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Mechanistic interpretation of genome-wide association study 
(GWAS) data has become a central challenge for under-
standing the biological underpinnings of disease. One 

successful paradigm for such efforts has been GWAS enrichment, 
in which a genome annotation containing SNPs that affect some 
biological process is shown to be enriched for GWAS signals1–7. 
However, there are instances in which experimental data allow us 
not only to identify SNPs that affect a biological process, but also 
to predict which SNP alleles promote the process and which SNP 
alleles hinder it, enabling us to assess whether there is a systematic 
association between SNP alleles’ direction of effect on the process 
and their direction of effect on a trait. Transcription factor binding, 
which plays a major role in human disease1,8–12, represents an impor-
tant case in which such signed functional annotations are available: 
because transcription factors have a tendency to bind to specific 
DNA sequences, it is possible to estimate whether the sequence 
change introduced by a SNP allele will increase or decrease binding 
of a transcription factor1,13–19.

Detecting genome-wide directional effects of transcription fac-
tor binding on disease would constitute an important advance in 
terms of both evidence for causality and understanding of bio-
logical mechanism. Regarding causality, this is because directional 
effects are not confounded by simple co-localization in the genome 

(for example, of transcription factor binding sites with other regu-
latory elements), and thus provide stronger evidence for causality 
than is available using unsigned enrichment methods. Regarding 
biological mechanism, it is currently unknown whether disease-
associated transcription factors regulate only a few key disease 
genes or whether broad transcriptional programs comprising 
many target genes are responsible for transcription factor associa-
tions; a genome-wide directional effect implies the latter model  
(see Discussion).

Here we introduce a new method, signed linkage disequilibrium 
profile (SLDP) regression, for quantifying the genome-wide direc-
tional effect of a signed functional annotation on polygenic disease 
risk, and apply it with 382 annotations each reflecting predicted 
binding of a particular transcription factor. Our method requires 
only GWAS summary statistics20, accounts for linkage disequilib-
rium and untyped causal SNPs, and is computationally efficient. 
We validate the method via extensive simulations and further vali-
date it by applying it to molecular quantitative trait loci (QTLs) in 
blood21, recovering known transcriptional regulators. We then apply 
the method to expression quantitative trait loci (eQTL) in 48 tissues 
from the Genotype-Tissue Expression (GTEx) consortium22 and to 
46 diseases and complex traits, demonstrating genome-wide direc-
tional effects of transcription factor binding in both settings. We 
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further characterize the transcriptional programs underlying our 
complex trait associations via gene-set enrichment analyses using 
gene sets from the Molecular Signatures Database (MSigDB)23,24.

Results
Overview of methods. Our method for quantifying directional 
effects of signed functional annotations on disease risk, SLDP 
regression, relies on the fact that the signed marginal association of 
a SNP to disease includes signed contributions from all SNPs tagged 
by that SNP. Given a signed functional annotation with a directional 
effect on disease risk, the vector of marginal SNP effects on dis-
ease risk will therefore be proportional (in expectation) to a vector 
quantifying each SNP’s aggregate tagging of the signed annotation, 
which we call the signed LD profile of the annotation. Thus, our 
method detects directional effects by assessing whether the vector 
of marginal SNP effects and the signed LD profile are systematically 
correlated genome wide.

More precisely, under a polygenic model25 in which true causal 
SNP effects are correlated with a signed functional annotation, we 
show that

�α ∣ =E v r h Rv( ) (1)f g
2

where �α  is the vector of marginal correlations between SNP alleles 
and a trait, v is the signed functional annotation (re-scaled to norm 1)  
reflecting, for example, the signed effect of a SNP on transcription 
factor binding, R is the LD matrix, hg

2 is the SNP heritability of the 
trait, and rf is the correlation between the vector v and the vector of 
true causal effects of each SNP, which we call the functional correla-
tion. Equation (1), together with an estimate of hg

2, allows us to esti-
mate rf by regressing �α  on the signed LD profile Rv of v. To improve 
power, we use generalized least-squares regression to account for 
redundancy among linked SNPs. We assess statistical significance 
by randomly flipping the signs of entries of v, with consecutive SNPs 
being flipped together in large blocks (~300 blocks total), to obtain 
a null distribution and corresponding P values and false discovery 
rates (FDRs). We perform a multiple regression that explicitly condi-
tions on a ‘signed background model’ corresponding to directional 
effects of minor alleles in five equally sized minor allele frequency 
(MAF) bins, which could reflect confounding due to genome-
wide negative selection or population stratification. We note that 
SLDP regression requires signed effect size estimates �α  and quan-
tifies directional effects, in contrast to stratified LD score regres-
sion5, which analyzes unsigned χ2 statistics and quantifies unsigned 
heritability enrichment. Details of and intuition for the method are 
described in the Methods section and the Supplementary Note; we 

have released open-source software implementing the method (see 
URLs).

We applied SLDP regression using a set of 382 signed annota-
tions v, constructed using the Basset software19, each quantifying 
the predicted effects of SNP alleles on binding of a particular tran-
scription factor in a particular cell line. The resulting annotations 
were sparse, with only 0.2% of SNPs having non-zero entries on 
average (Methods and Supplementary Table 1).

Simulations. We performed simulations with real genotypes, simu-
lated phenotypes and our 382 signed transcription factor binding 
annotations to assess null calibration, robustness to confounding 
and power (Methods).

We first performed null simulations involving a heritable trait 
with no unsigned enrichment or directional association to any of 
our 382 annotations. The resulting P values were well calibrated 
(Fig. 1a, Supplementary Table 2, and Supplementary Fig. 1a).

We next performed null simulations involving a trait with 
unsigned enrichment but no directional effects; these simulations 
were designed to mimic unsigned genomic confounding as might 
arise from the co-localization of transcription factor binding sites 
with other enriched regulatory elements5,13 (Methods). We again 
observed well-calibrated P values (Fig.  1b). It is notable that our 
method is well calibrated even though it has no knowledge of the 
unsigned genomic confounder; this contrasts with unsigned enrich-
ment approaches, in which unsigned genomic confounders must be 
carefully accounted for and modeled5.

We next performed null simulations to assess whether our 
method remains well calibrated in the presence of confounding 
due to genome-wide directional effects of minor alleles on both 
disease risk and transcription factor binding, which could arise 
due to genome-wide negative selection or population stratifica-
tion (Methods). P values were well calibrated for the default version 
of the method, which conditions on the 5-MAF-bin signed back-
ground model, but were not well calibrated without conditioning on 
this model (Fig. 1c). The incorrect calibration that we observe when 
we do not include our signed background model could potentially 
be explained by genome-wide negative selection against decreased 
transcription factor binding26 resulting in a bias in the sign of the 
entries of our annotations (Supplementary Fig. 2). We condition on 
the signed background model in all analyses in this paper unless 
stated otherwise.

