classes. Hence, this imposes

too strong of a requirement, as each class is assumed to be captured by a single mode.

This issue is well-known, and has motivated the notion of local similarity: each

example is designated only a small number of target neighbours of the same class

(Weinberger & Saul, 2009; Qian et al., 2015; Hadsell et al., 2006). In existing work,

these target neighbours are determined prior to training: they are retrieved based on

distances in the original input space, and after which are never updated again. Ironi-

cally, this is in contradiction with our fundamental assumption which motivated us to

pursue a DML approach in the first place. Namely, we want to learn a metric because

we cannot trust distances in our original input space - but on the other hand define

target similarity using this exact metric that cannot be trusted! Thus, although this

approach has the good intentions of encoding similarity into our representation, it

harms intra-class variation and inter-class similarity by enforcing unreasonable prox-

imity relationships. Apart from its information preservation ramifications, achieving

predefined separation requires significant effort, which results in inefficiencies during

training time.

Instead, what we ought to do is rather define similarity as function of distances

of our representations - which lie in precisely the space sculpted for metric saliency.

Since representations are adjusted continuously during training, it then follows that

similarity must be defined adaptively. To that end, we must alternate between up-

dating our representations, and refreshing our model which designates similarity as

function of these. Visualizations of representations of different DML approaches can

be found in a toy example in Figure 4-2.

62

(a) (b)

Gazelles: with people Manta-rays with people

4k

Triplet Magnet Softmax

Manta-rays: in the deep Sharks: in the deep

Figure 4-2: 2D visualizations of representations attained by training triplet loss, Magnet Loss and a

softmax classifier on 10 classes of ImageNet. The different colours correspond to different classes, and

the values to density estimates computed from an application of t-SNE (van der Maaten & Hinton, 2008)

on the original 1024-dimensional representations. The white dots in the Magnet t-SNE correspond

to K = 32 clusters used by Magnet to capture each class. The red arrows retrieve the examples

closest to particular clusters (which were learnt autonomously). 1. It can be seen that triplet loss and

softnmax result in unimodal separation, due to enforcement of semantic similarity. For Magnet Loss. the

distributions of the different classes may arbitrarily split, adaptively embracing intra-class variation and

inter-class similarity. 2. Green corresponds to manta-rays, blue to sharks, and magenta to gazelles.

Magnet Loss captures intra-class variation between (c) and (b) as inanta-rays in the deep, and manta-

rays with people. It also respects inter-class similarity, allowing shared structure between (c) and (d)

as fish in the deep, and between (a) and (b) as animals with people. See Figures 4-6 and 4-7 for image

iaps of other t-SNE projections.

ISSUE 2: OBJECTIVE FORMULATION Two very popular classes of DIL approaches

have stenmed from Triplet Loss (Weinberger & Saul. 2009) and Contrastive Loss

(Hadsell et al., 2006). The outlined issues apply to both, but for simplicity of exposi-

tion we use triplet loss as an example. During its training, triplets consisting of a seed

example, a "positive" example similar to the seed and a, "negative" dissimilar example

are sampled. Let us denote thcir representations as r,, r+ and r;- for m = 1 ... ,AI.

Triplet loss then demands that the difference of distances of the representation of

the seed to the negative and to the positive be larger than some pre-assigned margin

63

0

*00.

00

0 @0 0 U

(a) Triplet: before. (b) Triplet: after. (c) Magnet: be- (d) Magnet: after.
fore.

Figure 4-3: The intuition behind triplet loss and Magnet Loss. Triplet loss only
considers a single triplet at a time, resulting in reduced performance and training
inefficiencies. In contrast, in Magnet Loss, at each iteration an entire local neigh-
bourhood of nearest clusters is retrieved, and their overlaps are penalized. Insight
into representation distribution permits adaptive similarity characterization, local
discrimination and a globally consistent optimization procedure.

constant (t E R:

22+ (4.1)Alplet (6) =r,, - r- 2 - r+ 2
7 = I

where is the hinge function and E the parameters of the imap to representation

space. The representations are often normalized to achieve scale invariance, and

negative examples are mined in order to find margin violators (for example, Schroff

et al. (2015); Norouzi et al. (2012)).

Objectives formulated in this spirit exhibit, a short-sightedness. Namely, penal-

izing individual pairs or triplets of examples does not employ sufficient contextual

insight of neighbourhood structure, and as such different triplet terms are not nec-

essarilv consistent. This hinders both the convergence rate as well as performance

of these approaches. Moreover, the cubic growth of the number of triplets renders

operation on these computationally inefficient.

In contrast to this, it is desirable to instead inform the algorithm of the distri-

butions of the different classes in representation space and their overlaps, and rather

manipulate these in a way that is globally consistent. We elaborate on this in the

section below.

64

4.3 Magnet Loss for Distance Metric Learning

We proceed to design a model to mitigate the identified difficulties. Let us for a

moment neglect practical considerations, and envision our ideal DML approach. To

start, as concluded at the start of Section 4.2, we are interested to characterize sim-

ilarity adaptively as function of current representation structure. We would then

utilize this knowledge to pursue local separation as opposed to global: we seek to

separate between distributions of different classes in representation space, but do not

mind if they are interleaved. As such, let us assume that we have knowledge of the

representation distribution of each class at any time during training. Our DML al-

gorithm, then, would discover regions of local overlap between different classes, and

penalize these to achieve discrimination.

Such an approach would liberate us from the unimodality assumption and un-

reasonable prior target neighbourhood assignments - resulting in a more expressive

representation which maintains significantly more information. Moreover, employing

a loss informed of distributions rather than individual examples would allow for a

more coherent training procedure, where the distance metric is adjusted in a way

that is globally consistent.

To that end, a natural approach would be to employ clustering techniques to

capture these distributions in representation space. Namely, for each class, we will

maintain an index of clusters, which we will update continuously throughout train-

ing. Our objective, then, would jointly manipulate entire clusters - as opposed

to individual examples - in the pursuit of local discrimination. This intuition of

cluster attraction and repulsion motivates us to name it Magnet Loss. A caricature

illustrating the intuition behind this approach can be found in Figure 4-3.

In addition to its advantages from a modeling perspective, a clustering-based

approach also facilitates computation by enabling efficient hard negative mining. That

is, we may perform approximate nearest neighbour retrieval in a two-step process,

where we first retrieve nearest clusters, after which we retrieve examples from these

clusters.

65

Finally, as discussed, throughout training we are interested in a more complete

characterization of neighbourhood structure. At each iteration, we sample entire local

neighbourhoods rather than collections of independent examples (or triplets) as per

usual, which significantly improves training efficiency. We elaborate on this in Section

4.3.2.

4.3.1 Model formulation

We proceed to quantify the modeling objectives outlined above. Let us assume we

have a training set consisting of N input-label pairs D = {x", y'N, belonging to C

classes. We consider a parametrized map f(-; 8) which hashes our inputs to repre-

sentation space, and denote their representations as rn = f(xn; E), n = 1, . .. , N. In

this work, we select this transformation as GoogLeNet (Szegedy et al., 2015; loffe &

Szegedy, 2015a), which has been demonstrated to be a powerful CNN architecture;

in Section 4.4 we elaborate on this choice.

We assume that, for each class c, we have K cluster assignments 11, . . . , Ik ob-

tained via an application of the K-means algorithm. Note that K may vary across

classes, but for simplicity of exposition we fix it as uniform. In Section 4.3.2, we

discuss how to maintain this index. To that end, we assume that these assignments

have been chosen to minimize intra-cluster distances. Namely, for each class c, we

have

K

14,... ,J4 = arg m S S r - , (4.2)
e, K k=1 rEIc

S = I r. (4.3)
krElk

We further define C(r) as the class of representation r, and pi(r) as its assigned cluster

center.

66

We proceed to define our objective as follows:

1 N -21r1-2_n~j a
Y(8)=j- - log Zc c1rnZk_2 (4.4)

n"=1 I EcsAC(rn) k=1 e 2, ', 1121

where {-}+ is the hinge function, a E R is a scalar, and or2 = - E r - (r)12

is the variance of all examples away from their respective centers. We note that

cluster centers sufficiently far from a particular example vanish from its term in the

objective. This allows accurately approximating each term with a small number of

nearest clusters.

A feature of this objective not usually available in standard distance metric learn-

ing approach is variance standardization. This renders the objective invariant to the

characteristic lengthscale of the problem, and allows the model to gauge its confidence

of prediction by comparison of intra- and inter-cluster distances. With this in mind,

a is then the desired cluster separation gap, measured in units of variance. In our

formulation, we may thus interpret a as a modulator of the probability assigned to

an example of a particular class under the distribution of another.

We remark that during model design, an alternative objective we considered is the

cluster-based analogue of NCA (see Section 4.3.4): this objective seems to be a natural

approach with a clear probabilistic interpretation. However, we found empirically that

this objective does not generalize as well, since it only vanishes in the limit of extreme

discrimination margins.

4.3.2 Training procedure

COMPONENT #1: NEIGHBOURHOOD SAMPLING At each iteration, we sample entire

local neighbourhoods rather than a collection of independent examples. Namely, we

construct our minibatch in the following way:

1. Sample a seed cluster I, ~ pA(-)

2. Retrieve M - 1 nearest impostor clusters I2,... , IM of AI

67

3. For each cluster Im, m = 1,..., M, sample D examples x, ... x ~ pim()

The choices of pl(.) and pim(-), m = 1, ... , 1l allow us to adapt to the current dis-

tributions of examples in representation space. Namely, in our training, these allow

us to specifically target and reprimand contested neighbourhoods with large cluster

overlap. During training, we cache the losses of individual examples, from which we

compute the mean loss YI of each cluster I. We then choose pl(I) oc 2', and PIm(-)

as a uniform distribution. We remark that these choices work well in practice, but

have been made arbitrarily and perhaps can be improved.

Given our samples, we may proceed to construct a stochastic approximation of

our objective:

-(l) DD -log eIrd mI 2 (4.5)
MD S2&! >i j:(2#~~)e~~ d 12m=1 d=1 e~ 1 2

where we approximate the cluster means as 1 m = dI r and variances as

= EM_ M =E ZS= 1 |IrW - Zft| . During training, we backpropagate through this

objective, and the full CNN which gave rise to the representations.

COMPONENT #2: CLUSTER INDEX As mentioned above, we maintain for each

class a K-means index which captures its distribution in representation space during

training. We initialize each index with K-means++ (Arthur & Vassilvitskii, 2007),

and refresh it periodically. To attain the representations to be indexed, we pause

training and compute the forward passes of all inputs in the training set.

It may seem that freezing the training is unnecessarily computationally expensive.

Note that we also explored the alternative strategy of caching the representations of

each minibatch on-the-fly during training. However, we found that it is critical to

maintain the true neighbourhood structure where the representations are all computed

in the same stage of learning. We empirically observed that since the representation

space is changing continuously during training, indexing examples whose representa-

tions were computed in different times resulted in incorrect inference of neighbourhood

68

structure, which in turn irreparably damaged nearest impostor assessment.

IMPROVEMENT OF TRAINING EFFICIENCY The proposed approach offers a number

of benefits which compound to considerably enhance training efficiency, as can be

seen empirically in Section 4.4.1. First, one of the main criticisms of triplet-based

approaches is the cubic growth of the number of triplets. Manipulating entire clus-

ters of examples, on the other hand, significantly improves this complexity, as this

requires far fewer pairwise distance evaluations. Second, operating on entire cluster

neighbourhoods also permits information recycling: we may jointly separate all clus-

ters from one another at once, whereas an approach based on independent sampling

would require far more repetitions of the same examples. Finally, penalizing clusters

of points away from one another leads to a more coherent adjustment of each point,

whereas different triplet terms may not necessarily be consistent with one another.

4.3.3 Evaluation procedure

The evaluation procedure is consistent with the objective formulation: we assign the

label of each example x,, as function of its representation's softmax similarities to its

L closest clusters, say AD ... , 1 L. More precisely, we choose label c*, as

= arg max EJA 1: C(It)=c =2 , (4.6)

where o- is a running average of stochastic estimates & computed during training.

This can be thought of as "k-nearest-cluster" (kNC), a variant of a soft kNN clas-

sifier. This has the added benefit of reducing the complexity of nearest neighbour

evaluation from being a function of the number of examples to the number of clusters.

Here, the lengthscale o- autonomously characterizes local neighbourhood radius, and

as such implies how to sensibly choose L. In general, we found that performance

improves monotonically with L, as the soft classification is able to make use of ad-

ditional neighbourhood information. At some point, however, retrieving additional

nearest neighbours is clearly of no further utility, since these are much farther away

69

than the lengthscale defined by a. In practice we use L = 128 for all experiments in

this work.

4.3.4 Relation to existing models

TRIPLET Loss Our objective proposed in Equation 4.4 has the nice property that it

reduces to the familiar triplet loss under a particular set of assumptions. Specifically,

let us assume that we approximate each neighbourhood with a single impostor cluster,

i.e, M = 2. Let us further assume that we approximate the seed cluster with merely

D = 2 samples, and the impostor cluster with one. We further simplify by ignoring

the variance normalization. Our objective then exactly reduces to triplet loss for a

pair of triplets "symmetrized" for the two positive examples:

2

Y (0) = S {Iri - r2 i - I~r1 - r 211 + a (4.7)
d=1 d 2dJ2 d 12 1

NEIGHBOURHOOD COMPONENTS ANALYSIS Neighbourhood Components Analysis

(NCA) and its extensions (Goldberger et al., 2004; Salakhutdinov & Hinton, 2007;

Min et al., 2010) have been designed in a similar spirit to Magnet Loss. The NCA

objective is given by

CN 2n'C(r ,)=C(rne I2
~YNCA (0) =HZ-log ZN'ierfr 112 (4.8)

n=1 En'=1

However, this formulation does not address a number of concerns both in modeling

and implementation. As an example, it does not touch on minibatch sampling in

large datasets. Even if we maintain a nearest neighbour index, if we naively retrieve

the nearest neighbours for each example, they are all going to be of different classes

with high probability.

NEAREST CLASS MEAN Our approach shares many ideas with Nearest Class Mean

(Mensink et al., 2013), cleverly designed for scalable DML. In this approach, the mean

vectors 1A = , Zcg_)= x, = = 1,..., C of the examples in their raw input form are

70

computed and fixed for each class. A linear transformation W is then learned to

maximize the softmax distance of each example to the cluster center of its class:

1N -||Wxn -Wy&Cx)

YNCM (W) = - - log e - (49)
Nn=1 Ec=1 -Wn 2

The authors further generalize this to Nearest Class Multiple Centroids (NCMC),

where for each class, K centroids are computed with K-means. Note that these are

computed on the raw inputs, and are fixed prior to training; also, in this case, the

underlying map to representation space is a linear transformation rather than a full

CNN.

4.4 Experiments

We run all experiments on a cluster of Tesla K40M GPU's. All parametrized maps

f(-; 9) to representation space are chosen as GoogLeNet with batch normalization

(Ioffe & Szegedy, 2015a). We add an additional fully-connected layer to map to a

representation space of dimension 1024.

We find that it is useful to warm-start any DML optimization with weights of a

partly-trained a standard softmax classifier. It is important to not use weights of a

net trained to completion, as this would result in information dissipation and as such

defeat the purpose of pursuing DML in the first place. Hence, we initialize all DML

models with weights of a net trained on ImageNet (Russakovsky et al., 2015) for 3

epochs only. We augment all experiments with random input rescaling of up to 30%,

followed by jittering back to the original input size of 224 x 224. At test-time we

evaluate an input by averaging the outputs of 16 random samples drawn from this

augmentation distribution.

4.4.1 Fine-grained classification

We validate the classification efficacy of the learnt representations on a number of

popular fine-grained visual categorization tasks, including Stanford Dogs (Khosla

71

Approach Error

Angelova & Long 51.7%,
Gavves et al. 49.9%
Xie et al. 43.0%

Gavves et al. 43.0%
Qian et al. 30.9%

Softmax 26.6%
Triplet 35.8%
Magnet 24.9%

(a) Stanford Dogs.

Approach Error

Softmax 14.1%

Triplet 26.8%
Magnet 15.9%

(d) ImageNet Attributes.

10,

Approach Error

Angelova & Zhu 23.3%

Angelova & Long 19.6%
Murray & Perronnin 15.4%
Sharif Razavian et al. 13.2%
Qian et al. 11.6%

Softmax 11.2%
Triplet 17.0%
Magnet 8.6%

(b) Oxford 102 Flowers.

38.1 ' -
kNN

3 kNC
30 28.3

Magnet

p35.8

t

Triplet

329 I

Softmax

(e) Different metrics on Stauford Dogs.

Approach Error

Angelova & Zhu 49.2%
Parkhi et al. 46.0%
Angelova & Long 44.6%
Murray & Perronnin 43.2%
Qian et al. 19.6%

Softmax 11.3%
Triplet 13.5%
Magnet 10.6%

(c) Oxford-1IIT Pet.

Approach Error@1 Error@5

Softmax 30.9% 15.0%
Triplet 44.6% 23.4%
Magnet 28.6% 7.8%

(f) Hierarchy recovery on ImageNet At-
tributes.

Figure 4-4: (a)-(d) Comparison of test set errors of various state-of-the-art ap-

proaches on different fine-grained visual categorization datasets. The bottom three
results for each table were all attained by applying different objectives on exactly
the same architecture. (e) Evaluation of test errors on the Stanford Dogs dataset
under different metrics. (f) We explore whether each algorithm is able to recover a
latent class hierarchy, provided only coarse superclasses. We collapse random pairs of
classes of ImageNet Attributes onto the same label. We then train on the corrupted
labels, and report test errors on the original classes.

et al., 2011), Oxford-IIIT Pet (Parkhi et al., 2012) and Oxford 102 Flowers (Nilsback

& Zisserman, 2008) datasets. We also include results on ImageNet attributes, a

dataset described in Section 4.4.2.

We seek to compare optimal performances of the different model spaces, and so per-

form hyperparameter search on validation error generated by 3 classes of objectives:

a standard softmax classifier, triplet loss. and Magnet Loss. The hyperparameter

search setup. including optimal configurations for each experiment, is specified in full

detail in Appendix B.1. In general, for Magnet Loss we observed empirically that it

is beneficial to increase the number of clusters per minibatch to around A = 12 in

72

2 2-1 F Triplet
-'- Magnet

2 2

Ok 50k lok 150k Ok 20k 40k 60k Ok 100k 200k Ok 200k 400k

Pet Flowers Dogs ImageNet Attributes

Figure 4-5: Training curves for various experiments. For both triplet and Magnet

Loss objectives, the experiment with optinal hyperparaneter configuration for each

model space is presented. The red diamonds indicate the point in time in which the

triplet asymptotic error rate is achieved. It can be observed that Magnet Loss reaches

the same error in 5-30 times fewer iterations.

the cost of reducing the number of retrieved examples per cluster to D = 4. The

optimal gap has in general been a ~ 1, and the value of K varied as function of

dataset cardinality.