Finally, we performed causal simulations with true directional 
effects to assess the power and establish the unbiasedness of SLDP 
regression (Methods). The method is well powered to detect direc-
tional effects corresponding to a functional correlation of 2–6% 
(Fig.  2a, Supplementary Table  3, and Supplementary Figs.  3–5), 
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Fig. 1 | Simulations assessing null calibration. a–c, We report null calibration (q–q plots of two-sided SLDP regression − log10(P) values) in simulations 
of no enrichment (a), unsigned enrichment (b), and directional effects of minor alleles (c). The q–q plots are based on 382 annotations ×  1,000 
simulations =  382,000 (a), 1,000 (b), and two sets of 382 ×  1,000 =  382,000 (c) P values. A 5-MAF-bin signed background model is included in all 
cases except for the red points in c, which are computed with no covariates. We also report the average χ2-statistic corresponding to each set of P values. 
Numerical results are reported in Supplementary Table 2.
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similar to values observed in analyses of real traits (see “Analysis” 
sections below). Notably, the power of the method is improved 
dramatically by its use of generalized least-squares regression to 
account for redundant information (Fig. 2a) as well as by its model-
ing of untyped causal SNPs via the signed LD profile (Supplementary 
Fig. 3). In all instances, our method produced either unbiased or 
nearly unbiased estimates of functional correlation and related 
quantities (Fig. 2b and Supplementary Fig. 6).

Analysis of molecular traits in blood. Transcription factor binding 
is known to affect gene expression and other molecular traits27, and 
regulatory relationships in blood are particularly well character-
ized28. We therefore applied SLDP regression to 12 molecular traits 
in blood with an average sample size of n =  149 to further validate 
the method.

We first analyzed cis-eQTL data based on RNA-sequencing 
experiments in three blood cell types from the BLUEPRINT con-
sortium21 (Supplementary Table  4). We tested each of our 382 
transcription factor binding annotations for a directional effect on 
aggregate expression in each of the three blood cell types (Methods). 
We detected 409 significant associations at per-trait FDR <  5%, rep-
resenting 107 distinct transcription factor-blood cell type expres-
sion associations (Fig. 3a and Supplementary Table 5a). All of the 
detected associations were positive, implying that greater binding of 
these transcription factors leads to greater expression (in aggregate 
across genes); 78% of the associations involved transcription fac-
tors annotated as activating but not repressing in UnitProt29 (Fig. 3a 
and Methods). As expected, many of the detected associations reca-
pitulate known aspects of transcriptional regulation, including the 
pro-transcriptional roles of RNA polymerase II and other members 
of the transcription pre-initiation complex (PIC) as well as roles 
of transcription factors unrelated to the PIC but known to have 
activating activity30–32. We obtained similar results in an indepen-
dent set of whole-blood eQTLs based on expression array experi-
ments from the Netherlands Twin Registry (NTR)33 (Fig. 3b,c and 
Supplementary Table 5b,c).

We next conducted a similar analysis using histone QTLs 
(H3K27me1 and H3K27ac) and methylation QTLs for the three 
cell types in the BLUEPRINT data set. We detected 645 significant 
associations at per-trait FDR <  5%, four of which were negative 

(Fig.  3d,e and Supplementary Table  5d,e). Again, the majority of 
the positive associations (82%) involved unambiguously activat-
ing transcription factors29. The four negative associations involved 
MAFK and MAFF, both of which lack a transactivation domain34, 
and CTCF, which is known to act as an insulator35,36. Many of the 
detected associations recover known aspects of histone mark biol-
ogy36–44 and match a prior analysis of allelic imbalance in chromatin 
immunoprecipitation sequencing (ChIP-seq) data45.

Analysis of gene expression across 48 GTEx tissues. We next 
applied SLDP regression to GTEx eQTL across 48 tissues22 (average 
n =  214). We first tested each of our 382 transcription factor bind-
ing annotations for a directional effect on expression in each of the 
48 tissues in turn, analogous to our previous analysis of molecular 
traits in blood (Supplementary Table 6). For each significant asso-
ciation, we then assessed for tissue specificity by checking whether 
the association remained at least as significant when conditioning 
on average eQTL effects across tissues (Methods).

Our analysis yielded 2,330 annotation-tissue expression associa-
tions at per-trait FDR <  5%, representing 651 distinct transcription 
factor-tissue expression associations, of which 30 were robustly tis-
sue-specific in our conditional analysis (Fig. 4 and Supplementary 
Table  7). We detected both known and novel associations. For 
example, our results recapitulate known activating roles for FOXA1 
and FOXA2 in pancreas and other gastrointestinal tissues37–39, early 
B-cell factor 1 (EBF-1) in lymphocytes40,41, hepatocyte nuclear fac-
tors 4γ and 4α (HNF4G and HNF4A) in liver42,43, PU.1 in spleen44, 
and FOS in fibroblasts45 and nerve tissue46–48. We also detected 
ubiquitous activating signatures for the transcription pre-initiation 
complex members POL2, TAF1, and TBP (90% of the 28 tissues 
with a sample size above 150). Our results were concordant with 
transcription factor-tissue associations identified via a purely gene 
expression-based analysis (Methods and Supplementary Fig. 7).

Our analysis also uncovered many previously unknown asso-
ciations. For example, our most significant association in aorta is 
a previously unreported activating role for GABPA, one of several 
transcription factors whose binding sites are enriched near aortic 
aneurysm-specific genes49. In addition, our top, and only, associa-
tion in the brain tissue substantia nigra is TAF1. Neurodegeneration 
in the substantia nigra is a hallmark of Parkinson’s disease50, and 
TAF1 was recently shown to be the causal gene in a rare form of 
Parkinsonism51. Our analysis links these two facts, potentially shed-
ding light on the mechanism of TAF1’s role in Parkinsonism.

Our tissue-specific analysis (Methods) also suggests new master-
regulatory relationships for further exploration (Fig. 4). For exam-
ple, we detected a robust tissue-specific activating role for CEBPB 
in pancreas, where it was our top result. Although CEBPB is not a 
classic pancreatic transcription factor52, it is expressed in pancreatic 
beta cells specifically under metabolic stress52. We also identified a 
robust tissue-specific activating role in skeletal muscle for MAFF, 
a transcription factor whose expression is increased by an order 
of magnitude in muscle tissue after exercise53 (Methods). MAFF is 
typically considered a repressor, and we identified it as such in our 
blood histone quantitative trait loci analysis; the positive associa-
tion here suggests a tissue-specific function in muscle, perhaps via 
recruitment of an as-yet uncharacterized activator. Finally, we iden-
tified robust tissue-specific roles for CTCF as a repressor in tibial 
artery and an activator in the brain tissue putamen. While CTCF is 
known to be capable of both repression and activation35,36,54, these 
results suggest that its repressive/activating role varies meaningfully 
across tissues.

Our results also demonstrate how our method can offer insights 
into non-tissue-specific aspects of transcriptional regulation. For 
example, YY1, a pioneer transcription factor that has recently attracted 
considerable interest55–58 has been theorized via detailed experimen-
tal work to mediate enhancer–promoter interaction59. However, YY1 
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Fig. 2 | Simulations assessing power, bias, and variance. a, Power curves 
comparing SLDP regression using generalized least-squares (that is, 
weighting) to an ordinary (that is, unweighted) regression of the summary 
statistics on the signed LD profile. Error bars indicate standard errors 
of power estimates. b, Assessment of bias and variance of the SLDP 
regression estimate of rf, across a range of values of the true rf. Blue box and 
whisker plots depict the sampling distribution of the statistic, while the red 
dots indicate the estimated sample mean and the red error bars indicate 
the standard error around this estimate. Both a and b are conducted at 
realistic sample size (47,360) and heritability (0.5). Numerical results are 
reported in Supplementary Table 3.
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knockdown experiments have shown a mix of upregulation and  
downregulation of many genes59, presumably due to downstream 
regulatory cascades. In contrast, our analysis, which due to its use of 
eQTLs is able to focus exclusively on cis-regulatory effects, shows a 
robust, predominantly activating role for YY1 across 25 tissues.

Analysis of 46 diseases and complex traits. We applied SLDP 
regression to 46 diseases and complex traits with an average sample 
size of 289,617 (URLs and Supplementary Table 8). We first tested 
each of our 382 transcription factor binding annotations against 
each of the 46 traits in turn (Table 1 and Supplementary Table 9). 
For each significant association, we then characterized the impli-
cated transcriptional programs by evaluating 10,325 gene sets from 
MSigDB23,24 (URLs) for enrichment among the genomic regions 
driving the association (controlling for LD and co-localizing genes; 
Methods) (Table 1 and Supplementary Table 10).

Our analysis yielded 77 significant annotation-trait associations 
at per-trait FDR <  5%, spanning six diseases and complex traits 
(Fig. 5 and Supplementary Table 9a) and representing 12 indepen-
dent transcription factor–trait associations (after pruning correlated 
annotations; Table  1 and Supplementary Note). Our results were 
4.3×  enriched for autoimmune disease associations (Supplementary 
Note). We verified empirically that our results are not driven by 
directional effects of minor alleles (Supplementary Table  9b and 
Supplementary Note), and we computed a lower bound on the 
number of independent transcription factor binding sites contrib-
uting to each association (74 on average; Table  1, Supplementary 
Fig. 8, and Methods).

Of our 12 independent transcription factor–trait associations, 
five refine emerging theories of disease while seven are previ-
ously unknown. Due to space restrictions, we highlight two rela-
tionships from each category (Fig. 6 and Supplementary Table 11; 
Fig.  7 and Supplementary Table  12), providing discussion of 
additional relationships in the  Supplementary Note. We begin 
with the transcription factor–trait associations that build on pre-
vious knowledge (Fig. 6). First, we detected a positive association 
between genome-wide binding of BCL11A and years of education 
(Fig. 6a) that aligns with existing evidence from educational attain-
ment GWAS60, rare-variant studies of intellectual disability61–64, and 
experimental knockout work in mice64, as well as our fine-mapping 
of the BCL11A GWAS locus (Supplementary Table 13). Our result 
suggests that BCL11A causes intellectual disability not via regula-
tion of a few key disease genes but rather via binding throughout 
the genome causing modulation (in cis) of genes comprising a broad 
transcriptional program relevant to brain function or development 
(see Discussion). Furthermore, our MSigDB gene-set enrichment 
analysis allows us to characterize this putative transcriptional pro-
gram as being significantly enriched for genes involved in mTOR 
signaling and in cholesterol metabolism (Fig. 6a and Supplementary 
Table 10). MTOR is an intellectual disability gene65,66 with links to 
cholesterol67,68, defects in brain cholesterol metabolism have been 
linked to central nervous system disease69,70, and BCL11A has  
also been linked to lipid levels71–73. These observations raise the  
possibility that mTOR causes intellectual disability by interacting 
with BCL11A to regulate cholesterol metabolism in the developing 
brain (Supplementary Note).
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Fig. 4 | Analysis of Gtex eQtL using signed LD profile regression. We plot polarized − log10(P) values for all significant associations as a heatmap. 
Columns denote the 36 GTEx tissues (of 48 GTEx tissues tested) with significant associations. Rows denote the 67 transcription factors (of 75 
transcription factors tested) with significant associations, collapsing all annotations corresponding to a single transcription factor into one row and 
displaying in each cell the most significant result. Cells with dots indicate associations that show robust evidence for tissue-specificity in our conditional 
analysis (see main text and Methods). Cells indicated in outline correspond to associations described in the main text, with dashed outline indicating 
known associations and solid outline indicating previously unknown associations or associations supporting emerging theories. GWAS data are described 
in Supplementary Table 6, and the statistical method and multiple comparisons adjustments are described in the Methods. Numerical results are reported 
in Supplementary Table 7.
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Table 1 | independent transcription factor–trait associations from analysis of diseases and complex traits using signed LD profile 
regression

trait top transcription  
factor (No.)

rf P q Minimum no. of sites top 2 significant MSigDB enrichments

Years of education BCL11A (1) 2.4% 3.9 ×  10−5 1.5 ×  10−2 104 •  Cholesterol homeostasis
•  ↑  on mTOR inhibition

Crohn’s POL2a (20) 5.3% 4.8 ×  10−5 1.5 ×  10−2 74 •  ↓  on immunosuppression
•  regulation of reproductive process

Anorexia SP1 (1) − 8.9% 1.1 ×  10−4 4.0 ×  10−2 30 •  ↑  on mTOR inhibition
•  Androgen response

HDL FOS (1) 4.8% 1.2 ×  10−4 4.6 ×  10−2 19 •  Regulated by NF-κ B in response to TNF
-

Eczema CTCF (12) 2.7% 1.4 ×  10−4 3.4 ×  10−2 106 •  ↑  on BCL6 knockout
•  ↑  on IL21 stimulation

Crohn’s ELF1 (1) 4.9% 1.6 ×  10−4 1.5 ×  10−2 58 •  ↓  on PPARγ  activation
•  Transcription co-repressor activity

Crohn’s POL2 (1) 4.4% 2.6 ×  10−4 1.5 ×  10−2 50 •  ↓  in fibroblast early serum response
•  ↓  on ALK knockdown

Lupus CTCFb (36) − 5.0% 3.6 ×  10−4 4.4 ×  10−2 100 •  Targets of NF-κ B
•  ↓  in LMPP versus GMP cells on IKZF1 knockout

Crohn’s TBP (1) 5.4% 4.9 ×  10−4 1.5 ×  10−2 54 •  Late estrogen response
-

Crohn’s E2F1 (1) 4.3% 6.4 ×  10−4 2.7 ×  10−2 90 •  Cancer module 323 (immune)
•  Targets of miR-17-3p

Crohn’s IRF1 (1) 4.7% 9.8 ×  10−4 1.5 ×  10−2 90 •  Regulation of nuclear division
•  Regulation of type I interferon production