The classification results can be found in Table 4-4. We use soft kNN to eval-

uate triplet loss error and kNC (see Section 4.3.3) for Magnet Loss. However, for

completeness of comparison, in Figure 4-4(e) we present evaluations of all learnt rep-

resentations under both kNN and kNC.

It can be observed that Magnet Loss outperforms the traditional triplet loss by a

considerable margin. It is also able to surpass the standard softinax classifier in most

cases: while the margin is not significant, note that the true win here is in terms

of learning representations much more suitable for task transfer, as validated in the

following subsections.

In Figure 4-5., it can be seen that Magnet Loss reaches the triplet loss asymptotic

error rate 5-30 times faster. The prohibitively slow convergence of triplet loss has been

well-known in the comunity. Magnet Loss achieves this speedup as it mitigates some

of the training-time inefficiencies featured by triplet loss presented throughout Section

4.2 and the end of Section 4.3.2. For fairness of comparison, we remark that softinax

converges faster than Magnet: however, this comes at the cost of a less informative

representation.

73

U

Magnet

Manta-rays (in the deep)

Manta rays (with people)

Sharks (teeth)

Sharks (with other

LA

-1'-

I
Gazelles Impulas

fish)

Pot-pies

Sharks (frontal shots)

Figure 4-6: Visualization of t-SNE map for a typical Magnet representation. We

highlight interesting observations of the distributions of the learnt representations

splitting to repsect intra-class variance and inter-class similarity.

74

I

--

alas (with people)

Jaguars

-F-

Pizzas

Ii.I

Triplet

I

4.

Chee'tal s

Gazelles

JA Manta-rays

Figure 4-7: Visualization of t-SNE map for a typical triplet representation with en-

forcement of semantic similarity. Classes with similar examples are far from one

another, and no obvious local similarity can be found witinn individual classes.

75

Jaguar

Sharks

Impalas

Pzzas

Pot-pies

4.4.2 Attribute distribution

We expect Magnet to sculpt a more expressive representation, which enables similar

examples of different classes to be close together, and dissimilar examples of the same

class to be far apart; this can be seen qualitatively in Figure 4-2. In order to explore

this hypothesis quantitatively, after training is complete we examine the attributes

of neighbouring examples as a proxy for assessment of similarity. We indeed find the

distributions of these attributes to be more concentrated for Magnet.

We attain attribute labels from the Object Attributes dataset (Russakovsky &

Fei-Fei, 2010). This provides 25 attribute annotations for 90 classes of an updated

version of ImageNet, with about 25 annotated examples per class. Attributes include

visual properties such as "striped", "brown", "vegetation" and so on; examples of these

can be found in Figure 4-8(a). Annotations are assigned individually for each input,

which allows capturing intra-class variation and inter-class invariance.

We train softmax, triplet and Magnet Loss objectives on a curated dataset we refer

to as ImageNet Attributes. This dataset contains 116,236 examples, and comprises all

examples of each of the 90 ImageNet classes for which any attribute annotations are

available: in Appendix B.2 we describe it in detail. We emphasize we do not employ

any attribute information during training. At convergence, we measure attribute con-

centration by computing mean attribute precision as function of neighbourhood size.

Specifically, for each example and attribute, we compute over different neighbourhood

cardinalities the fraction of neighbours also featuring this attribute.

This result can be found in Figure 4-8(d). Magnet Loss outperforms both softmax

and triplet losses by a reasonable margin in terms of attribute concentration, with

consistent gains of 25-50% over triplet and 10-25% over softmax across neighbourhood

sizes. It may seem surprising that softmax surpasses triplet - an approach specifically

crafted for distance metric learning. However, note that while the softmax classifier

requires high relative projection onto the hyperplane associated with each class, it

leaves some flexibility for information retainment in its high-dimensional nullspace.

Triplet loss, on the other hand, demands separation based on an imprecise assessment

76

r 1.0
Softmax
Triplet

-Magnet

0 12' 22 2' 26 28

Neighbourhood size

(a) Attribute examples. (b) Magnet. (c) Softmax. (d) Attribute precision.

Figure 4-8: Attribute concentration properties. (a) Examples of images featuring

particular attributes. (b) & (c) The translucent underlying densities corre-

spond to the t-SNE visualizations presented in Figure 4-2. These are overlaid with

distributions of examples featuring the specified attributes, coloured in orange. Mag-

net clusters together examples of different classes but with similar attributes, whereas

softmax and triplet loss (not shown) do not. (d) Mean fraction of neighbours featur-

ing the same attributes as function of neighbourhood cardinality. Magnet consistently

outperforms softmax and triplet across neighbourhood sizes.

of similarity, resulting in poor proximity of similar examples of different classes.

Magnet's attribute concentration can also be observed visually in Figures 4-8(b)

and 4-8(c), presenting the t-SNE projections from Figure 4-2 overlaid with attribute

distribution. It can be seen qualitatively that the Magnet attributes are concentrated

in particular areas of space, irrespective of class.

4.4.3 Hierarchy recovery

In this experiment, we are interested to see whether each algorithm is able to recover

a latent class hierarchy, provided only coarse superclasses. To test this, we randomly

pair all classes of ImageNet Attributes, and collapse each pair under a single label. We

then train on the corrupted labels, and check whether the finer-grained class labels

may be recovered from the learnt representations.

The results can be found in Table 4-4(f). Magnet is able to identify intra-class

representation variation, an essential property for success in this task. Softmax also

achieves surprisingly competitive results, suggesting that meaningful variation is nev-

77

ertheless captured within the nullspace of its last layer. For triplet loss, on the other

hand, target neighbourhoods are designated prior to training, and as such it is not

able to adaptively discriminate finer structure within superclasses.

4.5 Discussion and Remaining Open Problems

In this work, we highlighted a number of difficulties in a class of DML algorithms,

and sought to address them. We validated the effectiveness of our approach under

a variety of metrics, ranging from classification performance to convergence rate to

attribute concentration.

Throughout this work, we anchored in place a number of parameters: we chose

the number of clusters K per class as uniform across classes, and refreshed our rep-

resentation index at a fixed rate. We believe that adaptively varying these during

training can enhance performance and facilitate computation.

Another interesting line of work would be to replace the density estimation and

indexing component with an approach more sophisticated than K-means. One natural

candidate would be a tree-based algorithm. This would enable more efficient and more

accurate neighbourhood retrieval.

78

Chapter 5

Spectral Representations for

Convolutional Neural Networks

5.1 Introduction

Convolutional neural networks (CNNs) (LeCun et al., 1989) have been used to achieve

unparalleled results across a variety of benchmark machine learning problems, and

have been applied successfully throughout science and industry for tasks such as

large scale image and video classification (Krizhevsky et al., 2012; Karpathy et al.,

2014). One of the primary challenges of CNNs, however, is the computational expense

necessary to train them. In particular, the efficient implementation of convolutional

kernels has been a key ingredient of any successful use of CNNs at scale.

Due to its efficiency and the potential for amortization of cost, the discrete Fourier

transform has long been considered by the deep learning community to be a natural

approach to fast convolution (Bengio & LeCun, 2007). More recently, Mathieu et al.

(2013); Vasilache et al. (2014) have demonstrated that convolution can be computed

significantly faster using discrete Fourier transforms than directly in the spatial do-

main, even for tiny filters. This computational gain arises from the convenient prop-

erty of operator duality between convolution in the spatial domain and element-wise

multiplication in the frequency domain.

In this work, we argue that the frequency domain offers more than a computa-

79

tional trick for convolution: it also provides a powerful representation for modeling

and training CNNs. Frequency decomposition allows studying an input across its

various length-scales of variation, and as such provides a natural framework for the

analysis of data with spatial coherence. We introduce two applications of spectral

representations. These contributions can be applied independently of each other.

SPECTRAL PARAMETRIZATION We propose the idea of learning the filters of CNNs

directly in the frequency domain. Namely, we parametrize them as maps of complex

numbers, whose discrete Fourier transforms correspond to the usual filter representa-

tions in the spatial domain.

Because this mapping corresponds to unitary transformations of the filters, this

reparametrization does not alter the underlying model. However, we argue that the

spectral representation provides an appropriate domain for parameter optimization,

as the frequency basis captures typical filter structure well. More specifically, we

show that filters tend to be considerably sparser in their spectral representations,

thereby reducing the redundancy that appears in spatial domain representations.

This provides the optimizer with more meaningful axis-aligned directions that can be

taken advantage of with standard element-wise preconditioning.

We demonstrate the effectiveness of this reparametrization on a number of CNN

optimization tasks, converging 2-5 times faster than the standard spatial representa-

tion.

SPECTRAL POOLING Pooling refers to dimensionality reduction used in CNNs to im-

pose a capacity bottleneck and facilitate computation. We introduce a new approach

to pooling we refer to as spectral pooling. It performs dimensionality reduction by

projecting onto the frequency basis set and then truncating the representation.

This approach alleviates a number of issues present in existing pooling strategies.

For example, while max pooling is featured in almost every CNN and has had great

empirical success, one major criticism has been its poor preservation of information

(Hinton, 2014b,a). This weakness is exhibited in two ways. First, along with other

80

stride-based pooling approaches, it implies a very sharp dimensionality reduction by

at least a factor of 4 every time it is applied on two-dimensional inputs. Moreover,

while it encourages translational invariance, it does not utilize its capacity well to

reduce approximation loss: the maximum value in each window only reflects very

local information, and often does not represent well the contents of the window.

In contrast, we show that spectral pooling preserves considerably more information

for the same number of parameters. It achieves this by exploiting the non-uniformity

of typical inputs in their signal-to-noise ratio as a function of frequency. For exam-

ple, natural images are known to have an expected power spectrum that follows an

inverse power law: power is heavily concentrated in the lower frequencies - while

higher frequencies tend to encode noise (Torralba & Oliva, 2003). As such, the elimi-

nation of higher frequencies in spectral pooling not only does minimal damage to the

information in the input, but can even be viewed as a type of denoising.

In addition, spectral pooling allows us to specify any arbitrary output map dimen-

sionality. This permits reduction of the map dimensionality in a slow and controlled

manner as a function of network depth. Also, since truncation of the frequency repre-

sentation exactly corresponds to reduction in resolution, we can supplement spectral

pooling with stochastic regularization in the form of randomized resolution.

Spectral pooling can be implemented at a negligible additional computational cost

in convolutional neural networks that employ FFT for convolution kernels, as it only

requires matrix truncation. We also note that these two ideas are both compatible

with the recently-introduced method of batch normalization (Ioffe & Szegedy, 2015b),

permitting even better training efficiency.

5.2 The Discrete Fourier Transform

The discrete Fourier transform (DFT) is a powerful way to decompose a spatiotem-

poral signal. In this section, we provide an introduction to a number of components

of the DFT drawn upon in this work. We confine ourselves to the two-dimensional

DFT, although all properties and results presented can be easily extended to other

81

]LII NIIIIII
7

E AWF/'2 y

1I 1 If"t li
T=n /flVAKIJrA

(a) DFT basis fhitiCt 01S. (b) Examples of input-transforin pairs. (c) Conj. Synun.

Figure 5-1: Properties of discrete Fourier transforms. (a) All discrete Fourier basis

funuctions of limp Size 8 x 8. Note the equivalence of some of these due to conjil-

gate sviietrv. (b) Eximples of iiput imiiages and their frequcy11(representatious,

presenited as log-amilitludes. The frequenc v miaps have beeni shifted to center the

DC component. Rays in the frequency domain correspold to spatial domain edges

aligied peripendiculalr to these. (c) Comj ugate synnnetry patterns for iputs with

odd (top) and even (bottom) dimensionalities. Orange: real-xvaihediess constraint.

Blue: 11o constrait. Gray: value fixed by conjugate symnmetry.

input diineiisioiis.

Given an input x E CA" (we address the constraint of real inputs in Subsec-

tion 5.2.1), its 2D DFT VI (x) E CxNi

V 1 e f ,I 1},Vw E {0, . ., N 11 .

The D FT is linear and unitary, and so its inverse transform is given by (-)=b(

nauiely the conjugate of the transform itself.

Intuitively, the DFT coefficients resulting from projections onto the differint fre-

qjiienicies can be thought of as measures of correlation of the input with basis ftilictions

of various length-scales. See Figure 5-1 (a) for a visualization of the DFT basis fune-

tions, and Figure 5-1(b) for examples of input-frequen(x map pairs.

The widespread deployment of the DFT can lie partially attriuiited to the devel-

opmct of the Fast Fourier Transform (FFT), a imainstay of signal processing and a

staditard coimpomenit of iost math libraries. The FFT is an elicient Implenentatuon

of the DFT with time complexity C) (AINlog (IN)).

82

r

T--1 N-

V/ ta - [1-

CONVOLUTION USING DFT One powerful property of frequency analysis is the

operator duality between convolution in the spatial domain and element-wise mul-

tiplication in the spectral domain. Namely, given two inputs x, f E RMxN, we may

write

F(x * f) = 9(x) G 9(f) (5.1)

where by * we denote a convolution and by 0 an element-wise product.

APPROXIMATION ERROR The unitarity of the Fourier basis makes it convenient for

the analysis of approximation loss. More specifically, Parseval's Theorem links the e2

loss between any input x and its approximation i to the corresponding loss in the

frequency domain:

ix - :lll = 1I,(x) - _)(i) . (5.2)

An equivalent statement also holds for the inverse DFT operator. This allows us

to quickly assess how an input is affected by any distortion we might make to its

frequency representation.

5.2.1 Conjugate symmetry constraints

In the following sections of the paper, we will propagate signals and their gradients

through DFT and inverse DFT layers. In these layers, we will represent the frequency

domain in the complex field. However, for all layers apart from these, we would like to

ensure that both the signal and its gradient are constrained to the reals. A necessary

and sufficient condition to achieve this is conjugate symmetry in the frequency domain.

Namely, for any transform y = F(x) of some input x, it must hold that

ymn = y(M-m)modM,(N-n)modN Vm E {,...,M- 1},Vn E {,...,N- 1}.

(5.3)

83

Thus, intuitively, given the left half of our frequency map, the diminished number of

degrees of freedom allows us to reconstruct the right. In effect, this allows us to store

approximately half the parameters that would otherwise be necessary. Note, however,

that this does not reduce the effective dimensionality, since each element consists of

real and imaginary components. The conjugate symmetry constraints are visualized

in Figure 5-1(c). Given a real input, its DFT will necessarily meet these. This

symmetry can be observed in the frequency representations of the examples in Figure

5-1(b). However, since we seek to optimize over parameters embedded directly in the

frequency domain, we need to pay close attention to ensure the conjugate symmetry

constraints are enforced upon inversion back to the spatial domain (see Subsection

5.2.2).

5.2.2 Differentiation

Here we discuss how to propagate the gradient through a Fourier transform layer.

This analysis can be similarly applied to the inverse DFT layer. Define x E RMxN

and y = 9(x) to be the input and output of a DFT layer respectively, and R : RMxN

a real-valued loss function applied to y which can be considered as the remainder of

the forward pass. Since the DFT is a linear operator, its gradient is simply the trans-

formation matrix itself. During back-propagation, then, this gradient is conjugated,

and this, by DFT unitarity, corresponds to the application of the inverse transform:

= -1 y) (5.4)

There is an intricacy that makes matters a bit more complicated. Namely, the con-

jugate symmetry condition discussed in Subsection 5.2.1 introduces redundancy. In-

specting the conjugate symmetry constraints in Equation (5.3), we note their enforce-

ment of the special case yoo E R for N odd, and yoo, y', YO, yyAN - R for N even.

For all other indices they enforce conjugate equality of pairs of distinct elements.

These conditions imply that the number of unconstrained parameters is about half

the map in its entirety.

84

5.3 Spectral Pooling

The choice of a pooling technique boils down to the selection of an appropriate set of

basis functions to project onto, and some truncation of this representation to establish

a lower-dimensionality approximation to the orjginal input. The idea behind spectral

pooling stems from the observation that the frequency domain provides an ideal

basis for inputs with spatial structure. We first discuss the technical details of this

approach, and then its advantages.

Spectral pooling is straightforward to understand and to implement. We as-

sume we are given an input x E RMxN, and some desired output map dimensionality

H x W. First, we compute the discrete Fourier transform of the input into the fre-

quency domain as y = 9(x) E CMxN, and assume that the DC component has been

shifted to the center of the domain as is standard practice. We then crop the fre-

quency representation by maintaining only the central H x W submatrix of frequen-

cies, which we denote as y E CHxW. Finally, we map this approximation back into

the spatial domain by taking its inverse DFT as k = 9 1 (yV) E RHxW. These steps

are listed in Algorithm 1. Note that some of the conjugate symmetry special cases

described in Subsection 5.2.2 might be broken by this truncation. As such, to ensure

that k is real-valued, we must treat these individually with TREATCORNERCASES,

which can be found in the supplementary material.

Figure 5-2 demonstrates the effect of this pooling for various choices of H x W.

Algorithm 1 Spectral pooling Algorithm 2 Spectral pooling back-

Input: Map x E RMxN, output size propagation

HxW Input: Gradient w.r.t output 9

Output: Pooled map x E RHxW Output: Gradient w.r.t input 9

1: Y +- ((--1: y+-(x) 2: i +- REMovEREDUNDANCY(i)
2: y + CROPSPECTRUM(y, H X W) 3: z +- PADSPECTRUM(i, M x N)

4: z +- RECOVERMAP(Z)

3: y +- TREATCORNERCASES(gV) 5: OR- - (z)

4: _q-7_'(y)

85

Max

pooling

Spectra
pooling,

Remaining
frequencies

4096 1024 256 64 16 1

Fioire 5-2: Approximations for difflelit pooling scheines. for different factors of di-

IlensioIlality reduction. Spectral pooling projects onto the Fourier basis and truncates

it as desired. This retains significantly more information and permits the selection of

any arbitrary output map diielsionality.

The back-propagation procedure is quite intuitive, and can be found in Algorithin

2 (REMOVEREDUNDANCY and RECOVERM1.AP can be found in the supplemn utary

material). In Subsection 5.2.2, we addressed the nuances of differentiating through

DFTi and inverse DVFT layers. Apart from these, the last component left undiscussed

Is differentiatioil through the truncation of the frequency matrix. but this (ORr(sponds

to a simple zero-paddinig of the gradient maps to the appropriate dimensions.

in practce the DIFTs are tHi c omputational)ottleiecks of spectral pooling. How-

ever, we 11o1(t that in convolutiona.l neural networks that employ FFTs for convolution

coimpuitation, spectral pooling can be implemented at a negligible additional conmpu-

tational cost, since the DFT is performed regardless.

We proceed to discuss a number of properties of spectral pooling, which we then

test comnpreliensively ii Section 5.5.

5.3.1 Information preservation

Spectral pootling can significauty increase the amount of retained informnation rela-

tive to max-pooling in two distict ways. First, its representation maintains umore

86

information for the same number of degrees of freedom. Spectral pooling reduces

the information capacity by tuning the resolution of the input precisely to match the

desired output dimensionality. This operation can also be viewed as linear low-pass

filtering and it exploits the non-uniformity of the spectral density of the data with

respect to frequency. That is, that the power spectra of inputs with spatial struc-

ture, such as natural images, carry most of their mass on lower frequencies. As such,

since the amplitudes of the higher frequencies tend to be small, Parseval's theorem

from Section 5.2 informs us that their elimination will result in a representation that

minimizes the E 2 distortion after reconstruction.

Second, spectral pooling does not suffer from the sharp reduction in output dimen-

sionality exhibited by other pooling techniques. More specifically, for stride-based

pooling strategies such as max pooling, the number of degrees of freedom of two-

dimensional inputs is reduced by at least 75% as a function of stride. In contrast,

spectral pooling allows us to specify any arbitrary output dimensionality, and thus

allows us to reduce the map size gradually as a function of layer.

5.3.2 Regularization via resolution corruption

We note that the low-pass filtering radii, say RH and Rw, can be chosen to be smaller

than the output map dimensionalities H, W. Namely, while we truncate our input

frequency map to size H x W, we can further zero-out all frequencies outside the

central RH x RW square. While this maintains the output dimensionality H x W of

the input domain after applying the inverse DFT, it effectively reduces the resolution

of the output. This can be seen in Figure 5-2.

This allows us to introduce regularization in the form of random resolution reduc-

tion. We apply this stochastically by assigning a distribution pR() on the frequency

truncation radius (for simplicity we apply the same truncation on both axes), sam-

pling from this a random radius at each iteration, and wiping out all frequencies

outside the square of that size. Note that this can be regarded as an application of

nested dropout (Rippel et al., 2014) on both dimensions of the frequency decomposi-

tion of our input. In practice, we have had success choosing pR(-) = U[Hnin,H](), i.e.,

87

a uniform distribution stretching from some minimum value all the way up to the

highest possible resolution.

5.4 Spectral Parametrization of CNNs

Here we demonstrate how to learn the filters of CNNs directly in their frequency

domain representations. This offers significant advantages over the traditional spatial

representation, which we show empirically in Section 5.5.

Let us assume that for some layer of our convolutional neural network we seek to

learn filters of size H x W. To do this, we parametrize each filter f E CHxW in our

network directly in the frequency domain. To attain its spatial representation, we

simply compute its inverse DFT as E(f) E RHxw. From this point on, we proceed

as we would for any standard CNN by computing the convolution of the filter with

inputs in our minibatch, and so on.

The back-propagation through the inverse DFT is virtually identical to the one

of spectral pooling described in Section 5.3. We compute the gradient as outlined in

Subsection 5.2.2, being careful to obey the conjugate symmetry constraints discussed

in Subsection 5.2.1.

We emphasize that this approach does not change the underlying CNN model in

any way - only the way in which it is parametrized. Hence, this only affects the way

the solution space is explored by the optimization procedure.

5.4.1 Leveraging filter structure

This idea exploits the observation that CNN filters have a very characteristic structure

that reappears across data sets and problem domains. That is, CNN weights can

typically be captured with a small number of degrees of freedom. Represented in the

spatial domain, however, this results in significant redundancy.

The frequency domain, on the other hand, provides an appealing basis for filter

representation: characteristic filters (e.g., Gabor filters) are often very localized in

their spectral representations. This follows from the observation that filters tend to

88

(a) Filters over tine. (b) Sparsity patterns. (c) Momna ota distribuitioiis.

Figure 5-3: Learning dymicl s of CNNs witi spectral paranictrization. The his-

tograis Ihave) been produced ifter 10 epochs of training on CITAR-10 by each

method. but are similar throughout. (a) Progression over several epochs of filters

parametrized in the freqIucity x doinani. Each pair of columns correspoods to the

spectral pa (rametrizatioi of a filter and its inverse transform to the spatial domain.

Filter representations tend to be. more local ii the Fourier basis. (b) Sparsity patterns

for the different ipiaiitriziations. Spectral representations tend to be cotisiderablv

sparser. (c) Distributions of inomenta across parameters for CNNs trained with and

without spectral parametrization. In the spectrail paranetrizatioi considerablv fewer

paramiuters are uplated.

featiure very specific length-scales and orient ations. Hence, they tend to have nonzero

support in a narrow set of frequency components. This hypothesis can be observed

qualitatively it Figure 5-3(a) and quantitatively in Figure 5-3(b).

EInpiricily, in Section 5.5 we observe that spectral represeiitations of filters leads

to a convergence speedup by 2-5 tinies. We remark that, had we trained our network

with standard stochastic gradient descent, the iiiearitv of diffirentiation and param-

etc'r update Would have resulted in exactly the saime filters regardless of whether they

were represented in the spatial or frequency domain during training (this is trite for

any invertible iniar transformation of the parameter space).

However, as discussed, this paranietrization corresponds to a rotation to a more

meaningfml axis alignment, where the number of rclevant elements has been sigmiif-

icantly rceduced. Since modern optimizers implement update rules that consist of

adaptive clement-wise rescalng, they are able to leverage this axis alignment by

making large updates to a small number of elements. This can be scen quantitatively

in Figure 5-3(c), where the optiilizer Adam (IKingmna & Ba, 2015), in this case

only touches a small nmmber of clemnents in its updates.

There exist a number of exteiisioins of the above approach we believe Would be

89

I

Fraction of parameters kept

(a) Approximation loss for the ImageNet
validation set.

Method CIFAR-10 CIFAR-100

Stochastic pooling 15.13% 41.51%
Maxout 11.68% 38.57%
Network-in-network 10.41% 35.68%
Deeply supervised 9.78% 34.57%

Spectral pooling 8.6% 31.6%

90

(b) Classification rates.

Figure 5-4: (a) Average information dissipation for the ImageNet validation set as

a function of fraction of parameters kept. This is measured in (, error normalized

by the input norm. The red horizontal line indicates the best error rate achievable

by max pooling. (b) Test errors on CIFAR-10/ 100 without data augmentation of

the optimal spectral pooling architecture, as compared to current state-of-the-art

approaches: stochastic pooling (Zeiler & Fergus, 2013), Maxout (Goodfellow et al.,

2013), network-in-network (Lin et al., 2013), and deeply-supervised nets (Lee et al.,

2014).

quite promising in future work; we elaborate on these in the discussion.

5.5 Experiments

We demonstrate the effectiveness of spectral representations in a number of different

experiments. We ran all experiments on code optimized for the Xeon Phi coprocessor.

We used Spearmint (Snock et al., 2015) for Bayesian optimization of hyperparameters

with 5-20 concurrent evaluations.

5.5.1 Spectral pooling

INFORMATION PRESERVATION We test the information retainment properties of

spectral pooling on the validation set of IniageNet (Russakovsky et al., 2015). For

the different pooling strategies we plot the average approximation loss resulting from

pooling to different dimensionalitics. This can be seen in Figure 5-4. We observe the

two aspects discussed in Subsection 5.3.1: first, spectral pooling permits significantly

better reconstruction for the same number of parameters. Second, for max pooling,

the only knob controlling the coarseness of approximation is the stride, which re-

sults in severe quantization and a constraining lower bound on preserved information

(marked in the figure as a horizontal red line). In contrast, spectral pooling permits

the selection of any output dimensionality, thereby producing a smooth curve over all

frequency truncation choices.

CLASSIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS We test spectral

pooling on different classification tasks. We hyperparametrize and optimize the fol-

lowing CNN architecture:

(C332m -+ SP4 t mjX LHmJjm=1 -Ci"32 -+ C'0/'0 -+ GA -+ Softmax

(5.5)

Here, by CF we denote a convolutional layer with F filters each of size S, by SPts

a spectral pooling layer with output dimensionality S, and GA the global averaging

layer described in Lin et al. (2013). We upper-bound the number of filters per layer

as 288. Every convolution and pooling layer is followed by a ReLU nonlinearity.

We let Hm be the height of the map of layer m. Hence, each spectral pooling layer

reduces each output map dimension by factor -y E (0, 1). We assign frequency dropout

distribution PR(.; m, a, = U[cmHmj,Hm](-) for layer m, total layers M and with

cm(a, f) = a + M(#8 - a) for some constants a, ,3 E R. This parametrization can be

thought of as some linear parametrization of the dropout rate as a function of the

layer.

We perform hyperparameter optimization on the dimensionality decay rate

E [0.25, 0.851, number of layers M E {1, ... , 15}, resolution randomization hyperpa-

rameters a, # E [0, 0.8], weight decay rate in [10-5, 10-2], momentum in [1-0.11-5, 1-

0.12] and initial learning rate in [0.1', 0.1]. We train each model for 150 epochs and

anneal the learning rate by a factor of 10 at epochs 100 and 140. We intentionally

use no dropout nor data augmentation, as these introduce a number of additional

hyperparameters which we want to disambiguate as alternative factors for success.

Perhaps unsurprisingly, the optimal hyperparameter configuration assigns the

91

- -7 j.
4Sp4ctral

Deep Generic

Filter Speedup
Architecture size factor

Deep (5.7) 3 x 3 2.2
Deep (5.7) 5 x 5 4.8
Generic (5.6) 3 x 3 2.2
Generic (5.6) 5 x 5 5.1
Sp. Pooling (5.5) 3 x 3 2.4
Sp. Pooling (5.5) 5 x 5 4.8

Sp. Pooling

(a) Training curves. (b) Speedup factors.

Figure 5-5: Optimization of CNNs via spectral parametrization. All experiments

include data augmentation. (a) Training curves for the various experiments. The
remainder of the optimization past the matching point is marked in light blue. The
red diamonds indicate the relative epochs in which the asymptotic error rate of the
spatial approach is achieved. (b) Speedup factors for different architectures and filter

sizes. A non-negligible speedup is observed even for tiny 3 x 3 filters.

slowest possible layer map decay rate 7 = 0.85. It selects randomized resolution

reduction constants of about a 0.30, 3 = 0.15, momentum of about 0.95 and initial

learning rate 0.0088. These settings allow us to attain classification rates of 8.6%

on CIFAR-10 and 31.6% on CIFAR-100. These are competitive results among ap-

proaches that do not employ data augmentation: a comparison to state-of-the-art

approaches from the literature can be found in Table 5-4(b).

5.5.2 Spectral parametrization of CNNs

We demonstrate the effectiveness of spectral parametrization on a number of CNN

optimization tasks, for different architectures and for different filter sizes. We use the

notation MP7 to denote a max pooling layer with size S and stride T, and FCF is a

fully-connected layer with F filters.

The first architecture is the generic one used in a variety of deep learning papers,

such as Krizhevsky et al. (2012); Snock et al. (2012); Krizhevsky (2009); Kingma &

92

Ba (2015):

c - MPx3 -+ C2+ MP2x FC102 4 -+ FC5 1 2 _+ Softmax (5.6)

The second architecture we consider is the one employed in Snoek et al. (2015),

which was shown to attain competitive classification rates. It is deeper and more

complex:

96 96 2. 192 192 192 2 192 10/100 - A- ota

+C3 0$ -+ MPn -+C3a$ -+*C3 -+ MP -C X1G A
4

SoftmaxC3 X3 _ 3X3 _+M3X3 3X3 + 3X3 + 3x3 _+M3X3 lxi 11_+CXi

(5.7)

The third architecture considered is the spectral pooling network from Equation

5.5. To increase the difficulty of optimization and reflect real training conditions,

we supplemented all networks with considerable data augmentation in the form of

translations, horizontal reflections, HSV perturbations and dropout.

We initialized both spatial and spectral filters in the spatial domain as the same

values; for the spectral parametrization experiments we then computed the Fourier

transform of these to attain their frequency representations. We optimized all net-

works using the Adam (Kingma & Ba, 2015) update rule, a variant of RMSprop that

we find to be a fast and robust optimizer.

The training curves can be found in Figure 5-5(a) and the respective factors of

convergence speedup in Table 5-5. Surprisingly, we observe non-negligible speedup

even for tiny filters of size 3 x 3, where we did not expect the frequency representation

to have much room to exploit spatial structure.

5.6 Discussion and Remaining Open Problems

In this work, we demonstrated that spectral representations provide a rich spectrum

of applications. We introduced spectral pooling, which allows pooling to any de-

sired output dimensionality while retaining significantly more information than other

pooling approaches. In addition, we showed that the Fourier functions provide a

93

suitable basis for filter parametrization, as demonstrated by faster convergence of the

optimization procedure.

One possible future line of work is to embed the network in its entirety in the fre-

quency domain. In models that employ Fourier transforms to compute convolutions,

at every convolutional layer the input is FFT-ed and the element-wise multiplica-

tion output is then inverse FFT-ed. These back-and-forth transformations are very

computationally intensive, and as such it would be desirable to strictly remain in

the frequency domain. However, the reason for these repeated transformations is the

application of nonlinearities in the forward domain: if one were to propose a sensible

nonlinearity in the frequency domain, this would spare us from the incessant domain

switching.

In addition, one significant downfall of the DFT approach is its difficulty in han-

dling finite impulse response filtering. In particular, its projection onto the various

frequencies involves global sums over the entire input. Hence, the input domain has

perfect spatial locality and no spectral locality, while the Fourier domain has perfect

spectral locality and no spatial locality. An intermediate solution we believe would

be very effective is employing wavelets, which provide a middle ground between the

two approaches. While wavelets have been employed throughout machine learning

with great promise (Bruna & Mallat, 2013; Oyallon et al., 2013), to our knowledge

they have not been used in an adaptive way to learn CNNs.

94

Chapter 6

Scalable Bayesian Optimization

Using Deep Neural Networks

6.1 Introduction

In the last few years, the field of machine learning has seen unprecedented growth

due to a new wealth of data, increases in computational power, new algorithms,

and a plethora of exciting new applications. As researchers tackle more ambitious

problems, the models they use are also becoming more sophisticated. However, the

growing complexity of machine learning models inevitably comes with the introduc-

tion of additional hyperparameters. These range from design decisions such as the

shape of a neural network architecture, to optimization parameters such as learning

rates, to regularization hyperparameters such as weight decay. Proper setting of these

hyperparameters is critical for performance on difficult problems.

There are many methods for optimizing over hyperparameter settings, ranging

from simplistic procedures like grid or random search Bergstra & Bengio (2012), to

more sophisticated model-based approaches using random forests Hutter et al. (2011)

or Gaussian processes Snoek et al. (2012). Bayesian optimization is a natural frame-

work for model-based global optimization of noisy, expensive black-box functions. It

offers a principled approach to modeling uncertainty, which allows exploration and

exploitation to be naturally balanced during the search. Perhaps the most commonly

95

used model for Bayesian optimization is the Gaussian process (GP) due to its sim-

plicity and flexibility in terms of conditioning and inference.

However, a major drawback of GP-based Bayesian optimization is that inference

time grows cubically in the number of observations, as it necessitates the inversion of a

dense covariance matrix. For problems with a very small number of hyperparameters,

this has not been an issue, as the minimum is often discovered before the cubic scaling

renders further evaluations prohibitive. As the complexity of machine learning models

grows, however, the size of the search space grows as well, along with the number of

hyperparameter configurations that need to be evaluated before a solution of sufficient

quality is found. Fortunately, as models have grown in complexity, computation has

become significantly more accessible and it is now possible to train many models in

parallel. A natural solution to the hyperparameter search problem is to therefore

combine large-scale parallelism with a scalable Bayesian optimization method. The

cubic scaling of the GP, however, has made it infeasible to pursue this approach.

The goal of this work is to develop a method for scaling Bayesian optimization,

while still maintaining its desirable flexibility and characterization of uncertainty. To

that end, we propose the use of neural networks to learn an adaptive set of basis

functions for Bayesian linear regression. We refer to this approach as Deep Networks

for Global Optimization (DNGO). Unlike a standard Gaussian process, DNGO scales

linearly with the number of function evaluations-which, in the case of hyperparam-

eter optimization, corresponds to the number of models trained-and is amenable to

stochastic gradient training. Although it may seem that we are merely moving the

problem of setting the hyperparameters of the model being tuned to setting them

for the tuner itself, we show that for a suitable set of design choices it is possible to

create a robust, scalable, and effective Bayesian optimization system that generalizes

across many global optimization problems.

We demonstrate the effectiveness of DNGO on a number of difficult problems,

including benchmark problems for Bayesian optimization, convolutional neural net-

works for object recognition, and multi-modal neural language models for image cap-

tion generation. We find hyperparameter settings that achieve competitive with state-

96

of-the-art results of 6.37% and 27.4% on CIFAR-10 and CIFAR-100 respectively, and

BLEU scores of 25.1 and 26.7 on the Microsoft COCO 2014 dataset using a single

model and a 3-model ensemble.

6.2 Background and Related Work

6.2.1 Bayesian Optimization

Bayesian optimization is a well-established strategy for the global optimization of

noisy, expensive black-box functions Mockus et al. (1978). For an in-depth review, see

Lizotte (2008), Brochu et al. (2010) and Osborne et al. (2009). Bayesian optimization

relies on the construction of a probabilistic model that defines a distribution over

objective functions from the input space to the objective of interest. Conditioned

on a prior over the functional form and a set of N observations of input-target pairs

V = { (x,, yn)} , the relatively cheap posterior over functions is then queried to

reason about where to seek the optimum of the expensive function of interest. The

promise of a new experiment is quantified using an acquisition function, which, applied

to the posterior mean and variance, expresses a trade-off between exploration and

exploitation. Bayesian optimization proceeds by performing a proxy optimization

over this acquisition function in order to determine the next input to evaluate.

Recent innovation has resulted in significant progress in Bayesian optimization,

including elegant theoretical results Srinivas et al. (2010); Bull (2011); de Freitas et al.

(2012), multitask and transfer optimization Krause & Ong (2011); Swersky et al.

(2013); Bardenet et al. (2013) and the application to diverse tasks such as sensor set

selection Garnett et al. (2010), the tuning of adaptive Monte Carlo Mahendran et al.

(2012) and robotic gait control Calandra et al. (2014b).

Typically, GPs have been used to construct the distribution over functions used

in Bayesian optimization, due to their flexibility, well-calibrated uncertainty, and an-

alytic properties Jones (2001); Osborne et al. (2009). Recent work has sought to

improve the performance of the GP approach through accommodating higher dimen-

97

sional problems Wang et al. (2013); Djolonga et al. (2013), input non-stationarities Snoek

et al. (2014) and initialization through meta-learning Feurer et al. (2015). Random

forests, which scale linearly with the data, have also been used successfully for algo-

rithm configuration by Hutter et al. (2011) with empirical estimates of model uncer-

tainty.