Crohn’s ETS1 (1) 6.1% 1.4 ×  10−3 1.5 ×  10−2 114 •  Neighborhood of autophagy-associated EI24
•  Targets of MYC

For each of 12 independent associations at per-trait FDR <  5% after pruning correlated annotations (R2 ≥  0.25), we report the associated trait; the transcription factor of the most significant annotation  
and the number of correlated annotations with significant associations; the estimated functional correlation rf, P value, q value, and minimum number of transcription factor binding sites contributing  
to the association; and the top two significant MSigDB gene-set enrichments among loci driving the association. Linked transcription factors producing significant associations: aTAF1, TBP; bRAD21.  
See Supplementary Table 10 for full gene set names and enrichment q values (all < 5 ×  10−2). GWAS data are described in Supplementary Table 8, gene set data are described in the Methods, and the 
statistical method and multiple comparisons adjustments are described in the Methods. LMPP, lymphoid-primed pluripotent progenitor; GMP, granulocyte-monocyte precursor.
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Second, we detected a positive association between genome-wide 
binding of interferon regulatory factor 1 (IRF1) and Crohn’s disease 
(Fig. 6b), a case in which existing GWAS evidence has been sugges-
tive but not conclusive. Although IRF1 lies in a locus associated with 
Crohn’s disease in multiple GWAS74–76 (one of the earliest Crohn’s 
disease associations77), this locus remains mysterious. Strong LD 
makes it challenging to determine which variant(s) are causal, 
and high gene density (23 protein-coding genes within 500 kb of 
IRF1) complicates the task of determining which gene is affected 
by any putative causal variant, resulting in several genes74,78,79 being 
previously nominated as potentially causal. For example, a recent 
large-scale fine-mapping study80 narrowed the causal signal to eight 
SNPs including rs2188962, an eQTL for SLC22A5 in immune and 

gut epithelial cells22,80 but also for IRF1 in blood33. Transcriptome-
wide association studies have also been inconclusive81–83. Our result 
provides genome-wide evidence for a causal link between IRF1 and 
Crohn’s disease that, unlike single-locus approaches, is not fun-
damentally limited by LD and pleiotropy near the IRF1 gene (see 
Discussion). The top results in our MSigDB gene-set enrichment 
analysis strengthen our finding: the regions driving this association 
are most significantly enriched for genes involved in production 
of type I interferon and regulation of nuclear division (Fig. 6b and 
Supplementary Table  10), matching well-known roles of IRF184,85. 
We note that several other transcription factor–trait associations 
from our analysis implicate causal genes at established GWAS loci, 
including ELF1-Crohn’s disease and ETS1-Crohn’s disease, with 
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gene-set enrichments suggesting connections to existing Crohn’s 
disease drugs and to the role of autophagy in Crohn’s disease patho-
genesis, respectively (Table 1 and Supplementary Note).

We next discuss two selected transcription factor–trait associa-
tions that were previously unknown (Fig.  7). First, we detected a 
positive association between genome-wide binding of CTCF and 
eczema (Fig. 7a). We do not observe a GWAS signal for eczema at the 
CTCF locus. This could be because the CTCF gene is under strong 
selective constraint (probability of loss-of-function intolerance86  
= 1.00, greater than 99.9% of genes) and highlights the potential of 
our method to uncover causal roles for genes that harbor relatively 
little variation. The top two significant MSigDB gene-set enrichments 
for CTCF-eczema are convergent: genes upregulated in Treg cells on 
knockout of the inflammatory regulator BCL6; and genes upregu-
lated in response to stimulation by the immune signaling molecule 
IL21, which is a known regulator of BCL6 activity87,88 (Fig. 7a and 
Supplementary Table 10). These enrichments, because they pertain 
to genes putatively regulated in cis by CTCF to cause eczema, suggest 
a detailed cascade that we hypothesize to modulate eczema risk: IL21 
signaling regulates BCL6, which in turn regulates CTCF to activate 
a broad transcriptional program that increases eczema risk. This 
hypothesis makes three predictions: it predicts that BCL6 modulates 
CTCF activity, and it predicts that IL21 and BCL6 each affect eczema 
risk. Indeed, we determined that BCL6 has many binding sites 
near the CTCF promoter in publicly available ChIP-seq data69,89–91 
(Supplementary Table 14), and the IL21 and BCL6 genes each fall in 
eczema GWAS loci92–94 (in each case along with seven other protein-
coding genes within 500 kb). Thus, the association between CTCF 
binding and eczema that we detected nominates causal genes at two 
different existing eczema GWAS loci and provides a parsimonious 
mechanism that explains their effect on eczema via a regulatory cas-
cade that activates a CTCF-mediated transcriptional program.

Second, we detected a negative association between genome-wide 
binding of SP1 and anorexia (Fig. 7b), a heritable trait for which no 
loci reach genome-wide significance in our GWAS data95. SP1 lev-
els observationally correlate negatively with psychiatric conditions 
such as schizophrenia96,97 (which is positively genetically correlated 
with anorexia98), but this association has not been shown to be 
causal and has not previously been observed in GWAS of psychiat-
ric traits. Our MSigDB gene-set enrichment results for this associa-
tion yielded significant enrichments for an androgen response gene 
set and an mTOR signaling gene set (Fig.  7b and Supplementary 
Table 10). (Years of education, for which an mTOR signaling gene-
set was also among the top two MSigDB enrichments, is also signifi-
cantly positively genetically correlated with anorexia98; the median 
rank of the top-scoring mTOR gene set across the 10 other inde-
pendent transcription factor-complex trait associations was 1,123, 
of 10,325.) The androgen response result is intriguing given the 
sex-imbalanced nature of this phenotype99. The mTOR signaling 
result is noteworthy given the well-established connections between 
mTOR, caloric restriction, and growth100; it also suggests that a link 
between SP1 and mTOR could explain prior observations tying SP1 
to insulin101,102, appetite103,104, and energy metabolism105. mTOR has 
also been shown to play an important role in androgen signaling106, 
suggesting a potential unification of these two signals.

We provide additional discussion of other transcription factor–
trait associations in the Supplementary Note (Supplementary Fig. 9 
and Supplementary Tables 15 and 16).

Discussion
We have introduced a method, signed LD profile regression, for iden-
tifying genome-wide directional effects of signed functional annota-
tions on diseases and complex traits. Our approach allows us to draw 
fine-grained biological conclusions that are not confounded by sim-
ple genomic co-localization of functional elements. The directional 
relationships we identify concretely implicate broad disease-relevant 

transcriptional programs. Our characterization of these programs 
via gene-set enrichment analyses yields detailed hypotheses about 
disease mechanisms that in several cases mechanistically link exist-
ing GWAS loci and disparate molecular evidence into a parsimoni-
ous mechanism mediated by the associated transcription factor.