More specifically, Bayesian optimization seeks to solve the minimization problem

x* = arg min f(x) , (6.1)
xEX

where we take X to be a compact subset of RK. In our work, we build upon the stan-

dard GP-based approach of Jones (2001) which uses a GP surrogate and the expected

improvement acquisition function Mockus et al. (1978). For the surrogate model hy-

perparameters E, let o 2 (x; 8) = E(x, x; 8) be the marginal predictive variance of

the probabilistic model, [t(x; D, 0) be the predictive mean, and define

-Y(x) f(xbt) - p(x; D, E)u7(x) =)(6.2) o- (x; D, E))

where f(Xbest) is the lowest observed value. The expected improvement criterion is

defined as

aEI(x; D,) = (6.3)

a-(x; D, 9) [y(x)<(y(x)) + (-y(x); 0, 1)

Here <D(-) is the cumulative distribution function of a standard normal, and AT(-; 0, 1)

is the density of a standard normal. Note that numerous alternate acquisition func-

tions and combinations thereof have been proposed Kushner (1964); Srinivas et al.

(2010); Hoffman et al. (2011), which could be used without affecting the analytic

properties of our approach.

98

6.2.2 Bayesian Neural Networks

The idea of applying Bayesian methods to neural networks has a rich history in

machine learning MacKay (1992); Hinton &.van Camp (1993); Buntine & Weigend

(1991); Neal (1995); De Freitas (2003). The goal of Bayesian neural networks is to

uncover the full posterior distribution over the network weights in order to capture

uncertainty, to act as a regularizer, and to provide a framework for model compar-

ison. The full posterior is, however, intractable for most forms of neural networks,

necessitating expensive approximate inference or Markov chain Monte Carlo simula-

tion. More recently, full or approximate Bayesian inference has been considered for

small pieces of the overall architecture. For example, in similar spirit to this work,

Lizaro-Gredilla & Figueiras-Vidal (2010); Hinton & Salakhutdinov (2008) and Ca-

landra et al. (2014a) considered inference over just the last layer of a neural network.

Other examples can be found in Kingma & Welling (2014); Rezende et al. (2014) and

Mnih & Gregor (2014), where a neural network is used in a variational approximation

to the posterior distribution over the latent variables of a directed generative neural

network.

6.3 Adaptive Basis Regression with

Deep Neural Networks

A key limitation of GP-based Bayesian optimization is that the computational cost of

the technique scales cubically in the number of observations, limiting the applicability

of the approach to objectives that require a relatively small number of observations to

optimize. In this work, we aim to replace the GP traditionally used in Bayesian opti-

mization with a model that scales in a less dramatic fashion, but retains most of the

GP's desirable properties such as flexibility and well-calibrated uncertainty. Bayesian

neural networks are a natural consideration, not least because of the theoretical re-

lationship between Gaussian processes and infinite Bayesian neural networks Neal

(1995); Williams (1996). However, deploying these at a large scale is very computa-

99

tionally expensive.

As such, we take a pragmatic approach and add a Bayesian linear regressor to the

last hidden layer of a deep neural network, marginalizing only the output weights of

the net while using a point estimate for the remaining parameters. This results in

adaptive basis regression, a well-established statistical technique which scales linearly

in the number of observations, and cubically in the basis function dimensionality.

This allows us to explicitly trade off evaluation time and model capacity. As such,

we form the basis using the very flexible and powerful non-linear functions defined by

the neural network.

First of all, without loss of generality and assuming compact support for each input

dimension, we scale the input space to the unit hypercube. We denote by 0(-) =

[01(0-. ., #D()]T the vector of outputs from the last hidden layer of the network,

trained on inputs and targets V : {(x., y")} ' C x R. We take these to be our

set of basis functions. In addition, define <1 to be the design matrix arising from

the data and this basis, where <Dnd = #d(xn) is the output design matrix, and y the

stacked target vector.

These basis functions are parameterized via the weights and biases of the deep

neural network, and these parameters are trained via backpropagation and stochastic

gradient descent with momentum. In this training phase, a linear output layer is

also fit. This procedure can be viewed as a maximum a posteriori (MAP) estimate

of all parameters in the network. Once this "basis function neural network" has

been trained, we replace the MAP-parameterized output layer with a Bayesian linear

regressor that captures uncertainty in the weights. See Section 6.3.1 for a more

elaborate explanation of this choice.

The predictive mean pt(x; 8) and variance ou(x; 8) of the model are then given

by (see Bishop, 2006)

p(x; D, 8) mTO(x) + R2(x) , (6.4)

0I(x; D, 8) = O(x)TK"#(x) +- (6.5)
#3

100

6000r

5000
C

00
4000

CU

(3000

o 2000U

1000

0 500 1000 1500
Number of Observations

2000

Figure 6-1: A comparison of the time per suggested experiment for our method

compared to the state-of-the-art GP based approach Snoek et al. (2014) on the six

dimensional Hartmann function. We ran each algorithm on the same 32 core system

with 80GB of RAM five times and plot the mean and standard deviation.

where

m =3K--IbTy (E RD

K =, B1b'< + I(E RD xD

(6.6)

(6.7)

Here, 71(x) is a prior mean function which is described in Section 6.3.1, and y =

y - q(x). In addition, a, 3 E- E are regression model hyperparameters. We integrate

out a and /3 using slice sampling Neal (2000) according to the methodology of Snoek

et al. (2012) over the marginal likelihood, which is given by

D)
log p(y I X 3) = log a + log /3

2 2
N log (2Tr)
2

/3 1
_ 0(y - M)2 - -rnMTM - - log K.

2 2 2
(6.8)

It is clear that the computational bottleneck of this procedure is the inversion of

K. However, note that the size of this matrix grows with the output dimensionality D,

rather than the number of observations N as in the GP case. This allows us to scale

to significantly miore observations than with the GP as demonstrated in Figure 6-1.

101

-- DNGO (Neural Network)
1-'I Spearmint (GP)

- . I

tj

N

6.3.1 Model details

Network architecture

A natural concern with the use of deep networks is that they often require signifi-

cant effort to tune and tailor to specific problems. One can consider adjusting the

architecture and tuning the hyperparameters of the neural network as itself a difficult

hyperparameter optimization problem. An additional challenge is that we aim to cre-

ate an approach that generalizes across optimization problems. We found that design

decisions such as the type of activation function used significantly altered the perfor-

mance of the Bayesian optimization routine. For example, in Figure 6-2 we see that

the commonly used rectified linear (ReLU) function can lead to very poor estimates

of uncertainty, which causes the Bayesian optimization routine to explore excessively.

Since the bounded tanh function results in smooth functions with realistic variance,

we use this nonlinearity in this work; however, if the smoothness assumption needs

to be relaxed, a combination of rectified linear functions with a tanh function only

on the last layer can also be used in order to bound the basis.

In order to tune any remaining hyperparameters, such as the width of the hidden

layers and the amount of regularization, we used GP-based Bayesian optimization.

For each of one to four layers we ran Bayesian optimization using the Spearmint Snoek

et al. (2014) package to minimize the average relative loss on a series of benchmark

global optimization problems. We tuned a global learning rate, momentum, layer

sizes, f 2 normalization penalties for each set of weights and dropout rates Hinton

et al. (2012b) for each layer. Interestingly, the optimal configuration featured no

dropout and very modest 12 normalization. We suspect that dropout, despite having

an approximate correction term, causes noise in the predicted mean resulting in a

loss of precision. The optimizer instead preferred to restrict capacity via a small

number of hidden units. Namely, the optimal architecture is a deep and narrow

network with 3 hidden layers and approximately 50 hidden units per layer. We use

the same architecture throughout all of our empirical evaluation, and this architecture

is illustrated in Figure 6-2(d).

102

2.0 0.0 \ TanH

0.5 0.5

o4 0.0 TanH

-1.0~

-1.5 .2

-2.0 -- -2.0 --

.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.0 0.6 1, .0 0.0 0.2 0.4 0.6 0.8

(a) TanH Units (b) ReLU -- TanH Units (c) ReLU Units (W)

Figure 6-2: A comparison of the predictive mean and uncertainty learned by the model

when using 6-2(a) only tanh. 6-2(c) only rectified linear (ReLU) activation functions

or 6-2(b) ReLU's but a tanh on the last hidden layer. The shaded regions correspond

to standard deviation envelopes around the mean. The choice of activation function

significantly nodifies the basis functions learned by the model. Although the ReLU,
which is the standard for deep neural networks, is highly flexible, we found that its

unbounded activation can lead to extremely large uncertainty estimates. Subfigure 6-

2(d) illustrates the overall architecture of the DNGO model. Dashed lines correspond

to weights that are inarginalized.

Marginal likelihood vs MAP estimate

The standard empirical Bayesian approach to adaptive basis regression is to maxi-

mize the marginal likelihood with respect to the parameters of the basis (see Equa-

tion 6.8), thus taking the model uncertainty into account. However, in the context of

our method, this requires evaluating the gradient of the marginal likelihood, which

re(iuires inverting a D x D matrix on each update of stochastic gradient descent.

As this makes the optimization of the net significantly slower, we take a pragmatic

approach and optimize the basis using a point estimate and apply the Bayesian lin-

ear regression layer post-hoc. We found that both approaches gave qualitatively and

enpirically similar results., and as such we in practice employ the more efficient one.

Quadratic Prior

One of the advantages of Bayesian optimization is that it, provides natural avenues

for incorporating prior information about the objective function and search space.

For example. when choosing the boundaries of the search space, a typical assumption

has been that the optimal solution lies sonmewhere in the interior of the input space.

103

Experiment # Evals SMAC TPE Spearmint DNGO

Branin (0.398) 200 0.655 0.27 0.526 0.13 0.398 0.00 0.398 0.00
Hartmann6 (-3.322) 200 -2.977 0.11 -2.823 0.18 -3.3166 0.02 -3.319 0.00
Logistic Regression 100 8.6 0.9 8.2 0.6 6.88 0.0 6.89 i 0.04
LDA (On grid) 50 1269.6 2.9 1271.5 3.5 1266.2 0.1 1266.2 0.0
SVM (On grid) 100 24.1 0.1 24.2 0.0 24.1 0.1 24.1 0.1

Table 6.1: Evaluation of DNGO on global optimization benchmark problems versus
scalable (TPE, SMAC) and non-scalable (Spearmint) Bayesian optimization methods.

All problems are minimization problems. For each problem, each method was run 10
times to produce error bars.

However, by the curse of dimensionality, most of the volume of the space lies very

close to its boundaries. Therefore, we select a mean function 77(x) (see Equation 6.4)

to reflect our subjective prior beliefs that the function is coarsely approximated by a

convex quadratic function centered in the bounded search region, i.e.,

rf() = A + (x - c)TA(x - c) (6.9)

where c is the center of the quadratic, A is an offset and A a diagonal scaling matrix.

We place a Gaussian prior with mean 0.5 (the center of the unit hypercube) on c,

horseshoe Carvalho et al. (2009) priors on the diagonal elements Akk Vk E {1, ... , K}

and integrate out b, A and c using slice sampling over the marginal likelihood.

The horseshoe is a so-called one-group prior for inducing sparsity and is a some-

what unusual choice for the weights of a regression model. Here we choose it because

it 1) has support only on the positive reals, leading to convex functions, and 2) it

has a large spike at zero with a heavy tail, resulting in strong shrinkage for small

values while preserving large ones. This last effect is important for handling model

misspecification as it allows the quadratic effect to disappear and become a simple

offset if necessary.

104

6.3.2 Incorporating input space constraints

Many problems of interest have complex, possibly unknown bounds, or exhibit unde-

fined behavior in some regions of the input space. These regions can be characterized

as constraints on the search space. Recent work Gelbart et al. (2014); Snoek (2013);

Gramacy & Lee (2010) has developed approaches for modeling unknown constraints

in GP-based Bayesian optimization by learning a constraint classifier and then dis-

counting expected improvement by the probability of constraint violation.

More specifically, define c,, c {0, 1} to be a binary indicator of the validity of

input x,. Also, denote the sets of valid and invalid inputs as V = {(xa, y) c, = 1}

and I = {(x,, y,) I c, = 0}, respectively. Note that D := V U I. Lastly, let [be

the collection of constraint hyperparameters. The modified expected improvement

function can be written as

acEI (x; D, E8, I') = aE (X; V, E)P[c = 1 Ix, D,1]

In this work, to model the constraint surface, we similarly replace the Gaussian

process with the adaptive basis model, integrating out the output layer weights:

P[c = 1x, D, Q] =

(6.10)
]P[c = 11x, D, w, 4] P(w; 4I)dw .

In this case, we use a Laplace approximation to the posterior. For noisy con-

straints we perform Bayesian logistic regression, using a logistic likelihood function

for P [c = 1 x, D, w, Q]. For noiseless constraints, we replace the logistic function

with a step function.

6.3.3 Parallel Bayesian Optimization

Obtaining a closed form expression for the joint acquisition function across multiple

inputs is intractable in general Ginsbourger & Riche (2010). However, a successful

Monte Carlo strategy for parallelizing Bayesian optimization was developed in Snoek

105

et al. (2012). The idea is to marginalize over the possible outcomes of currently run-

ning experiments when making a decision about a new experiment to run. Following

this strategy, we use the posterior predictive distribution given by Equations 6.4 and

6.5 to generate a set of fantasy outcomes for each running experiment which we then

use to augment the existing dataset. By averaging over sets of fantasies, we can

perform approximate marginalization when computing El for a candidate point. We

note that this same idea works with the constraint network, where instead of com-

puting marginalized EI, we would compute the marginalized probability of violating

a constraint.

To that end, given currently running jobs with inputs {xj}J_ 1 , the marginalized

acquisition function aMCEI(*; D, E, 'Q) is given by

aMCEI(X; D, {Xj}U 1 , e, 4) =

J aCEI(x; D U f(xj, yj)}I', E, Ti)

x P [{c, yj}_1 ID, {x}_ 1] dy1... dyndc1 ... dc,.

When this strategy is applied to a GP, the cost of computing El for a candidate

point becomes cubic in the size of the augmented dataset. This restricts both the

number of running experiments that can be tolerated, as well as the number of fantasy

sets used for marginalization. With DNGO it is possible to scale both of these up to

accommodate a much higher degree of parallelism.

Finally, following the approach of Snoek et al. (2012) we integrate out the hyper-

parameters of the model to obtain our final integrated acquisition function. For each

iteration of the optimization routine we pick the next input, x*, to evaluate according

to

x* =arg max aMCEI(x; D, {xjJ}) (6.11)
X

106

-Tr
-- N

(a) "A person riding a wave in the ocean." (b) "A bird sitting on top ol a field.- (c) "A horse is
riding a horse."

Figure 6-3: Sample test images and generated captions from the best LBL model on
the COCO 2014 dataset. The first two captions sensibly describe the contents of their
respective images, while the third is offensively inaccurate.

where

OMCEI(X; P { X
(6.12)

CEsI(X; D, {x I j 1, E), 41) d 0d T. (.2

6.4 Experiments

6.4.1 HPOLib Benchmarks

In the literature. there exist several other methods for model-based optimization.

Among these, the most popular variants in machine learning are the random forest-

based SMAC procedure Hutter et al. (2011) and the tree Parzen estimator (TPE) Bergstra

et al. (2011). These are faster to fit thIan a Gaussian process and scale more grace-

fully with large datasets, but this comes at the cost of a more heuristic treatment

of uncertainty. By contrast, DNGO provides a balance between scalability and the

Bayesian narginalization of model parameters and hyperparameters.

To demonstrate the effectiveness of our approach, we compare DNGO to these

scalable itodel-based optimization variants, as well as the input-warped Gaussian

process method of Snoek et al. (2014) oit the benchmark set of continuous problems

from the HPOLib package Eggensperger et al. (2013). As Table 6.1 shows, DNGO

107

Method Test BLEU

Human Expert LBL 24.3
Regularized LSTM 24.3
Soft-Attention LSTM 24.3
10 LSTM ensemble 24.4
Hard-Attention LSTM 25.0

Single LBL 25.1
2 LBL ensemble 25.9
3 LBL ensemble 26.7

Table 6.2: Image caption generation results using BLEU-4 on the Microsoft COCO
2014 test set. Regularized and ensembled LSTM results are reported in Zaremba
et al. (2015). The baseline LBL tuned by a human expert and the Soft and Hard
Attention models are reported in Xu et al. (2015). We see that ensembling our top
models resulting from the optimization further improves results significantly. We
noticed that there were distinct multiple local optima in the hyperparameter space,
which may explain the dramatic improvement from ensembling a small number of
models.

significantly outperforms SMAC and TPE, and is competitive with the Gaussian

process approach. This shows that, despite vast improvements in scalability, DNGO

retains the statistical efficiency of the Gaussian process method in terms of the number

of evaluations required to find the minimum.

6.4.2 Image Caption Generation

In this experiment, we explore the effectiveness of DNGO on a practical and expensive

problem where highly parallel evaluation is necessary to make progress in a reasonable

amount of time. We consider the task of image caption generation using multi-modal

neural language models. Specifically, we optimize the hyperparameters of the log-

bilinear model (LBL) from Kiros et al. (2014) to optimize the BLEU score of a

validation set from the recently released COCO dataset Lin et al. (2014). From our

experiments, each evaluation of this model took an average of 26.6 hours.

We optimize learning parameters such as learning rate, momentum and batch

size; regularization parameters like dropout and weight decay for word and image

representations; and architectural parameters such as the context size, whether to

108

use the additive or multiplicative version, the size of the word embeddings and the

multi-modal representation size 1. The final parameter is the number of factors, which

is only relevant for the multiplicative model. This adds an interesting challenge, since

it is only relevant for half of the hyperparameter space. This gives a total of 11

hyperparameters. Even though this number seems small, this problem offers a number

of challenges which render its optimization quite difficult. For example, in order to

not lose any generality, we choose broad box constraints for the hyperparameters; this,

however, renders most of the volume of the model space infeasible. In addition, quite a

few of the hyperparameters are categorical, which introduces severe non-stationarities

in the objective surface.

Nevertheless, one of the advantages of a scalable method is the ability to highly

parallelize hyperparameter optimization. In this way, high quality settings can be

found after only a few sequential steps. To test DNGO in this scenario, we optimize

the log-bilinear model with up to 800 parallel evaluations.

Running between 300 and 800 experiments in parallel (determined by cluster avail-

ability), we proposed and evaluated approximately 2500 experiments-the equivalent

of over 2700 CPU days-in less than one week. Using the BLEU-4 metric, we opti-

mized the validation set performance and the best LBL model found by DNGO out-

performs recently proposed models using LSTM recurrent neural networks Zaremba

et al. (2015); Xu et al. (2015) on the test set. This is remarkable, as the LBL is a

relatively simple approach. Ensembling this top model with the second and third

best (under the validation metric) LBL models resulted in a test-set BLEU score 2

of 26.7, significantly outperforming the LSTM-based approaches. We noticed that

there were distinct multiple local optima in the hyperparameter space, which may

explain the dramatic improvement from ensembling a small number of models. We

show qualitative examples of generated captions on test images in Figure 6-3.

'Details are provided in the supplementary material.
2We have verified that our BLEU score evaluation is consistent across reported results. We used

a beam search decoding for our test predictions with the LBL model.

109

Method CIFAR-10 CIFAR-100

Maxout 9.38% 38.57%
DropConnect 9.32% N/A
Network in network 8.81% 35.68%
Deeply supervised 7.97% 34.57%
ALL-CNN 7.25% 33.71%

Tuned CNN 6.37% 27.4%

Table 6.3: We use our algorithm to optimize validation set error as a function of
various hyperparameters of a convolutional neural network. We report the test errors
of the models with the optimal hyperparameter configurations, as compared to current
state-of-the-art results.

6.4.3 Deep Convolutional Neural Networks

Finally, we use DNGO on a pair of highly competitive deep learning visual object

recognition benchmark problems. We tune the hyperparameters of a deep convolu-

tional neural network on the CIFAR-10 and CIFAR-100 datasets. Our approach is to

establish a single, generic architecture, and specialize it to various tasks via individ-

ualized hyperparameter tuning. As such, for both datasets, we employed the same

generic architecture inspired by the configuration proposed in Springenberg et al.

(2014), which was shown to attain strong classification results. This architecture is

detailed in the supplementary.

For this architecture, we tuned the momentum, learning rate, f 2 weight decay

coefficients, dropout rates, standard deviations of the random i.i.d. Gaussian weight

initializations, and corruption bounds for various data augmentations: global per-

turbations of hue, saturation and value, random scalings, input pixel dropout and

random horizontal reflections. We optimized these over a validation set of 10,000 ex-

amples drawn from the training set, running each network for 200 epochs. See Figure

6-4 for a visualization of the hyperparameter tuning procedure.

We performed the optimization on a cluster of Intel@ Xeon PhiTM coprocessors,

with 40 jobs running in parallel using a kernel library that has been highly optimized

for efficient computation on the Intelg Xeon PhiTM coprocessor3 . For the optimal

3Available at https: //github. com/orippel/micmat

110

1 .0

-- Current best
0.9

0 .8 - - - --
0

0.7-

0
0.6

0 4

0 50 100

Iteration #

Figure 6-4: Validation errors on CIFAR-100 corresponding to different hyperparain-

eter configurations as evaluated over time. These are represented as a planar his-

tograi, where the shade of each bin indicates the total count, within it. The current

best validation error discovered is traced in black. This projection demonstrates the

exl)lorationl-versus-exploitation paradigm of Bayesian Optimization, in which the al-

goritlun trades off visiting unexplored parts of the space, and focusing oi parts which

show promise.

hyperparameter configuration found. we ran a final experiment for 350 epochs on the

entire training set, and report its result.

Our optimal models for CIFAR-10 and CIFAR-100 achieved test errors of 6.37%

and 27.4% respectively. A comparison to published state-of-the-art results Goodfellow

et al. (2013); Wan et al. (2013); Lin et al. (2013); Lee et al. (2014); Springenberg et al.

(2014) can be found in Table 6.3.

A comprehensive overview of the setup, the architecture. the tuning and the op-

timum configuration can be found in the supplementary material.

6.5 Discussion and Remaining Open Problems

In this paper., we introduced deep networks for global optimization, or DNGO, which

enables efficient optimization of noisy, expensive black-box functions. While this

1odel maintains desirable properties of the GP such as tractability and principled

management of uncertainty, it greatly improves its scalability from cubic to linear

as a function of the number of observations. We demonstrate that while this model

111

allows efficient computation, its performance is nevertheless competitive with existing

state-of-the-art approaches for Bayesian optimization. We demonstrate empirically

that it is especially well suited to massively parallel hyperparameter optimization.

While adaptive basis regression with neural networks provides one approach to the

enhancement of scalability, other models may also present promise. One promising

line of work, for example by Nickson et al. (2014), is to introduce a similar methodol-

ogy by instead employing the sparse Gaussian process as the underlying probabilistic

model Snelson & Ghahramani (2005); Titsias (2009); Hensman et al. (2013).

112

Chapter 7

High-Dimensional Probability

Estimation with Deep Density Models

7.1 Introduction

Many core machine learning tasks are concerned with density estimation and manifold

discovery. Probabilistic graphical models are a dominating approach for constructing

sophisticated density estimates, but they often present computational difficulties in

practice. For example, undirected models, such as the Boltzmann machine (Smolen-

sky, 1986; Hinton et al., 2006) are able to achieve compact and efficiently-computed

latent variable representations at the cost of only providing unnormalized density es-

timates. Directed belief networks (Pearl, 1988; Neal, 1992; Adams et al., 2010), on

the other hand, enable one to specify a priori marginals of hidden variables and are

easily normalized, but require costly inference procedures. Bayesian nonparametric

density estimation (e.g., Escobar & West (1995); Rasmussen (2000); Adams et al.

(2009)) is another flexible approach, but it often requires costly inference procedures

and does not typically scale well to high-dimensional data.

Manifold learning provides an alternative way to implicitly characterize the den-

sity of data via a low-dimensional embedding, e.g., locally-linear embeddding (Roweis

& Saul, 2000), IsoMap (Tenenbaum ct al., 2000), the Gaussian process latent vari-

able model (Lawrence, 2005), kernel PCA (Sch6lkopf et al., 1998), and t-SNE (van der

113

Maaten & Hinton, 2008). Typically, however, these methods have emphasized visual-

ization as the primary motivation. A notable exception is the autoencoder neural net-

work (Cottrell et al., 1987; Hinton & Salakhutdinov, 2006), which seeks embeddings

in representation spaces that themselves can be high dimensional. Unfortunately,

the autoencoder does not have a clear probabilistic interpretation (although see Rifai

et al. (2012) for a discussion).

Some approaches, such as manifold Parzen windows (Vincent & Bengio, 2002),

have attempted to tackle the combined problem of density estimation and manifold

learning directly, but have faced difficulties due to the curse of dimensionality. Other

approaches, such as the Bayesian GP-LVM (Titsias & Lawrence, 2010), characterize

the manifold implicitly in terms of a nonlinear mapping from a representation space to

the observed space. To define a coherent probabilistic model, however, it is necessary

to find an invertible map between these spaces so that the density of a datum can be

evaluated in the latent space without integrating over the pre-image. It has proven

difficult to flexibly parameterize the space of such invertible maps, however, let alone

find a transformation that results in a tractable density on the representation space.

Independent components analysis (Bell & Sejnowski, 1995) and the related idea of

a density network (MacKay & Gibbs, 1997) are examples of bijective models that

exploit invertible linear transformations; these, however, have rather limited expres-

siveness. DiffeoMap (Walder & Schdlkopf, 2008) establishes a bijection close to a

lower-dimensional subspace, and then projects to it. Other approaches, such as the

the back-constrained GP-LVM (Lawrence & Candela, 2006) attempt to approximate

this bijection.

In this work, we introduce the deep density model (DDM), an approach that

bridges manifold discovery and density estimation. We exploit ideas from deep learn-

ing to introduce a rich and flexible class of bijective transformations of the observed

space. We optimize over these transformations to obtain a map under which the im-

plied distribution on the representation space has an approximately factorized form

with known marginals. The invertibility of the map ensures that measure is not col-

lapsed across the transformation, and as such, the determinant of the Jacobian can

114

be computed. This leads to fully-normalized probability densities without a partition

function.

The combination of rich bijective transformations with density estimation en-

ables us to explore a variety of modeling directions for high-dimensional data. As

the approach is generative, we can easily sample data from a trained model with-

out Markov chain Monte Carlo (MCMC). We present a variety of applications to

the CIFAR and MNIST datasets, for proof-of-concept. The deep density model also

provides new possibilities for supervised learning by building Bayesian classifiers that

have well-calibrated class-conditional probabilities. This additionally permits to ex-

ploit densities of unlabeled data to perform unsupervised learning, by constructing

mixtures of models and training them coherently with expectation maximization.

In developing the deep density model, we also provide insight into a variety of

fundamental concepts for latent variable models. Using information theoretic tools,

we identify important connections between sparsity and the independence of the la-

tent dimensions. These connections allow finding a map leads to an approximately

factorized latent distribution. By understanding the distribution of the data in rep-

resentation space and the transformation that gives rise to it, we can characterize

the entropy of the distribution over data in the observed space. This enables making

informed choices in model selection.

7.2 Bijections and Normalized Densities

We are interested in learning a distribution over data in a high-dimensional space 3(C

RK. We denote this (unknown) distribution as py(-). An axiomatic assumption in

machine learning is that the data contain structure, and this corresponds to py(-)

distribution having most of its probability mass on a lower-dimensional, but very

complicated, manifold in 0. Tractably parametrizing the space of such manifolds

and then fitting the resulting distributions to data is a significant challenge.

Similarly, studying this distribution directly in the observed space presents both

theoretical and computational difficulties. Instead, we consider how the data might be

115

the result of a transformation from an unobserved representation space X C RK. We

denote the distribution on this space as px(-), and we assume the observed data arise

from a transformation f : X -- ". We assume that the latent distribution px(-)

has a simple factorized form:

K

px(X) =lpx (xk), (7.1)
k=1

where the marginal factors px, (-) have a simple and known univariate form.

We further make the assumption that f (-) is bijective and that f -1(-) is available

analytically. In this case, the probability density for a point y E 3 can be computed:

K

PY (y) =fPXk([f(y]k) .f) (7.2)
k=1

In this paper, we introduce the deep density model, which discovers rich bijective

transformations to map from simple latent distributions into complex observed den-

sities. By optimizing over a large and flexible class of such bijective transformations,

it is possible to discover structure in high-dimensional data sets while still having a

manageable, normalized density estimator.

Bijectivity is critical for ensuring that the density in Eq. (7.2) is normalized. This

bijectivity is in contrast to many neural network approaches to latent representation

where the latent space is often smaller (for an information bottleneck in, e.g., an

autoencoder) or larger (for an overcomplete representation) than the observed space.

When the representation space is smaller, then f(-) cannot be surjective and so

multiple points in 3(may map to the same point in X, leading to overestimates of

the density. In the overcomplete case, we also sacrifice bijectivity since f -'(-) cannot

be surjective; in other words, the image of W under f 1 (-) will not span X. As such,

px(-) will have support beyond f- 1(3). That is, the latent normalization includes

mass that appears in X \ { f 1 (3) }. However, taking this mass into account is a

very challenging problem, whose difficulty unfortunately increases with the richness

116

7.3.2 Divergence Penalty: Sculpting the Latent Marginals

In order to fit the deep density model to data, it is necessary to specify a measure of

distance between the empirical distribution and the model distribution. We achieve

this via a divergence penalty, which forces the model to distribute the mass of the data

in the representation space so as to be similar to a distribution chosen a priori. This

construction has several advantages: it 1) results in a known, fixed distribution on the

representation space that can be used t6 generate fantasy data, 2) enables sparsity to

be enforced as a constraint rather than a penalty weighed against the reconstruction

cost, and 3) combats overfitting by explicitly requiring that some of the data have low

probability under the model. This third advantage is subtle, but critical: some data

must live in the tail of the distribution, in contrast to the maximum of the posterior

which is simply a weighing of the MLE against the mode of the prior. See Figure 7-1

for a comparison of distributions produced by a various regularization techniques.

Concretely, we assume that the representation space is a unit hypercube, i.e.,

= [0, 1]K. As before, we assume there are N data {yI}N_1, which (for a given ,)

are mapped into X to give {xn = g 1 (yn)}f1 . Ideally, for representation dimen-

sion k E 1, ... , K, the divergence penalty would measure the difference between the

marginal empirical distribution

N

Pxk(x) = N (x - [xn]k) (7.7)
n=1

and a target univariate distribution q(-) that we define. In practice, we approxi-

mate Pxk (-) by finding the best fit of a tractable parametric family and then comput-

ing the symmetrized Kullback-Liebler divergence:

T (p(-) II q(.)) = D(p(-) II q(.)) + D(q(-) |p(-)) , (7.8)

119

maps the observed data into the representation space. This function will be optimized

to imbue the latent distribution px(-) with the properties outlined in Section 7.2; the

necessity of g,,(-) will be expanded upon in Subsection 7.3.4. g*,(-) is composed

of J layers, and the j-th layer of g ,(-) has Kj hidden units (with Ki = K) and

parameters ri and -y. We denote the parameters for g as 1 := UJ {T,'yj} and

-use the notational shortcuts above to write

g*(y) = Oj-1Srj,, (y). (7.5)

7.3.1 Regularizing the Transformations

We will train the model on data by minimizing an objective composed of several

parts:

DIVERGENCE PENALTY 'D('Q): This determines the fit of the current encoding

transformation. It forces the marginal densities of the empirical distribution of the

representation-space data to match a target distribution of our choice, by penalizing

divergence from it.

INVERTIBILITY MEASURE 1(8): This ensures the invertibility of fe(-) by penal-

izing poorly-conditioned transformations.

RECONSTRUCTION Loss R(8, *): This jointly penalizes the encoder g',(-) and

decoder fe(-) to ensure that gp(y) f 1 (y) on the data.

Each of these participates in the overall objective given by:

C(E, T) = [L'P(0) + pTI(A) + y1zR(E, I) , (7.6)

where p, /p, p E R are the weights of each term. We will examine each of these

terms in more detail in the proceeding sections.

118

7.3.2 Divergence Penalty: Sculpting the Latent Marginals

In order to fit the deep density model to data, it is necessary to specify a measure of

distance between the empirical distribution and the model distribution. We achieve

this via a divergence penalty, which forces the model to distribute the mass of the data

in the representation space so as to be similar to a distribution chosen a priori. This

construction has several advantages: it 1) results in a known, fixed distribution on the

representation space that can be used to generate fantasy data, 2) enables sparsity to

be enforced as a constraint rather than a penalty weighed against the reconstruction

cost, and 3) combats overfitting by explicitly requiring that some of the data have low

probability under the model. This third advantage is subtle, but critical: some data

must live in the tail of the distribution, in contrast to the maximum of the posterior

which is simply a weighing of the MLE against the mode of the prior. See Figure 7-1

for a comparison of distributions produced by a various regularization techniques.

Concretely, we assume that the representation space is a unit hypercube, i.e.,

X = [0, 1]K. As before, we assume there are N data {y,}N 1, which (for a given ,)

are mapped into X to give {xn = g', (yn)}n-. Ideally, for representation dimen-

sion k E 1, ... , K, the divergence penalty would measure the difference between the

marginal empirical distribution

N

px,(x) - 6(x - [xnjk) (7.7)
n=1

and a target univariate distribution q(-) that we define. In practice, we approxi-

mate PXk(-) by finding the best fit of a tractable parametric family and then comput-

ing the symmetrized Kullback-Liebler divergence:

T (p(-) II q(.)) = D(p(-) II q(.)) + D(q(-) p(-)) , (7.8)

119

where

D(p(-) jq(-)) = p(x) logP(x) dx. (7.9)
JX q(x)

Since, in this case the representation space is the unit hypercube, we choose our

objective distribution to be a member of the Beta family:

q(x; a,,3) = F(a+(3) - (7.10)

Given the data representations {xn} 1 , we estimate the empirical distribution of

each dimension with a Beta distribution, using moment-matching to approximate its

parameters:

&k Lk [k (1- A - (7.11)

Ak) = (1 - -Ak (7.12)

where Is and &2 are the sample mean and variance, respectively. We note that a

Beta distribution with parameter a < 1 produces a very sharp peak at 0, and as such

allows to pursue sparsity in distribution (under the assumption that elements of small

magnitude cannot be distinguished from each other).

With these in hand, we get a closed-form expression for our divergence penalty:

T (iPXk 0 (I) I (q a) [0 b(&) - V4'(a)]I + (,3 - i3) [0 C3) - 7P (0)] (7.13)

- c + - [V)(& +) -O(a +3)] , (7.14)

where 0 (z) = d log F(z)/dz is the digamma function.

Furthermore, for each example, we impose an example divergence penalty, denoted

as px, (-), which penalizes the distance between our objective distribution and the

empirical distribution over the elements of that particular example:

120

Finally, our total divergence penalty is

1K 1N

K = T x-Tq(-))i+ (T q())
k=1 n=1

Sparsity in Distribution

The traditional pursuit of sparsity entails the application of an Li-type regularization

that directly penalizes the activations in the representation space. This has several

undesirable properties. First, the penalty does not differentiate between the cases

where the activated units are distributed evenly among examples, and where a fixed

set of units is always activated at all examples while others never are. Furthermore,

it is discomforting that, in the limit of small reconstruction cost in the objective func-

tion, the regularization term is optimized if and only if all examples are identically

mapped to the same point, namely zero. This forces all the activations to be small in

order to have some of them vanish; it artificially forces the activation distribution to

be contained in a small region around zero. Another implication of direct activity pe-

nalization is that we must search the parameter space of the regularization coefficient

in order to attain our desired sparsity structure.

Instead of inducing sparsity directly, we achieve it in distribution, across exam-

ples. In practice, this arises from penalizing the KL-divergence between the empirical

distribution - the actual distribution in the representation space for the given set

of observations - and an appropriately-chosen target distribution q(-), which has a

peak at 0. The difference between this and the traditional L1 approach to sparsity

can be understood by considering the optimization problem as the dualization of the

sparsity constraints. In the case of an Li-type regularization, these constraints di-

rectly bound the space under the prescribed distance metric. In the L1 case, we thus

have a situation with two different points on the same contour of these constraints,

one of which a more desirable of a solution than the other. On the other hand, the

constrains that emerge from the divergence penalization are imposed within the prob-

ability simplex. The advantage is that a contour of these constraints corresponds to

121

a locus of distributions with similar sparsity structures and thus similar desirability.