Our method differs from unsigned GWAS enrichment meth-
ods1–7 by assessing whether a systematic genome-wide correlation 
exists between a signed functional annotation and the (signed) true 
causal effects of SNPs on disease, rather than assessing whether a set 
of SNPs have large effects on a disease without regard to the direc-
tions of those effects. Our method also differs from single-locus 
GWAS methods11,12,81 in that a consistent genome-wide directional 
effect across a large set of transcription factor binding sites (Table 1) 
is less susceptible to pleiotropy, LD, and allelic heterogeneity81,82. 
Finally, our method differs from genetic correlation and Mendelian 
randomization98 analyses, which can be confounded by reverse cau-
sality and pleiotropic effects107–109; in contrast, the sequence-based 
nature of our annotations makes them ideal instrumental variables 
for the effect of transcription factor binding on the trait of interest 
(Supplementary Note).

The genome-wide nature of our method means that our results 
constitute instances in which transcription factors affect traits via 
coordinated regulation of gene expression throughout the genome110 
(a ‘genome-wide’ model) rather than via regulation of one or a small 
number of key disease genes111 (a ‘local’ model). This distinction has 
potential implications for drug development as well as attempts to 
elucidate disease mechanisms (Supplementary Note). For example, 
as we have shown, the genome-wide nature of the putative tran-
scriptional programs identified by our method allows us to charac-
terize and interpret these programs by aligning them with existing 
gene sets, leading in some cases to detailed mechanistic hypotheses.

There exist many potentially effective methods for construct-
ing signed transcription factor binding annotations1,13–16,18,112,113 
and many potential data sets on which to train them114–116. We 
present an initial exploration of alternative annotations gener-
ated using some of these, along with a discussion of potential 
signed annotations besides transcription factor binding annota-
tions, in the Supplementary Note (Supplementary Figs. 10–14 and 
Supplementary Tables 1–20).

We note several limitations of signed LD profile regression. First, 
although our results are less susceptible to confounding due to their 
signed nature, they are not immune to it: in particular, our method 
cannot distinguish between two transcription factors that are close 
binding partners and thus share sequence motifs, and it likewise 
cannot distinguish between binding of the same transcription fac-
tor in different cell types, as the resulting annotations could be 
highly correlated. Second, we used annotations constructed using 
data from cell lines, which is non-ideal because chromatin dynam-
ics in cell lines do not necessarily match those in real tissue; we note, 
however, that although this reduces our power and the effect sizes 
we see, it does not introduce false positives into our results. Third, 
the interpretability of our MSigDB gene-set enrichment analysis is 
limited by the potential for distinct gene sets to have overlapping 
membership and for co-expressed genes to be included in the same 
gene sets; however, we believe this is somewhat ameliorated by the 
fact that we treat blocks of genes together in our empirical null 
(Methods). Due to space restrictions, additional limitations are dis-
cussed in the Supplementary Note.

Despite these limitations, signed LD profile regression is a pow-
erful new way to leverage functional genomics data to draw mecha-
nistic conclusions from GWAS about both diseases and underlying 
cellular processes.

URLs. Signed LD profile regression, open-source software is  
available at http://www.github.com/yakirr/sldp. Plink2, https://
www.cog-genomics.org/plink2/. BLUEPRINT consortium data, 
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ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/qtl_
as/QTL_RESULTS/Transciptome-wide association study (TWAS) 
weights for Netherlands Twin Registry (NTR) data, https://data.
broadinstitute.org/alkesgroup/FUSION/WGT/NTR.BLOOD.
RNAARR.tar.bz2. GTEx eQTL data, https://www.gtexportal.org/
home/datasets. MSigDB data, http://software.broadinstitute.org/
gsea/msigdb. GTRD data, http://gtrd.biouml.org/. HOCOMOCO 
motif data, http://hocomoco11.autosome.ru/

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0196-7.
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Methods
Signed LD profile regression. Intuition. Our method for quantifying directional 
effects of signed functional annotations on disease risk, signed LD profile 
regression, relies on the following intuition. Suppose there are M SNPs and 
we are given a signed functional annotation, specified by a length-M vector v, 
with a directional linear effect on disease risk. For example, v might be a vector 
whose mth entry is the effect of SNP m on binding of some transcription factor. 
If we knew the length-M vector β of the true causal effects of the same SNPs on 
a trait, we could simply regress β on v to evaluate whether there is a non-trivial 
signed association across SNPs m between vm and βm. In reality, we cannot do this 
because we do not observe β; instead we observe a vector, denoted �α, of GWAS 
summary statistics describing the marginal correlation of every SNP to our trait 
of interest. This vector differs from β because it includes both causal and tagging 
effects, plus statistical noise. Specifically, it can be shown mathematically that, in 
expectation, �α will equal the matrix-vector product Rβ where R is the M ×  M LD 
matrix. Therefore, just as β would be proportional to v in the presence of a signed 
effect, �α β≈R( ) would likewise be proportional to Rv, which is a vector capturing 
each SNP’s aggregate tagging of the signed annotation. This means that instead of 
regressing β on v (which is impossible since we do not observe β), we can regress 
�α on Rv. We call the vector Rv the signed LD profile of v, and thus our method is 
called signed LD profile regression. The remainder of our technical material is 
oriented toward: (i) weighting this regression to achieve optimal power; (ii) being 
able to efficiently perform the required computations; (iii) determining the proper 
way to test the null hypothesis of no signed effect; and (iv) controlling for potential 
confounding due to directional effects of minor alleles.

Model and estimands. Let M be the number of SNPs in the genome. We assume a 
linear model:

Nβ β σ∣ ~y x x, ( , ) (2)T
e
2

where x ∈  RM and y ∈  R are the standardized genotype vector and phenotype, 
respectively, of a randomly chosen individual from some population, β ∈  RM 
is a vector of true causal effects of each SNP on phenotype, and σe

2 represents 
environmental noise. Given a signed functional annotation v ∈  RM, we then model

β μ σ∣ ~v v I[ , ] (3)2

where the scalar μ represents the genome-wide directional effect of v on β, σ2 
represents other sources of heritability unrelated to v, and the notation [⋅ ,⋅ ] is used 
to specify the mean and covariance of the distribution without specifying any 
higher moments.

Although we can estimate μ, its value depends on the units of the annotation 
and the heritability of the trait. Because of this, we focus instead on the functional 
correlation rf, which re-scales μ to be dimensionless and is defined as

β μ= =r x x v v Rv
h

: corr( , ) (4)f
T T

T

g
2

where hg
2 =  var(xTβ) is the SNP heritability of the phenotype and R =  E(xxT) ∈  RM×M 

is the (signed) population LD matrix of the genotypes. The quantity rf can be 
interpreted as a form of genetic correlation; the value of r f

2 cannot exceed the 
proportion of SNP heritability explained by SNPs with non-zero values of v.  
(Note that rf can also be defined as a correlation between β and v; this definition  
is approximately equivalent in expectation under our random effects model, 
provided ≈ ∣ ∣v Rv vT 2.) We additionally estimate =h r hv f g

2 2 2, the total phenotypic 
variance explained by the signed contribution of v to β, as well as ∕ =h h rv g f

2 2 2.  
For annotations with small support, these quantities are expected to be small 
in magnitude. To see this, notice that hv

2 cannot exceed the total (unsigned) 
phenotypic variance explained by SNPs with non-zero values of v. It follows that 
r f

2 cannot exceed the proportion of (unsigned) SNP heritability explained by 
SNPs with non-zero values of v. For more detail on the model and estimands, see 
the Supplementary Note.