7.3.3 Invertibility: condition number penalty

Invertibility of fe is critical to providing a normalized density. A standard autoen-

coder contracts volumes around observed examples only, due to the reconstruction

penalty approximating an invertible map at the observations. A true bijection, how-

ever, will guarantee conservation of volume not just at the data, but also at points

we have never seen before. This will allow computation of the determinant of the

Jacobian of f9 (-), and precisely specify how probability mass is reshuffled by the

transformation. To ensure invertibility of the transformation, we must ensure the in-

vertibility of each layer. As the nonlinear activation functions are fixed, invertibility

is determined by the condition numbers of the flm matrices in fe(-). We therefore

introduce a regularization term that ensures invertibility:

I(s) = 1 log (7.15)

Here, Amax(A) and Amin(A) are the maximum and minimum eigenvalues of A. In

this case, the curse of dimensionality becomes a blessing of dimensionality: in high

dimensions, not only orthogonality is easily attained, it is difficult to escape. We find

that in practice the invertibility requirement is easily satisfied, and does not constrain

the algorithm at all.

7.3.4 Reconstruction and the independence of latent dimen-

sions

Since we now have the ability to dictate the marginal distributions in the repre-

sentation space, we can shed light on the connection between entropy, sparsity and

independence as a function of the transformation to the representation space. In or-

der to attain a tractable distribution in the representation space, we must eliminate

dependencies between the latent dimensions. We refer to this process as diversifica-

122

Empirical KEmpirical histogram
U15 Ihistorgram '20 Objective distribution

-0 I0 -DI0- 10

0 5 N NI10

E Empirical E EE PIhistorg ram 0
0d .5s 00 0.5 1 0 0.5 1

(a) No regularization (b) LI regularization (c) Divergence penaliza-
tion

Figure 7-1: Histograms of the empirical distribution at j)x (), k = 1 with the specified
methods of regularization, upon training on MNIST. The objective distribution was
taken as Beta (-; 0.02, 0.2).

tion, as it reduces the overlap of information learnt by distinct dimensions; see the

effects of this process in Figure 7-2.

Diversification arises naturally when considering the effect of simultaneously in-

creasing sparsity in the latent representation, while decreasing the entropy of the

target inarginals. The reconstruction penalty demands that information be preserved

in the representation space. However, as the entropy decreases, the information ca-

pacity of the marginals decreases it is necessary for the dimensions of the latent

distribution to become iiore independent in order to reduce redundancy and con-

tinue to reconstruct successfully. Hence, we increase sparsitvy by limiting the capacity

of the encoder, until we get to the point of minimum marginal entropy under sufficient

conservation of information (which we measure by reconstruction of the observations).

At this point, we expect the marginals to be approximately independent.

In the second line below, notice that we may write the observed space entropy

in terms of the representation entropy and a term that accounts for the contraction

of volumes under the transformation. We then write the joint entropy in terms of

the marginal entropies and the mutual information information between the joint

123

distribution and the independent marginal factorization:

W(py()) = -jpy(y)logpy(y)dy

= Wi(px(-)) + E [log a(
K K -

= E (px ()) - D(f pxk(-) Ipx(-)) + Ex [log Or' (7.16)
k=1 k=1

The latent dimensions are independent if and only if the mutual information is

zero, and as such, we seek to minimize it. The entropy in the observed space is fixed,

but we have control of the marginal entropies, and we can decrease Er log a)

by placing an information bottleneck on f(-). Thus, by minimizing both these terms,

we can minimize latent dependencies.

To that end, we approximate

Ex log (.) log af. (7.17)
OY . E ay

Note that an inherent property of the sigmoid nonlinearity is its asymptotic flat-

ness as its output approaches zero. As such, the decoder f 0 becomes more unable to

distinguish between points as their magnitude decreases. Thus, for each representa-

tion dimension, by increasing the a parameter of our objective distribution q(-; a, 1),

we can shift more probability mass towards zero: this not only decreases the marginal

entropies Z _W ?(px,(-)), but also increases the information bottleneck. We add that

the flatness of the sigmoid still does not imply true sparsity: a deep transformation

can distinguish between small but nonzero values, and as such "undo" the sparsity

effect-information is not gone, only bit-shifted. As such, in order to ensure true

information loss in the neighbourhood of zero, we also introduce a threshold to the

encoder, that kills any representation element less than some e > 0; namely, we use

the encoder Eg4.(y)>eg9(y)-

124

0.6 0.7 0.8 0.9
Sparsity

(a) (b)

Figure 7-2:
function of

Effects of diversification. (a) Decrease of first-order dependencies as

sparsity. (b) Generations from the model by sampling independently
from the latent marginals. First row: generations from a model with high-entropy

marginals Beta (-; 0.02. 0.2) with strong dependence: images are incoherent. Second

row: generations from a model with diversified marginals with a final distribution

Beta (-: 0.004, 0.2).

Entropy characterization

A direct consequence of the above is our ability to now place an upper bound on

+(py(-)), and, once the mutual information is minimized, to characterize it. This

iow allows us to make informed choice of a representation space -for exaumple., we

understand the interplay between the latent dimensionality and sparsity. Minimiz-

ing the mutual information in the way demonstrated above corresponds to selecting

this space to be maximally sparse under the constraint of retaining the informnation

encapsulated in the input examples.

We furthermore note that the entropy of model can be thought of as the "effective

number of configurations" that data drawn from its distribution can take. As such,

it governs how mass is allocated between the training examples and out-of-sample

data: thus, the diversification procedure described dictates the generalizability of the

model in a very transparent way.

On why we need g,,(-)

We can now understand the motivation for introducing g,(.) even with a bijective

map. We need g, (.) to induce points in the observed space to be close together in 3,

both to control the information capacity as well as to determine the miarginals in 9.

125

0.3

2 0.25

0.2
0

0.15

0.1

On the other hand, fe(-) should not expand measure in mapping from X back to 9;

this ensures that there is an information bottleneck even under bijectivity. However,

asking fe(-) and fl (-) to serve this double purpose is contradictory, as one function

exactly undoes the contraction of measure performed by the other function. Further-

more, g,(-) is helpful from a computational point of view. In the process of shaping

the latent distribution, we must define our requirements as penalties on X, which

we proceed to back-propagate. Since asymptotic flatness of fe(-) means asymptotic

steepness of f 1 (-), performing numerical optimization on this function-let alone

demanding representation points to be clustered in this asymptotically steep regime,

as the divergence penalty requires-is clearly numerically unstable.

7.4 Training

We train the model on a GPU cluster. In cases of continuous input dimensions, we

pre-process the data by whitening and normalizing it. We additionally use PCA to

reduce the dimensionality of CIFAR.

In the pretraining stage, we recursively train single-layer deep density models with

stochastic gradient descent, where we take the representation space examples of one

iteration as the observed space examples of the next.

In the fine-tuning stage, we optimize the objective in Eq. (7.6) by performing

block coordinate descent: we iterate through the layers, and for each layer we take

a step to minimize the objective as a function only of that layer's parameters. Since

different gradient magnitudes of distinct layers are not mixed here, this side-steps the

problem of having the gradient exponentially decay during back-propagation.

The optimization procedure is designed to have few free parameters: most are

actively adapted in the process of optimization. The step size is chosen adaptively

via an inexact Armijo's rule line search. Exact line search on the overall objective is

computationally expensive and not possible using minibatches of data. Secondly, the

coefficients z, piv, pn are adapted to maintain a specified ratio of gradient magni-

tudes, as the step direction is a mixture of the various penalties and is thus dictated

126

by the relative proportions of their gradients.

We sprinkle masking noise onto the inputs to attain robust solutions, as presented

in Vincent et al. (2008). We also add momentum, but implicitly: we define a window

size, and sweep it across the shuffled indices of the training examples, in increments

that are a fraction of the window size. As such, each example will be presented in

several minibatches in a row, but with each minibatch still introducing new training

examples into the objective. We found this implicit momentum technique gives the

algorithm a more stable convergence.

7.4.1 Distribution sequencing and initialization

Enforcing the divergence penalty immediately after initialization results in a highly

nonconvex and thus a very challenging optimization problem. The diversification pro-

cedure often terminates with an objective distribution Beta (.; a, 3) with a < 1. As

such, once the algorithm settles near a solution whose empirical distribution in the

representation space takes this shape, it will be very difficult for it to "reshuffle" the

representation data to attain an alternative solution also with the same distribution.

To that end, instead of penalizing directly with the final objective distribution, we

penalize through a family of distributions qj (.) = Beta (-; a3 ,#3) over iterations j,

where we have ao,/3o > 1 as an "easy" initial problem, and then have the parameter

sequences converge as aj -+ a,#8j -+ #. The transitions between consecutive ele-

ments in these sequences are also adaptive: the objective distribution parameters are

updated once the current empirical distribution is sufficiently close to the objective

distribution.

In addition, we choose the sequence of hyperparameters such that = a -

E [Beta (-; a, 3)], as maintaining a constant expectation improves stability. In accor-

dance with this, we initialize the biases as log (2), which similarly gives rise to a

consistent initial expectation. In order to initialize the weight matrices to satisfy the

invertibility constraint, we select them to be random orthonormal matrices, with a

scaling such that the representation distribution approximately matches in variance

the initial objective distribution Beta(-; ao, 0o).

127

Dataset MNIST CIFAR-10
Training examples 3301.5 -41.8

Test examples (TE) 3343.7 -45.5
Test examples (TE) - 63.9 (TE) - 1.9
rotated by 900

TB with 10% of
elmet corrupe (TE) - 310.6 (TE) - 123.1

elements corrupted .

Table 7.1: Mean log-probabilities of points in the observed space. The test examples
are assigned similar probability as the training examples; the rotated test examples are
assigned slightly less probability than the test examples; and the corrupted examples
are assigned significantly lower probability. Both models were taken to have 3 layers.

7.5 Empirical Results

In this section, we examine the properties of the model and learning algorithm on

benchmark data: the MNIST digits (60,000 28 x 28 binary handwritten numerals)1

and the CIFAR-10 image data 2 (50,000 32 x 32 color images). In particular, we

examine the global and local properties of the learned densities, via generation and

perturbation. We emphasize that the density estimates we report here arise are fully

normalized due to the tractability of the Jacobian determinant of our transformation.

7.5.1 Density evaluation

We start by conducting a variety of tests to examine the quality of the density esti-

mates produced by the DDM.

First, for a probability model to be useful, it should not overfit by distributing

most of the mass to training examples, but also assign high probability to unseen

out-of-sample data. Similarly, it should assign low density to points in data space

that resemble real observations, which in fact are not.

In Table 7.1, we compute the probabilities assigned by models to their training

examples, test examples, and distortions of the test examples.

As an interpretable example, we train a model on examples from MNIST's digit 9

lhttp: //yann.lecun. com/exdb/mnist/
2http://www.cs.toronto.edu/~kriz/cifar.html

128

x 10'
- 6

-2.1 9

-0-2.15
.0
0 -2.2

I~ -2.25

-2.3

0 100 200 300
Rotation angle (degrees)

(a) (b)

Figure 7-3: Probabilities of a rotated 6 under a model trained only on 9's. A real 9

is more probable than an inverted 6. (a) log-densities of a 6 and a 9 as a function of

the angle of rotation. (b) Respectively: the original 6; a 9; the rotation of the 6 that

the 9-model assigned the highest probability to: and the rotation that the 9-model

assigned the lowest probability to.

class, and consider the log-probability it assigns the digit 6 under rotation. Intuitively,

we expect the highest density to be assigned to the upside-down 6: see Figure 7-3.

We also add a test-set 9 to demonstrate the density calibration.

We also investigate the marginal entropy of MNIST. We train the model to have a

final diversification marginals Beta (.; 0.01, 0.4). This distribution is extremely peaked

at 0 and 1. which justifies approximating the MNIST representation elements as

Bernoullis by rounding off to 0 and 1 as [x]. =[[x] - ., which corresponds to

Bernoulli parameter p = f 2 F(0.01-.) x~ (1 - x)"- dx 0.0224. We now note

that,. by the law of large numbers, as K -- oo, we expect the mean log-probability of

the Bernoulli test examples to approach -KH (Bern (-; 0.0465)) = 21.0181.... Indeed,

we compute that I j> E3> log Bern ([:x,j :0.0465) = 20.7217.... Thus. we see

that the marginal entropy of the model is close to our expectation of it.

7.5.2 Generation

The approximate independence due to the process of diversification described in Sub-

section 7.3.4 combined with the invertibility property of the decoder allows us to

produce real samples from the density estimation on the observed space, by sampling

within the representation space. Such instantiations of the (listribution provide us

129

wi hI s i aliz t If)i gis () f I(h (I I ighlI de sity I I t I (' I Ig I I I I I 1(4

(a) Generations from a 3-layer DDM on MNIST. with diversified margimals

Beta (.; 0.015, 0.8).

(b) Generations from a 3-layer DDM on CIFAR-10. with diversified marginals

Beta (0.5. 3).

Figure 7-4: Generations from DD\Is.

7.6 Discussion and Remaining Open Problems

In this paper, we have proposed a new way to construct normalized probability den-

sity estimates from high-dimensional data. Our approach borrows ideas from deep

learning, differential geometry, and information theory to ensure that the learned

distributions are rich, but tractable and normializable.

There are several interesting directions that we believe such a density model opens

up. One advantage of a fully-normalized density model is that it enables Bayesian

probabilistic classifiers to be constructed to provide calibrated conditional distribu-

tions over class membership. If the data are drawn fron a mixture of C classes, we

may compute p (.; c), the likelihood that an element is drawn from class c by training

a model with only the examples under that class. It is then possible to. e.g.. estimate

the most likely class:

arg maxp (y,:c) V = 1,...,N .
C

Moreover, since we now have class-conditional densities, we may reject classification

of examples if no class nodel is confident enough to own them. Namely, we can set

130

a threshold parameter A, and reject classification of example y, if p (y,; c) < A Vc =

1,.. .,C.

Lastly, we can not only control the density at the observations, but also the

distribution of mass in the rest of the latent space. Specifically, instead of letting

each class model see only its own examples, we can expose it to training examples

from other classes, and demand it assigns them as little probability as possible. This

not only teaches the model to recognize examples that lie on the manifold of its class,

but also identify differences from other examples by mapping them away from this

manifold.

We tested the above ideas on MNIST, and found that a raw mixture of Bayesian

classifiers gives us an error rate of 9.5%. However, penalizing density assigned to

foreign examples results in a model that achieves a much lower error rate of 1.614%.

As the model provides calibrated probabilistic predictions, it is also able to assess

its confidence when making classifications. Among examples in which the model is

confident (approximately 95% of the test data), the Bayesian DDM classifier achieves

0.45% error. Although these are not state-of-the-art rates, they show the flexibility

of classifier construction in the DDM setting and how the normalized density can

be leveraged across separately trained models, something not typically possible for

energy-based probabilistic approaches.

We can extend these ideas further to use the deep density model even if only a

small fraction of the observations are labelled. That is, we can use density estimates

to extract useful information from unlabeled data by leveraging our knowledge of the

empirical density in the representation space. One possible approach is to run the

expectation-maximization algorithm and train the DDM on weighted data as part of

a mixture model.

131

132

Appendix A

Proofs for Exact Recovery of PCA by

Nested Dropout

Theorem 4. Every optimal solution of the nested dropout problem is necessarily an

optimal solution of the standard autoencoder problem.

Proof. Let the nested dropout autoencoder be of latent dimension K. Recall that the

nested dropout objective function in Equation (3.11) is a strictly positive mixture of

the K different b-truncation problems. As described in Subsection 3.3.1, an optimal

solution to each b-truncation must be of the form X* = TbEbR T , r* = QbTi-1

for some invertible transformation Tb. We note that the PCA decomposition is a

particular optimal solution for each b that is given for the choice Tb = 1 b. As such, the

PCA decomposition exactly minimizes every term in the nested dropout mixture, and

therefore must be a global solution of the nested dropout problem. This means that

every optimal solution of the nested dropout problem must exactly minimize every

term in the nested dropout mixture. In particular, one of these terms corresponds to

the K-truncation problem, which is in fact the original autoencoder problem. U

Denote Ty = JK-+b jKb as the b-th leading principal minor and its its bottom

right corner as tb = Tbb.

Lemma 2. Let T E RKxK be commutative in its truncation and inversion. Then all

the diagonal elements of T are nonzero, and for each b = 2,..., K, either Ab = 0 or

133

Bb = 0.

Proof. We have det T~b= det Ttbl det(tb -BbT~l _Ab) , 0 since T~b_1 is invertible.

Since Tb_1 is also invertible, then tb - BbT-UlAb $ 4 0. As such, we write Tib in

terms of blocks Tb-1, Ab, Bb, tb, and apply blockwise matrix inversion to find that

T- = + T _Ab(tb - BbT _1 Ab)- 1 BbT- 1 I which reduces to AbBb = 0.

Now, assume by contradiction that tb = 0. This means that either bottom row or the

rightmost column of Tb must be all zeros, which contradicts with the invertibility of

Theorem 5. Every optimal solution of the nested dropout problem must be of the

form

X* = TERT (A.1)

r* = QT-1 , (A.2)

for some matrix T E RKx K that is commutative in its truncation and inversion.

Proof. Consider an optimal solution X*, F* of the nested dropout problem. For each

b-truncation, as established in the proof of Theorem 1, it must hold that

X*= TbJK-bER T (A.3)

*= JT T-1 (A.4)

However, it must also be true that Xb = Xib, 1b = Ftb by the definition of the nested

dropout objective in Equation (3.11). The first equation thus gives that TbJK-+b =

JK->bTK, and therefore Tb = JK-+bTK K-b = T4 b. This establishes the fact that

the optimal solution for each b-truncation problem simply draws the b-th leading

principal minor from the same "global" matrix T := TK. The second equation

implies that for every b, it holds that JK-bT K-+ b Kb)'1 and as

such T is commutative in its truncation and inversion.

Theorem 6. Under the orthonormality constraint FTL[, = fK, there exists a unique

optimal solution for the nested dropout problem, and this solution is exactly the set

134

of the K top eigenvectors of the covariance of Y, ordered by eigenvalue magnitude.

Namely, X* = ERT, F* = Q.

Proof. The orthonormality constraint implies (TlQ)TQT-1 = fK which gives TT =

T-1 . Hence every row and every column must have unit norm. We also have have

that for every b= 1,...,K

T = (JK-TJ K-+b)T (A.5)

= JK-+bT K-b (A-6)

JK-4bT-1 jT~ (A.7)
= (JK-+bTjTb 1 (A.8)

= (JK-+b K-+b -

=T~ (A.9)

where in the last equation we applied Lemma 1 to Theorem 2. As such, every leading

principal minor is also orthonormal. For the sake of contradiction, assume there exist

some m, n, m : n such that Tmn $ 0. Without loss of generality assume m < n.

Then E_',"_- TI < 1, but this violates the orthonormality of Tn_ 1. Thus it must be

that the diagonal elements of T are all identically 1, and therefore T = "K. The

result follows. U

135

136

Appendix B

Implementation Details for

Metric Learning with Adaptive

Density Discrimination

B.1 Hyperparameter Tuning Specifications

and Optimal Configurations

Here we describe in detail the hyperparameter search setups for the different experi-

ments, and the optimal configuration for each.

For all models, we tune optimization hyperparameters consisting of learning rate

and its annealing factor which we apply every epoch. We fix the momentum as 0.9

for all experiments. For the smaller datasets, we refresh our index every epoch, and

for ImageNet Attributes every 1000 iterations.

For Magnet Loss, we additionally tune the separation margin a, the number of

nearest clusters per minibatch M, the number of examples per cluster D, and the

number of clusters per class K which we take to be the same for all classes (the

examples per minibatch MD is upper-bounded by 48 due to memory constraints).

Note that we permit the choices M = D = 2, which, as discussed in 4.3.4, reverts

this back to triplet loss: hence, we expect this choice to be discovered if triplet loss

137

is in fact the optimal choice of distance metric learning loss of this class. For triplet

loss, we tune the separation margin a, the fraction of nearest impostors retrieved in

each minibatch and neighbourhood size retrieved for kNN evaluation.

We now specify the optimal hyperparameter configurations for the different datasets

and model spaces, as found empirically via random search. The learning rate anneal-

ing factor is marked as "N/A" for smaller datasets, where we do not anneal the learning

rate at all.

Model Hyperparameter Pet Flowers Dogs ImageNet Attributes Hierarchy recovery

Magnet Learning rate 0.00184 0.0240 0.00292 0.00459 0.00177
Annealing factor N/A N/A N/A 0.974 0.988
Gap 7.18 2.43 0.710 0.700 0.783
Global scaling 3.52 14.2 3.03 6.42 2.33
Clusters/class 8 1 1 2 16

Triplet Learning rate 0.000598 0.00155 0.00293 0.00807 0.00187
Annealing factor N/A N/A N/A 0.966 0.995
Gap 0.304 0.554 0.370 0.495 0.556
Nearest impostor fraction 0.184 0.129 0.00713 0.0700 0.0424
Neighbourhood size 128 128 128 128 128

Table B.1: Optimal hyperparameter configurations for the different datasets and
model spaces.

B.2 Specifications for ImageNet Attributes Dataset

To curate this dataset, we first matched the annotated examples in the Object At-

tributes dataset (Russakovsky & Fei-Fei, 2010) to examples in the training set of

ImageNet. The ImageNet Attributes training and validation sets then comprise all

examples of all classes for which annotated examples exist.

Below we list these classes.

n01693334, n01773549, n01773797, n01796340, n01872401, n01873310, n01882714, n01883070,

n02071294, n02074367, n02088238, n02088364, n02088466, n02088632, n02090379, n02091134,

n02091635, n02092002, n02096294, n02100583, n02100735, n02101556, n02102480, n02104029,

n02104365, n02105056, n02105162, n02105251, n02105505, n02106030, n.02109047 , n02109525,

n02110806, n02110958, n02112350, n02115913, n02119789, n02123045, n02123394, n02124075,

n02125311, n02128925, n02129165, n02130308, n02326432, n02342885, n02361337, n02391049,

n02410509, nO2422106, n02422699, n02423022, n02441942, n02442845, n02443114, n02443484,

n02444819, n02445715, n02447366, n02480495, n02480855, n02481823, n02483708, n02484975,

n02486261 , n02486410, n02487347, n02488291 , n02488702, n02500267, n02509815, n02536864,

138

n02802426, n02808440, n02910353, n03249569 n03325584, n03721384, n03977966, n03982430,

n04118776, n04228054, n04447861, n07615774, n07745940, n07873807, n07875152, n07880968,

n11939491 , n12267677

139

140

Appendix C

Implementation Details for Spectral

Pooling

Here we provide additional detail pertaining to the specific algorithmic implemen-

tation of the spectral pooling and spectral parameterization. CROPSPECTRUM and

PADSPECTRUM are self-explanatory: they crop or zero-pad the frequency spectrum

to the appropriate dimensionalities, respectively.

Algorithm 3 TREATCORNERCASES

Input: Input map y E CMxN

Output: Output map z with corner cases obeying conjugate symmetry, special case
indices S

1: Z +- y
2: S -{(0, 0)}
3: if M is even then
4: +- (M,0)}
5: end if
6: if N is even then
7: S +- {(0, $)}
8: end if
9: if M is even and N is even then

10: S +- {(M, N)}
11: end if
12: for i E S do
13: Im(zi) +- 0
14: end for

141

Algorithm 4 REMOVEREDUNDANCY

Input: Input gradient map y E CMxN

Output: Gradient z in terms of unconstrained parameters only
1: z, S <- TREATCORNERCASES(y)

2: I <- 0
3: for m=0,...,M- 1 do
4: for n= 0,..., [J do
5: if (m, n) V S then
6: if (m, n) V I then
7: Zm,n +- 2 zm,n

8: I +- I U {(m, n), ((M - m) modM, (N - n) modN)}
9: else

10: Zmn,n +- 0
11: end if
12: end if
13: end for
14: end for

Algorithm 5 RECOVERMAP

Input: Input gradient y E CMxN parametrized by unconstrained elements only
Output: Full gradient z with recovered redundancy

1: z, S +- TREATCORNERCASES(Y)

2: I +- 0
3: for m= ,...,M- 1 do
4: for n = 0,..., [J do
5: if (m, n) V S then
6: if (m, n) (I then
7: Zm,n +- Zm,n
8: Z(M-m) modM,(N-n) modN +- Zm,n

9: 1 +- I U {(M, n), ((M - m) modM, (N - n) modN)}
10: else
11: Zm,n +- 0
12: end if
13: end if
14: end for
15: end for

142

Appendix D

Implementation Details for

Scalable Bayesian Optimization Using

Deep Neural Networks

D.1 Convolutional neural network

experiment specifications

In this section we elaborate on the details of the network architecture, training and

the meta-optimization. In the following subsections we elaborate on the hyper-

parametrization scheme. The priors on the hyperparameters as well as their optimal

configurations for the two datasets can be found in Table D.2.

D.1.1 Architecture

The model architecture is specified in Table D.1.

D.1.2 Data augmentation

We corrupt each input in a number of ways. Below we describe our parametrization

of these corruptions.

143

Layer type # Filters Window Stride

Convolution 96 3 x 3

Convolution 96 3 x 3

Max pooling 3 x 3 2

Convolution 192 3 x 3

Convolution 192 3 x 3

Convolution 192 3 x 3

Max pooling 3 x 3 2

Convolution 192 3 x 3

Convolution 192 1 x 1

Convolution 10/100 1 x 1

Global averaging 6 x 6

Softmax

Table D.1: Our convolutional neural network architecture. This choice was chosen to
be maximally generic. Each convolution layer is followed by a ReLU nonlinearity.

HSV We shift the hue, saturation and value fields of each input by global con-

stants bH ~ U(-BH, BH), bs ~ U(-Bs, Bs), by ~ U(-Bv, By). Similarly, we glob-

ally stretch the saturation and value fields by global constants as ~ U(1, 1 + As),

av ~, U(,I + Ay).

SCALINGS Each input is scaled by some factor s ~ U(,1+ S).

TRANSLATIONS We crop each input to size 27 x 27, where the window is chosen

randomly and uniformly.

HORIZONTAL REFLECTIONS Each input is reflected horizontally with a probability

of 0.5.

PIXEL DROPOUT Each input element is dropped independently and identically with

some random probability Do.

144

D.1.3 Initialization and training procedure

We initialize the weights of each convolution layer m with i.i.d zero-mean Gaussians

with standard deviation , where Fm is the number of parameters per filter for

that layer. We chose this parametrization to produce activations whose variances are

invariant to filter dimensionality. We use the same standard deviation for all layers

but the input, for which we dedicate its own hyperparameter oa as it oftentimes varies

in scale from deeper layers in the network.

We train the model using the standard stochastic gradient descent and momentum

optimizer. We use minibatch size of 128, and tune the momentum and learning rate,

which we parametrize as 1 - 0.1m and 0 .1' respectively. We anneal the learning rate

by a factor of 0.1 at epochs 130 and 190. We terminate the training after 200 epochs.

We regularize the weights of all layers with weight decay coefficient W. We ap-

ply dropout on the outputs of the max pooling layers, and tune these rates D1 , D2

separately.

D.1.4 Testing procedure

We evaluate the performance of the learned model by averaging its log-probability

predictions on 100 samples drawn from the input corruption distribution, with masks

drawn from the unit dropout distribution.

D.2 Multimodal neural language

model hyperparameters

D.2.1 Description of the hyperparameters

We optimize a total of 11 hyperparameters of the log-bilinear model (LBL). Below

we explain what these hyperparameters refer to.

145

MODEL The LBL model has two variants, an additive model where the image fea-

tures are incorporated via an additive bias term, and a multiplicative that uses a

factored weight tensor to control the interaction between modalities.

CONTEXT SIZE The goal of the LBL is to predict the next word given a sequence

of words. The context size dictates the number of words in this sequence.

LEARNING RATE, MOMENTUM, BATCH SIZE These are optimization parameters

used during stochastic gradient learning of the LBL model parameters. The opti-

mization over learning rate is carried out in log-space, but the proposed learning rate

is exponentiated before being passed to the training procedure.

HIDDEN LAYER SIZE This controls the size of the joint hidden representation for

words and images.

EMBEDDING SIZE Words are represented by feature embeddings rather than one-hot

vectors. This is the dimensionality of the embedding.

DROPOUT A regularization parameter that determines the amount of dropout to

be added to the hidden layer.

CONTEXT DECAY, WORD DECAY 2 regularization on the input and output weights

respectively. Like the learning rate, these are optimized in log-space as they vary over

several orders of magnitude.

FACTORS The rank of the weight tensor. Only relevant for the multiplicative model.

146

CIFAR-10 CIFAR-100
Hyperparameter Notation Support of prior Optimum Optimum

Momentum M [0.5,2] 1.6242 1.3339
Learning rate L [1,41 2.7773 2.1205
Initialization deviation Oa [0.5, 1.5] 0.83359 1.5570
Input initialization deviation a [0.01, 1] 0.025370 0.13556
Hue shift BH [0,45] 31.992 19.282
Saturation scale As [0,0.5] 0.31640 0.30780
Saturation shift Bs [0,0.5] 0.10546 0.14695
Value scale As [0,0.51 0.13671 0.13668
Value shift Bs [0, 0.51 0.24140 0.010960
Pixel dropout Do [0,0.3] 0.19921 0.00056598
Scaling S [0, 0.3] 0.24140 0.12463
L2 weight decay W [2,51 4.2734 3.1133
Dropout 1 D1 [0, 0.7] 0.082031 0.081494
Dropout 2 D2 [0, 0.7 0.67265 0.38364

Table D.2: Specification of the hyperparametrization scheme, and optimal hyperpa-
rameter configurations found.

COCO
Hyperparameter Support of prior Notes om

Optimum

Model {additive,multiplicative} additive
Context size [3,25] 5
Learning rate [0.001,10] Log-space 0.43193
Momentum [0, 0.9] 0.23269
Batch size [20, 200] 40
Hidden layer size [100,2000] 441
Embedding size {50,100, 200} 100
Dropout [0, 0.7] 0.14847
Word decay [10-9, 10- 3] Log-space 2.98456-7
Context decay [10-9, 10-3] Log-space 1.09181-8
Factors [50,200] Multiplicative model only -

Table D.3: Specification of the hyperparametrization scheme, and optimal hyperpa-
rameter configurations found for the multimodal neural language model. For param-
eters marked log-space, the log is given to the Bayesian optimization routine and
the result is exponentiated before being passed into the multimodal neural language
model for training. Square brackets denote a range of parameters, while curly braces
denote a set of options.

147

148

Bibliography

Adams, Ryan P., Murray, Iain, and MacKay, David J. C. The Gaussian process

density sampler. In Advances in Neural Information Processing Systems 21, 2009.

Adams, Ryan P., Wallach, Hanna M., and Ghahramani, Zoubin. Learning the struc-

ture of deep sparse graphical models. In Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics, 2010.

Angelova, Anelia and Long, Philip M. Benchmarking large-scale fine-grained cat-

egorization. In IEEE Winter Conference on Applications of Computer Vision,

Steamboat Springs, CO, USA, March 24-26, 2014, pp. 532-539, 2014.

Angelova, Anelia and Zhu, Shenghuo. Efficient object detection and segmentation

for fine-grained recognition. In 2013 IEEE Conference on Computer Vision and

Pattern Recognition, Portland, OR, USA, June 23-28, 2013, pp. 811-818, 2013.

Arthur, David and Vassilvitskii, Sergei. K-means++: The advantages of careful seed-

ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA '07, pp. 1027-1035, Philadelphia, PA, USA, 2007. Society for

Industrial and Applied Mathematics. ISBN 978-0-898716-24-5.

Bardenet, R6mi, Brendel, Mitys, K6gl, Balaizs, and Sebag, Michele. Collaborative

hyperparameter tuning. In ICML, 2013.

Bell, A.J. and Sejnowski, T.J. An information-maximization approach to blind sep-

aration and blind deconvolution. Neural computation, 7(6):1129-1159, 1995.

149

Bengio, Yoshua. Learning deep architectures for ai. Found. Trends Mach. Learn., 2

(1):1-127, January 2009. ISSN 1935-8237.

Bengio, Yoshua and LeCun, Yann. Scaling learning algorithms towards AL. In Large

Scale Kernel Machines. MIT Press, 2007.

Bengio, Yoshua, Louradour, J6r6me, Collobert, Ronan, and Weston, Jason. Cur-

riculum learning. In Proceedings of the 26th annual international conference on

machine learning, pp. 41-48. ACM, 2009.

Bergstra, James and Bengio, Yoshua. Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research, 13:281-305, 2012.

Bergstra, James S., Bardenet, Remi, Bengio, Yoshua, and K6gl, Bdlizs. Algorithms

for hyper-parameter optimization. In Advances in Neural Information Processing

Systems. 2011.

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer-Verlag

New York, Inc., 2006.

Bourlard, H. and Kamp, Y. Auto-association by multilayer perceptrons and singular

value decomposition. Manuscript M217, Philips Research Laboratory, Brussels,

Belgium, 1987.

Brochu, Eric, Brochu, Tyson, and de Freitas, Nando. A Bayesian interactive optimiza-

tion approach to procedural animation design. In A CM SIGGRAPH/Eurographics

Symposium on Computer Animation, 2010.

Bruna, Joan and Mallat, Stephane. Invariant scattering convolution networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(8):1872-1886, 2013.

Bull, Adam D. Convergence rates of efficient global optimization algorithms. Journal

of Machine Learning Research, (3-4):2879-2904, 2011.

Buntine, Wray L. and Weigend, Andreas S. Bayesian back-propagation. Complex

systems, 5(6):603-643, 1991.

150

Calandra, Roberto, Peters, Jan, Rasmussen, Carl Edward, and Deisenroth, Marc Pe-

ter. Manifold Gaussian processes for regression. preprint arXiv:1402.5876, 2014a.

Calandra, Roberto, Peters, Jan, Seyfarth, Andre, and Deisenroth, Marc P. An experi-

mental evaluation of Bayesian optimization on bipedal locomotion. In International

Conference on Robotics and Automation, 2014b.

Carvalho, Carlos M., Polson, Nicholas G., and Scott, James G. Handling sparsity via

the horseshoe. In Artificial Intelligence and Statistics, 2009.

Chopra, Sumit, Hadsell, Raia, and LeCun, Yann. Learning a similarity metric dis-

criminatively, with application to face verification. In Proceedings of the 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR'05) - Volume 1 - Volume 01, CVPR '05, pp. 539-546, Washington, DC,

USA, 2005. IEEE Computer Society. ISBN 0-7695-2372-2.

Coates, A., Lee, H., and Ng, A.Y. An analysis of single-layer networks in unsupervised

feature learning. In Proc. of AISTATS, volume 15, pp. 215-223, 2011.

Cottrell, Garrison W., Munro, Paul, and Zipser, David. Learning internal repre-

sentations from gray-scale images: An example of extensional programming. In

Conference of the Cognitive Science Society, 1987.

Datar, Mayur, Immorlica, Nicole, Indyk, Piotr, and Mirrokni, Vahab S. Locality-

sensitive hashing scheme based on p-stable distributions. In Proceedings of the

Twentieth Annual Symposium on Computational Geometry, pp. 253-262, New

York, NY, USA, 2004. ACM.

De Freitas, Joao FG. Bayesian methods for neural networks. PhD thesis, Trinity

College, University of Cambridge, 2003.

de Freitas, Nando, Smola, Alex J., and Zoghi, Masrour. Exponential regret bounds

for Gaussian process bandits with deterministic observations. In ICML, 2012.

151

Djolonga, Josip, Krause, Andreas, and Cevher, Volkan. High dimensional Gaussian

process bandits. In Advances in Neural Information Processing Systems, 2013.

Donahue, Jeff, Jia, Yangqing, Vinyals, Oriol, Hoffman, Judy, Zhang, Ning, Tzeng,

Eric, and Darrell, Trevor. Decaf: A deep convolutional activation feature for generic

visual recognition.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine Learning

Research, 12:2121-2159, 2011.

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., and

Leyton-Brown, K. Towards an empirical foundation for assessing Bayesian opti-

mization of hyperparameters. In NIPS Workshop on Bayesian Optimization in

Theory and Practice, 2013.

Escobar, Michael D. and West, Mike. Bayesian density estimation and inference using

mixtures. Journal of the American Statistical Association, 90(430):577-588, June

1995.

Feurer, M., Springenberg, T., and Hutter, F. Initializing Bayesian hyperparameter

optimization via meta-learning. In AAAI Conference on Artificial Intelligence,

2015.

Garnett, Roman, Osborne, Micheal A., and Roberts, Stephen J. Bayesian optimiza-

tion for sensor set selection. In International Conference on Information Processing

in Sensor Networks, 2010.

Gavves, E., Fernando, B., Snoek, C. G. M., Smeulders, A. W. M., and Tuytelaars,

T. Fine-grained categorization by alignments. In IEEE International Conference

on Computer Vision, 2013.

Gavves, Efstratios, Fernando, Basura, Snoek, CeesG.M., Smeulders, ArnoldW.M.,

and Tuytelaars, Tinne. Local alignments for fine-grained categorization. Interna-

tional Journal of Computer Vision, 111(2):191-212, 2015. ISSN 0920-5691.

152

Gelbart, Michael A., Snoek, Jasper, and Adams, Ryan P. Bayesian optimization with

unknown constraints. In Uncertainty in Artificial Intelligence, 2014.

Ginsbourger, David and Riche, Rodolphe Le. Dealing with asynchronicity in parallel

Gaussian process based global optimization. 2010.