Main derivation. Let X ∈  RN×M be the genotype matrix in a GWAS of N individuals, 
with standardized columns, and let Y ∈  RN be the phenotype vector. In the 
Supplementary Note, we show that under the above model the following identity 
approximately holds:

�












α μ σ∣ ~ +v Rv R R
N

, (5)2 2

where �α :=  XTY/N is a vector whose mth entry contains the marginal correlation of 
SNP m to the phenotype and R ∈  RM×M is the population LD matrix. Equation (1)  
from the main text can be derived from equation (5) by re-scaling v so that 
vTRv =  1, then substituting for μ.

We call Rv the signed LD profile of v. Equation (5) means that we can estimate μ 
by regressing �α on the signed LD profile using generalized least-squares regression 

with Ω :=  σ2R2 +  R/N as the inverse weight matrix. (We assign a regression weight of 
zero to SNPs in the major histocompatibility complex region.) It can be shown that 
if (a) all causal SNPs are typed, (b) sample size is infinite, and (c) R is invertible, 
this method is equivalent to estimating β via �α−R 1  and then regressing this 
estimate on v to obtain μ, which is the optimal regression-based approach in that 
setting. Note that because we generate P values for hypothesis testing empirically 
(see below), we are guaranteed that our generalized least-squares scheme will 
remain well calibrated even if our estimate of the matrix Ω is inaccurate due to, 
for example, mis-match between the reference panel and the study population. 
Once we have estimated μ, we re-scale this estimate to yield an estimate of rf and 
other estimands of interest. For more detail on derivations and computational 
considerations, see the Supplementary Note.

Null hypothesis testing. To test the null hypothesis H0:μ =  0 (or, equivalently, 
H0:rf =  0), we split the genome into approximately 300 blocks of approximately 
the same size with the block boundaries constrained to fall on estimated 
recombination hotspots117. We then define the null distribution of our statistic as 
the distribution arising from independently multiplying v by one independent 
random sign per block. We perform this empirical sign-flipping many times to 
obtain an approximation of the null distribution and corresponding P values. 
Our use of sign-flipping ensures that any true positives found by our method are 
the result of genuine first-moment effects; if in contrast we estimated standard 
errors using least-squares theory or a re-sampling method such as the jackknife 
or bootstrap, our method might inappropriately reject the null hypothesis only 
because the variance of β is higher in parts of the genome where Rv is large in 
magnitude. This would make our method susceptible to confounding due to 
unsigned enrichments, as might arise from the co-localization of transcription 
factor binding sites with enriched regulatory elements such as enhancer regions. 
Additionally, the fact that we flip the signs of SNPs in each block together ensures 
that our null distribution preserves any potential association of our annotation to 
the LD structure of the genome. See the Supplementary Note for more details.

Controlling for covariates and the signed background model. Given a signed 
covariate u ∈  RM, we can perform inference on the signed effect of v conditional on 
u by first regressing Ru out of �α and out of Rv using the generalized least-squares 
method outlined above, and then proceeding as usual with the residuals of �α and 
Rv.

Unless stated otherwise, all analyses in this paper control in this fashion for a 
‘signed background model’ consisting of five annotations u1,… , u5, defined by

= − α+u i1{MAF is in th quintile} 2MAF (1 MAF ) (6)m
i

m m m
1 s

where MAFm is the minor allele frequency of SNP m and αs is a parameter 
describing the MAF dependence of the signed effect of minor alleles on phenotype. 
Based on the literature on MAF dependence of the unsigned effects var(βm), we set 
αs =  − 0.3118.

382 transcription factor annotations. Briefly, we constructed the annotations by 
training a sequence-based neural network predictor of ChIP-seq peak calls, using 
the Basset software19, to predict the results of 382 transcription factor binding 
ChIP-seq experiments from ENCODE119 and comparing the neural network’s 
predictions for the major and minor allele of each SNP in the ChIP-seq peaks.

Specifically, we downloaded every ChIP-seq and DNase I hypersensitivity 
experiment in ENCODE and trained the Basset model to jointly predict each 
downloaded track on a set of held-out genomic segments. (We included tracks 
other than transcription factor binding tracks because training predictions using 
all tracks slightly improved prediction accuracy for the transcription factor binding 
tracks.) After training the joint predictor, we retained the predictions for every 
transcription factor binding track for which (i) the number of SNPs in that track’s 
ChIP-seq peaks with non-zero difference in Basset predictions between the major 
and minor allele was at least 5,000 in our 1000 G reference panel, and (ii) Basset’s 
estimated area under the precision-recall curve was at least 0.3. This yielded a 
set of 382 transcription factor ChIP-seq experiments that spanned 75 distinct 
transcription factors and 84 distinct cell lines. For each experiment, we constructed 
an annotation via

= ∈ −v m C P P1{ } ( ) (7)m m
a

m
A

where C is the set of SNPs in the ChIP-seq peaks arising from the experiment, Pm
a  

is the Basset prediction for the 1,000 base-pair sequence around SNP m when the 
minor allele is placed at SNP m, and Pm

A is the Basset prediction for the 1,000 base-
pair sequence around SNP m when the major allele is placed at SNP m. (We always 
used the minor allele as the reference allele in both our transcription factor binding 
annotations and our GWAS summary statistics.)

Simulations. All simulations were carried out using real genotypes of individuals 
with European ancestry from the GERA cohort120 (n =  47,360). The set of M =  2.7 
million causal SNPs was defined as the set of genome-wide very well imputed SNPs 
(INFO ≥ 0.97) that had very low missingness (< 0.5%) and non-negligible MAF 
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(MAF ≥ 0.1%) in the GERA data set, and were represented in our 1000 G Phase 
3 European reference panel107,121. We simulated traits using normally distributed 
causal effect sizes (with annotation-dependent mean and variance in some cases), 
with hg

2 =  0.5.

Null simulations. For the simulations in Fig. 1a, we simulated 1,000 independent 

null phenotypes with the architecture N�β σ
. . .

(0, )m

i i d
2  with σ2 =  ∕h Mg

2  and hg
2 =  0.5. 

For each phenotype, we computed GWAS summary statistics using plink2122 
(URLs), adjusting for three principal components as well as GERA chip type as 
covariates. For each of our 382 transcription factor annotations, we then ran SLDP 
regression on each of these 1,000 phenotypes, yielding a set of 382,000 P values. 
(Supplementary Fig. 1a shows an analysis of the P value distribution for each 
annotation individually, confirming correct calibration for these annotations.)

For the simulations in Fig. 1b, we simulated 1,000 independent traits in which 
each trait had an unsigned enrichment for a randomly chosen annotation: after 
choosing an annotation v, we set Nβ σ τ~ + ≠. . . v1(0, { 0})m m

i i d 2 2  where σ2 and τ2 
were set to achieve hg

2 =  0.5 and a 20×  unsigned enrichment for the SNPs with 
non-zero values of v. We then computed summary statistics as above and ran SLDP 
regression to assess v for a genome-wide directional effect. This procedure yielded 
1,000 P values.

For the simulations in Fig. 1c, we simulated 1,000 independent phenotypes 
with a directional effect of minor alleles: we set Nβ μ σ~. . . u( , )m m

i i d 1 2  where um
1  is 

non-zero if SNP m is in the bottom quintile of the MAF spectrum of the GERA 
sample and 0 otherwise, as in the signed background model. We set μ such that 
10% of heritability would be explained by this directional effect, and then set 
σ2 to achieve hg

2 =  0.5. We then computed summary statistics as above and ran 
SLDP regression to assess for a directional effect of each of our 382 annotations 
on each of the 1,000 phenotypes, yielding a set of 382,000 P values. (We note 
that this represents a best-case scenario in which the background model exactly 
matches the confounding being simulated, up to differences in MAF between the 
reference panel and the GWAS sample, and we caution that our method may not be 
appropriate for annotations with much stronger correlations to minor alleles than 
the annotations that we analyze here; Supplementary Fig. 1b.) Finally, we repeated 
the same computation but running SLDP regression without the 5-MAF-bin signed 
background model to obtain an additional set of 382,000 P values.

Causal simulations. For the simulations in Fig. 2, we fixed a representative 
annotation v (binding of IRF4 in GM12878), and simulated traits using 

Nβ μ σ~. . . v( , )m m
i i d 2 , with μ set to achieve rf =  {0, 0.005, 0.01,… , 0.05} and σ2 set to 

achieve hg
2 =  0.5 in each case. For each value of rf, we simulated 100 independent 

traits, computed summary statistics using plink2, and then ran each of the methods 
under consideration using the annotation v. In addition to the findings stated in 
the main text, our simulations also show that the power of our method increases 
with sample size and SNP heritability (Supplementary Fig. 4), and is only minimally 
affected by within-Europe reference panel mismatch (Supplementary Fig. 5).

Analysis of molecular traits in blood. We downloaded BLUEPRINT consortium 
QTL data for gene expression, H3K4me1, H3K27ac, and methylation in three 
different blood cell types with sample sizes of n =  158, 165, and 125 for monocytes, 
neutrophils, and T cells, respectively21 (Supplementary Table 4 and URLs). For each 
of the three gene expression traits, we constructed one summary statistics vector 
�α by meta-analyzing, for each SNP, the marginal effect sizes of that SNP for the 
expression of all nearby genes. Specifically, we set

� �∑α α=
∣ ∣ ∈G
1

(8)m
m k G

m
k( )

m

where Gm is the set of all genes within 500 kb of SNP m, and �αm
k( ) is the marginal 

correlation of SNP m to the expression of gene k. Assuming independence of 
expression across genes this is analogous to a fixed-effects meta-analysis across 
genes at every SNP to determine that SNP’s effect on aggregate expression, 
although our results do not rely on this theoretical characterization because of the 
empirical, signed nature of our null hypothesis testing procedure. Since in practice 
gene expression is not independent across genes, the scale of the resulting vector 
�α is arbitrary. Therefore, we placed all such vectors on the same scale by scaling 
them so that they have an estimated SNP heritability of 0.5. (This only affects the 
regression weights used by SLDP regression.) Applying the same procedure to the 
two histone marks and to methylation in addition to gene expression yielded 12 
sets of summary statistics (Supplementary Table 4).

We ran SLDP regression using each of our 382 transcription factor annotations 
for each of these 12 traits. We obtained results at FDR <  5% using the Benjamini–
Hochberg procedure123 within each of the 12 traits and reported the union of 
significant results across cell types for each trait. We determined the top 100 
associations to display in Fig. 3a by choosing the significant associations with the 
highest estimated values of rf.

For our replication analysis, we used expression array-based whole blood 
eQTL data from the NTR33, which we obtained by downloading the set of TWAS 

weights81 computed for that data set (Supplementary Table 4 and URLs). We then 
proceeded as above. 196 of the 409 BLUEPRINT gene expression associations 
replicated (same direction of effect with nominal P <  0.05). We note, however,  
that because TWAS weights were only available for genes with a significantly 
heritable cis-expression in NTR, we only had data for 2,454 genes compared  
with 15,023–17,081 genes for the BLUEPRINT traits, thereby lowering our  
power in this analysis.

Comparison to UniProt annotations. For each transcription factor represented 
in our annotations, we queried the UniProt database29 to establish whether the 
transcription factor was: (unambiguously) ‘activating’, defined as all transcription 
factors annotated as having activating activity but not repressing activity in 
UniProt; (unambiguously) repressing, defined as all transcription factors with 
repressing activity but not activating activity; or ‘ambiguous’, defined as all 
transcription factors with both or neither activities. 78% and 82% of our positive 
associations in the BLUEPRINT eQTLs and chromatin QTLs, respectively, 
were unambiguous activators. The set of significant positive SLDP associations 
for eQTLs/chromatin QTLs were enriched for (unambiguously) ‘activating’ 
transcription factors compared to the set of annotations as a whole (P =  7.9 ×  10−43 
for eQTL results and P =  1.9 ×  10−9 for chromatin QTL results). For additional 
details, see Supplementary Note.

Analysis of gene expression across 48 GTEx tissues. We downloaded GTEx v7 
eQTLs for all 48 tissues for which data were available and processed them using the 
same procedure described for the blood molecular traits, resulting in one vector 
of summary statistics per GTEx tissue (Supplementary Table 6 and URLs). We ran 
SLDP regression using each of our 382 transcription factor annotations for each 
of these tissues. We obtained results at FDR <  5% using the Benjamini–Hochberg 
procedure123 within each of the 48 tissues.

Conditional analysis for tissue-specific effects. We obtained a set of eQTL  
summary statistics for a fixed-effect meta-analysis across the GTEx tissues124  
and processed these via the procedure described above into a single vector �α T( ).  
For each tissue t, we then residualized �α T( ) out of the vector �α t( ) of eQTL data for 
tissue t to obtain a residualized vector �α ′t( ). This amounts to subtracting a scalar 
multiple of �α T( ) from �α t( ), with the scalar determined to remove as much signal  
as possible from �α t( ). For each significant association between an annotation  
v and a vector �α t( ) from our main GTEx analysis, we then compared the P value  
of that association to the P value obtained for the association between v and  
the residualized vector �α ′t( ), declaring as tissue-specific any association for  
which the latter was at least as significant as the former. For additional details, 
see Supplementary Note.