Globerson, Amir and Roweis, Sam T. Metric learning by collapsing classes. In Weiss,

Y., Schblkopf, B., and Platt, J.C. (eds.), Advances in Neural Information Processing

Systems 18, pp. 451-458. MIT Press, 2006.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Domain adaptation for large-

scale sentiment classification: A deep learning approach. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), pp. 513-520, 2011a.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier neural

networks. In Proc. of AISTATS, 2011b.

Goldberger, Jacob, Roweis, Sam, Hinton, Geoff, and Salakhutdinov, Ruslan. Neigh-

bourhood components analysis. In Advances in Neural Information Processing

Systems 17, pp. 513-520. MIT Press, 2004.

Goodfellow, Ian J., Warde-Farley, David, Mirza, Mehdi, Courville, Aaron, and Ben-

gio, Yoshua. Maxout networks. In ICML, 2013.

Gramacy, Robert B. and Lee, Herbert K. H. Optimization under unknown constraints,

2010. arXiv:1004.4027.

Grauman, Kristen and Fergus, Rob. Learning binary hash codes for large-scale im-

age search. In Machine Learning for Computer Vision, volume 411 of Studies in

Computational Intelligence, pp. 49-87. Springer Berlin Heidelberg, 2013.

Hadsell, Raia, Chopra, Sumit, and Lecun, Yann. Dimensionality reduction by learn-

ing an invariant mapping. In In Proc. Computer Vision and Pattern Recognition

Conference (CVPRdA206. IEEE Press, 2006.

153

Hensman, J, Fusi, N, and Lawrence, N.D. Gaussian processes for big data. In Un-

certainty in Artificial Intelligence, 2013.

Hinton, G. E. and van Camp, D. Keeping neural networks simple by minimizing the

description length of the weights. In ACM Conference on Computational Learning

Theory, 1993.

Hinton, G.E., Osindero, S., and Teh, Y.W. A fast learning algorithm for deep belief

nets. Neural computation, 18(7):1527-1554, 2006.

Hinton, Geoffrey. What's wrong with convolutional nets? MIT Brain and Cognitive

Sciences - Fall Colloquium Series, Dec 2014a.

Hinton, Geoffrey. Ask me anything: Geoffrey hinton. Reddit Machine Learning,

2014b.

Hinton, Geoffrey and Salakhutdinov, Ruslan. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504-507, 2006.

Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E, Mohamed, Abdel-rahman,

Jaitly, Navdeep, Senior, Andrew, Vanhoucke, Vincent, Nguyen, Patrick, Sainath,

Tara N, et al. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. Signal Processing Magazine, IEEE, 29

(6):82-97, 2012a.

Hinton, Geoffrey E. and Salakhutdinov, Ruslan. Using deep belief nets to learn covari-

ance kernels for Gaussian processes. In Advances in neural information processing

systems, pp. 1249-1256, 2008.

Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and

Salakhutdinov, Ruslan. Improving neural networks by preventing co-adaptation

of feature detectors. 2012b.

Hoffman, Matthew, Brochu, Eric, and de Freitas, Nando. Portfolio allocation for

Bayesian optimization. In Uncertainty in Artificial Intelligence, 2011.

154

Hutter, Frank, Hoos, Holger H., and Leyton-Brown, Kevin. Sequential model-based

optimization for general algorithm configuration. In Learning and Intelligent Op-

timization 5, 2011.

loffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the 32nd Interna-

tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,

pp. 448-456, 2015a.

loffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015b.

Jarrett, Kevin, Kavukcuoglu, Koray, Ranzato, Marc'Aurelio, and LeCun, Yann. What

is the best multi-stage architecture for object recognition? In IEEE 12th Interna-

tional Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27

- October 4, 2009, pp. 2146-2153, 2009.

Jones, Donald R. A taxonomy of global optimization methods based on response

surfaces. Journal of Global Optimization, 21, 2001.

Karpathy, Andrej, Toderici, George, Shetty, Sanketh, Leung, Thomas, Sukthankar,

Rahul, and Fei-Fei, Li. Large-scale video classification with convolutional neural

networks. In Computer Vision and Pattern Recognition, 2014.

Khosla, Aditya, Jayadevaprakash, Nityananda, Yao, Bangpeng, and Fei-Fei, Li. Novel

dataset for fine-grained image categorization. In First Workshop on Fine-Grained

Visual Categorization, IEEE Conference on Computer Vision and Pattern Recog-

nition, Colorado Springs, CO, June 2011.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2015.

Kingma, Diederik P. and Welling, Max. Auto-encoding variational Bayes. In Inter-

national Conference on Learning Representations, 2014.

155

Kiros, Ryan, Salakhutdinov, Ruslan, and Zemel, Richard S. Multimodal neural lan-

guage models. In ICML, 2014.

Krause, Andreas and Ong, Cheng Soon. Contextual Gaussian process bandit opti-

mization. In Advances in Neural Information Processing Systems, 2011.

Krizhevsky, Alex. Learning multiple layers of features from tiny images. Technical

report, 2009.

Krizhevsky, Alex and Hinton, Geoffrey E. Using very deep autoencoders for content-

based image retrieval. In ESANN, 2011.

Krizhevsky, Alex., Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification

with deep convolutional neural networks. In Advances in Neural Information Pro-

cessing Systems, 2012.

Kushner, H. J. A new method for locating the maximum point of an arbitrary

multipeak curve in the presence of noise. Journal of Basic Engineering, 86, 1964.

Lawrence, N. Probabilistic non-linear principal component analysis with Gaussian

process latent variable models. Journal of Machine Learning Research, 6:1783-

1816, 2005.

Lawrence, Neil D. and Candela, Joaquin Quifionero. Local distance preservation in

the GP-LVM through back constraints. In International Conference on Machine

Learning, pp. 513-520, 2006.

L6zaro-Gredilla, Miguel and Figueiras-Vidal, Anibal R. Marginalized neural network

mixtures for large-scale regression. Neural Networks, IEEE Transactions on, 21(8):

1345-1351, 2010.

LeCun, Yann and Bengio, Yoshua. Convolutional Networks for Images, Speech and

Time Series, pp. 255-258. The MIT Press, 1995.

156

LeCun, Yann, Boser, Bernhard, Denker, J. S., Henderson, D., Howard, R. E., Hub-

bard, W., and Jackel., L. D. Handwritten digit recognition with a back-propagation

network. In Advances in Neural Information Processing Systems, 1989.

LeCun, Yann, Denker, John S., and Solla, Sara A. Optimal brain damage. In Advances

in Neural Information Processing Systems, pp. 598-605, 1990.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep learning. Nature, 521

(7553):436-444, 2015.

Lee, Chen-Yu, Xie, Saining, Gallagher, Patrick, Zhang, Zhengyou, and Tu, Zhuowen.

Deeply-supervised nets. CoRR, abs/1409.5185, 2014.

Lin, Min, Chen, Qiang, and Yan, Shuicheng. Network in network. CoRR,

abs/1312.4400, 2013.

Lin, Tsung-Yi, Maire, Michael, Belongie, Serge, Hays, James, Perona, Pietro, Ra-

manan, Deva, Dollar, Piotr, and Zitnick, C Lawrence. Microsoft COCO: Common

objects in context. In ECCV 2014, pp. 740-755. Springer, 2014.

Lizotte, Dan. Practical Bayesian Optimization. PhD thesis, University of Alberta,

Edmonton, Alberta, 2008.

MacKay, David J.C. A practical Bayesian framework for backpropagation networks.

Neural computation, 4(3):448-472, 1992.

MacKay, David J.C. and Gibbs, Mark N. Density networks. In Proceedings of Society

for General Microbiology Edinburgh meeting, 1997.

Mahendran, Nimalan, Wang, Ziyu, Hamze, Firas, and de Freitas, Nando. Adaptive

MCMC with Bayesian optimization. In Artificial Intelligence and Statistics, 2012.

Mathieu, Micha8l, Henaff, Mikael, and LeCun, Yann. Fast training of convolutional

networks through FFTs. CoRR, abs/1312.5851, 2013.

157

- I

Mensink, Thomas, Verbeek, Jakob, Perronnin, Florent, and Csurka, Gabriela.

Distance-based image classification: Generalizing to new classes at near zero cost.

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2013.

Min, Martin Renqiang, van der Maaten, Laurens, Yuan, Zineng, Bonner, Anthony J.,

and Zhang, Zhaolei. Deep supervised t-distributed embedding. In Proceedings of

the 27th International Conference on Machine Learning (ICML-10), June 21-24,

2010, Haifa, Israel, pp. 791-798, 2010.

Mnih, Andriy and Gregor, Karol. Neural variational inference and learning in belief

networks. In ICIML, 2014.

Mockus, Jonas, Tiesis, Vytautas, and Zilinskas, Antanas. The application of Bayesian

methods for seeking the extremum. Towards Global Optimization, 2, 1978.

Murray, Naila and Perronnin, Florent. Generalized max pooling. In 2014 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus,

OH, USA, June 23-28, 2014, pp. 2473-2480, 2014.

Neal, Radford. Slice sampling. Annals of Statistics, 31:705-767, 2000.

Neal, Radford M. Connectionist learning in belief networks. Artificial Intelligence,

56:71-113, July 1992.

Neal, Radford M. Bayesian learning for neural networks. PhD thesis, University of

Toronto, 1995.

Nickson, Thomas, Osborne, Michael A., Reece, Steven, and Roberts, Stephen. Au-

tomated machine learning using stochastic algorithm tuning. NIPS Workshop on

Bayesian Optimization, 2014.

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large number

of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics

and Image Processing, Dec 2008.

158

Norouzi, Mohammad, Fleet, David, and Salakhutdinov, Ruslan R. Hamming dis-

tance metric learning. In Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger,

K.Q. (eds.), Advances in Neural Information Processing Systems 25, pp. 1061-1069.

Curran Associates, Inc., 2012.

Osborne, Michael A., Garnett, Roman, and Roberts, Stephen J. Gaussian processes

for global optimization. In Learning and Intelligent Optimization, 2009.

Ouyang, Wanli and Wang, Xiaogang. Joint deep learning for pedestrian detection. In

The IEEE International Conference on Computer Vision (ICCV), December 2013.

Oyallon, Edouard, Mallat, St6phane, and Sifre, Laurent. Generic deep networks with

wavelet scattering. CoRR, abs/1312.5940, 2013.

Parkhi, 0. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V. Cats and dogs. In

IEEE Conference on Computer Vision and Pattern Recognition, 2012.

Pearl, J. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, 1988.

Qian, Qi, Jin, Rong, Zhu, Shenghuo, and Lin, Yuanqing. Fine-grained visual cate-

gorization via multi-stage metric learning. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

Rasmussen, Carl Edward. The infinite Gaussian mixture model. In Advances in

Neural Information Processing Systems 12, pp. 554-560, 2000.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra, Daan. Stochastic back-

propagation and variational inference in deep latent Gaussian models. In ICML,

2014.

Rifai, Salah, Bengio, Yoshua, Dauphin, Yann, and Vincent, Pascal. A generative

process for sampling contractive auto-encoders. In International Conference on

Machine Learning, 2012.

159

Rippel, Oren and Adams, Ryan P. High-dimensional probability estimation with deep

density models. arXiv preprint arXiv:1302.5125, 2013.

Rippel, Oren, Gelbart, Michael A., and Adams, Ryan P. Learning ordered represen-

tations with nested dropout. In International Conference on Machine Learning,

2014.

Rippel, Oren, Snoek, Jasper, and Adams, Ryan P. Spectral representations for con-

volutional neural networks. In Advances in Neural Information Processing Systems

28, 2015.

Rippel, Oren, Paluri, Manohar, Dollar, Piotr, and Bourdev, Lubomir. Metric learning

with adaptive density discrimination. In International Conference on Learning

Representations, 2016.

Roweis, S.T. and Saul, L.K. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323-2326, 2000.

Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. Learning repre-

sentations by back-propagating errors. Nature, 323:533-536, 1986.

Russakovsky, Olga and Fei-Fei, Li. Attribute learning in large-scale datasets. In Eu-

ropean Conference of Computer Vision (ECCV), International Workshop on Parts

and Attributes, 2010.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma,

Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael,

Berg, Alexander C., and Fei-Fei, Li. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), pp. 1-42, April

2015.

Salakhutdinov, Ruslan and Hinton, Geoffrey. Learning a nonlinear embedding by

preserving class neighborhood structure. In Proc. of AISTA TS, volume 11, 2007.

160

Salakhutdinov, Ruslan and Hinton, Geoffrey E. Semantic hashing. Int. J. Approx.

Reasoning, 50(7):969-978, 2009.

Sch6lkopf, B., Smola, A., and Muller, K.R. Nonlinear component analysis as a kernel

eigenvalue problem. Neural computation, 10(5):1299-1319, 1998.

Schroff, Florian, Kalenichenko, Dmitry, and Philbin, James. Facenet: A unified em-

bedding for face recognition and clustering. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

Sharif Razavian, Ali, Azizpour, Hossein, Sullivan, Josephine, and Carlsson, Stefan.

Cnn features off-the-shelf: An astounding baseline for recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June

2014.

Smolensky, P. Information processing in dynamical systems: Foundations of harmony

theory. In Parallel Distributed Processing: Explorations in the Microstructure of

Cognition. 1986.

Snelson, Edward and Ghahramani, Zoubin. Sparse Gaussian processes using pseudo-

inputs. In Advances in Neural Information Processing Systems, pp. 1257-1264,

2005.

Snoek, Jasper. Bayesian Optimization and Semiparametric Models with Applications

to Assistive Technology. PhD thesis, University of Toronto, Toronto, Canada, 2013.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan Prescott. Practical Bayesian

optimization of machine learning algorithms. In Neural Information Processing

Systems, 2012.

Snoek, Jasper, Swersky, Kevin, Zemel, Richard S., and Adams, Ryan P. Input warping

for Bayesian optimization of non-stationary functions. In ICML, 2014.

Snoek, Jasper, Rippel, Oren, Swersky, Kevin, Kiros, Ryan, Satish, Nadathur, Sun-

daram, Narayanan, Patwary, Md. Mostofa Ali, Prabhat, and Adams, Ryan P. Scal-

161

able Bayesian optimization using deep neural networks. In International Conference

on Machine Learning, 2015.

Springenberg, Jost Tobias, Dosovitskiy, Alexey, Brox, Thomas, and Riedmiller, Mar-

tin A. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806,

2014.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham, and Seeger, Matthias. Gaussian

process optimization in the bandit setting: no regret and experimental design. In

ICML, 2010.

Swersky, Kevin, Snoek, Jasper, and Adams, Ryan Prescott. Multi-task Bayesian

optimization. In Advances in Neural Information Processing Systems, 2013.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott, Anguelov,

Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. Going

deeper with convolutions. In CVPR 2015, 2015.

Taigman, Yaniv, Yang, Ming, Ranzato, Marc'Aurelio, and Wolf, Lior. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-1708,

2014.

Tenenbaum, J.B., De Silva, V., and Langford, J.C. A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

Titsias, M. and Lawrence, N. Bayesian Gaussian process latent variable model. In

International Conference on Artificial Intelligence and Statistics, 2010.

Titsias, Michalis K. Variational learning of inducing variables in sparse Gaussian

processes. In International Conference on Artificial Intelligence and Statistics, pp.

567-574, 2009.

Torralba, Antonio and Oliva, Aude. Statistics of natural image categories. Network,

14(3):391-412, August 2003. ISSN 0954-898X.

162

Torralba, Antonio, Fergus, Robert, and Freeman, William T. 80 million tiny images:

A large data set for nonparametric object and scene recognition. IEEE Trans.

Pattern Anal. Mach. Intell., 30(11):1958-1970, 2008.

van der Maaten, L.J.P. and Hinton, G.E. Visualizing high-dimensional data using

t-sne. 2008.

Vasilache, Nicolas, Johnson, Jeff, Mathieu, Michal, Chintala, Soumith, Piantino,

Serkan, and LeCun, Yann. Fast convolutional nets with fbfft: A GPU performance

evaluation. CoRR, abs/1412.7580, 2014.

Verma, Nakul, Mahajan, Dhruv, Sellamanickam, Sundararajan, and Nair, Vinod.

Learning hierarchical similarity metrics. In Computer Vision and Pattern Recogni-

tion (CVPR), 2012 IEEE Conference on, pp. 2280-2287. IEEE, 2012.

Vincent, Pascal and Bengio, Yoshua. Manifold Parzen windows. In Advances in

Neural Information Processing Systems 15, pp. 825-832. MIT Press, 2002.

Vincent, Pascal, Larochelle, Hugo, Bengio, Yoshua, and Manzagol, Pierre-Antoine.

Extracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th International Conference on Machine Learning, pp. 1096-1103,

2008.

Vincent, Pascal, Larochelle, Hugo, Lajoie, Isabelle, Bengio, Yoshua, and Manzagol,

Pierre-Antoine. Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11:3371-

3408, 2010.

Walder, Christian and Schdlkopf, Bernhard. Diffeomorphic dimensionality reduction.

In Advances in Neural Information Processing Systems 22, 2008.

Wan,. Li, Zeiler, Matthew D., Zhang, Sixin, LcCun, Yann, and Fergus, Rob. Regular-

ization of neural networks using dropconnect. In ICML, 2013.

163

Wang, Jiang, Song, Yang, Leung, Thomas, Rosenberg, Chuck, Wang, Jingbin,

Philbin, James, Chen, Bo, and Wu, Ying. Learning fine-grained image similarity

with deep ranking. In Computer Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on, pp. 1386-1393. IEEE, 2014.

Wang, Ziyu, Zoghi, Masrour, Hutter, Frank, Matheson, David, and de Freitas, Nando.

Bayesian optimization in high dimensions via random embeddings. In IJCAI, 2013.

Weinberger, Kilian Q. and Saul, Lawrence K. Distance metric learning for large

margin nearest neighbor classification. J. Mach. Learn. Res., 10:207-244, June

2009. ISSN 1532-4435.

Williams, Christoper K. I. Computing with infinite networks. In Advances in Neural

Information Processing Systems, 1996.

Xie, Saining, Yang, Tianbao, Wang, Xiaoyu, and Lin, Yuanqing. Hyper-class aug-

mented and regularized deep learning for fine-grained image classification. In IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,

MA, USA, June 7-12, 2015, pp. 2645-2654, 2015.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun, Courville, Aaron, Salakhut-

dinov, Ruslan, Zemel, Richard, and Bengio, Yoshua. Show, attend and tell: Neural

image caption generation with visual attention. arXiv preprint arXiv:1502.03044v2,

2015..

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol. Recurrent neural network

regularization. arXiv preprint arXiv:1207.0580, 2015.

Zeiler, Matthew D. and Fergus, Rob. Stochastic pooling for regularization of deep

convolutional neural networks. CoRR, abs/1301.3557, 2013.

164