This criterion for tissue-specificity is conservative and stands in contrast to, 
for example, reporting associations that remain significant at a specified threshold 
after conditioning. The latter approach is susceptible to the fact that conditioning 
on a noisily measured confounder can produce false positives125; associations 
meeting the former criterion are likely to be robustly tissue-specific.

Assessment for concordance with absolute expression levels in GTEx tissues. Briefly, 
we assessed whether the proportion of significant transcription factor associations 
in which the transcription factor was expressed above a minimum threshold 
in the associated GTEx tissue was greater than the corresponding proportion 
for non-significant transcription factors. This held in 32 out of the 34 tissues 
for which we could perform the comparison (P =  2.1 ×  10−15 for trend across 
tissues; see Supplementary Fig. 7 for breakdown by tissue.) For additional details, 
see Supplementary Note.

Analysis of 46 diseases and complex traits. We applied SLDP regression to 46 
diseases and complex traits with an average sample size of 289,617, including 
16 traits with publicly available summary statistics and 30 UK Biobank traits for 
which we have publicly released summary statistics computed using BOLT-LMM 
v2.392 (Supplementary Table 8 and URLs). We ran SLDP regression using each 
of our 382 transcription factor annotations for each of these traits. We obtained 
results at per-trait FDR <  5% using the Benjamini–Hochberg procedure123. We 
report as significant results at a per-trait FDR <  5%, following standard practice. 
However, when many traits are analyzed, per-trait FDR control does not imply 
global FDR control, and we estimate the global FDR of our results to be 9.4% 
(Supplementary Note).

MSigDB gene-set enrichment analysis of results on diseases and complex traits. 
We downloaded all 10,325 MSigDB gene sets, which are organized into eight 
distinct tranches based on their origin, from the MSigDB online portal (URLs). 
We also downloaded a set of LD blocks in Europeans derived from estimated 
recombination hotspots117 and converted each gene set into a length-1693 vector s 
with one entry per LD block whose ith entry equaled the number of genes from the 
set that are present in the ith LD block. We then converted each significant SLDP 
regression association between an annotation v and a trait summary statistics vector 
�α into a length-1693 vector q whose ith entry equaled the covariance between �α 
and the signed LD profile Rv within the ith LD block. To assess the SLDP result for 
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enrichment of a gene-set vector s, we computed a weighted mean of the qi whose 
weights were given by s. That is, we computed

�α =
∑
∑

.a v s
s q
s

( , , ) i i i

i i

The idea is that if the LD blocks in which s is large correspond to the LD blocks 
in which the SLDP regression signal is the strongest, the weighted mean a should 
be large in magnitude and have the same sign as the overall SLDP regression 
association. We assess this via an empirical null distribution constructed by 
permuting the LD blocks to obtain ‘shuffled’ versions of s and q. This enrichment 
method is more conservative than ordinary gene-set enrichment methods for 
two reasons. First, by permuting only LD blocks and not genes, it accounts for 
correlations induced by LD as well as co-regulation of nearby genes and gene 
overlap in the genome. Second, because a significant SLDP regression association 
cannot arise as a result of a strong signal in only one genomic location, this 
method is more robust to outliers and cannot, for example, produce a rejection 
simply because of a very strong signal at just one gene. In comparison to gene-set 
enrichment methods for GWAS data, this method also has the advantage that it 
will not cause gene sets containing large genes to produce signals of enrichment. 
Separately from null hypothesis testing, we computed heuristic standard errors for 
use in Figs. 6 and 7 by computing the closed-form standard deviation of �αa v s( , , ) 
assuming that the si are fixed and the qi are i.i.d.

To quantify effect size, we computed a fold-enrichment by dividing 
∑
∑

s q
s

i i i

i i  by 
the average value of q at LD blocks containing no genes. That is the enrichment is 
defined as

�
�

α α=
=

.e v s a v s
q s

( , , ) ( , , )
mean({ : 0})i i

This quantity e is the number reported in Figs. 6 and 7.
We conducted our hypothesis test for gene-set enrichment for each of our 

77 significant transcription factor-complex trait associations against each of 
the 10,325 MSigDB gene sets. For every transcription factor-complex trait 
association and every tranche of gene-sets from MSigDB, we assessed significance 
at FDR <  5% using the Benjamini–Hochberg procedure123. This detected 6,379 
significant enrichments in total (0.8% of all 795,025 tests conducted). We ranked 
these enrichments by q value, except for the 15 enrichments whose P values were 
less than the resolution of our empirical null hypothesis testing procedure, which 
we ranked by fold-enrichment.

Autoimmune enrichment among complex trait associations. Of the 12 
independent transcription factor-complex trait associations, 9 involve an auto-
immune disease, representing a 4.3×  enrichment (P =  1.9 ×  10−5 using one-sided 
binomial test) and providing additional evidence for the relevance of transcription 
factor binding to these phenotypes in particular126.

Estimation of lower bound on number of independent transcription factor 
binding sites contributing to each association. For intuition, we first examined, 
for each annotation, the estimated covariance between the GWAS summary 
statistics and the signed LD profile in each of 300 independent genomic blocks, 
finding agreement with the genome-wide direction of association in 59% of the 
blocks on average across our 12 independent associations, and in 85% of the blocks 
with estimated covariances of large magnitude (Supplementary Fig. 8).

For further quantification, we then converted each of the 12 independent 
transcription factor–trait associations reported in Table 1 into a vector q of length 
~300 whose ith entry equaled the covariance between the GWAS in question and 

the signed LD profile in question within the ith of the ~300 independent genomic 
blocks used for our null hypothesis testing. For every threshold �αa v s( , , ), we then 
computed the number Kt of the entries of q with magnitude at least t, as well as the 
number St of those entries whose sign agreed with that of the genome-wide trend. 
Our estimated lower bound on the number of independent transcription factor 
binding sites contributing to the association was then given by

−S Kmax (2 ) (9)t t t

The intuition is that the distribution of the signs of the entries of q can be 
modeled as a mixture of a uniform distribution (for genomic chunks with no 
signal) and a distribution with all of its mass on the sign of the genome-wide trend 
(for genomic chunks with signal). The number of entries drawn from the latter 
distribution gives the number of independent genomic blocks contributing to the 
association, which is a lower bound on the number of independent transcription 
factor binding sites contributing to the association. Estimating this number 
naively without thresholding yields the expression 2S0 −  K0. However, this is an 
underestimate in the presence of noise in q. We therefore repeat this argument 
considering only the subset of entries of q with magnitude at least t for a small 
number of thresholds t and retain the largest estimate.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. Open-source software implementing our approach is available 
at http://www.github.com/yakirr/sldp. Code used to make all figures is available at 
http://www.github.com/yakirr/sldp-display.

Data availability. We have released all genome annotations we analyzed, as well as 
regression weight matrices for our 1000 Genomes reference panel, at http://data.
broadinstitute.org/alkesgroup/SLDP/.
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