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ABSTRACT

Partial differential equations (PDEs) are often computationally challenging to solve, and in many
settings many related PDEs must be be solved either at every timestep or for a variety of candidate
boundary conditions, parameters, or geometric domains. We present a meta-learning based method
which learns to rapidly solve problems from a distribution of related PDEs. We use meta-learning
(MAML and LEAP) to identify initializations for a neural network representation of the PDE solution
such that a residual of the PDE can be quickly minimized on a novel task. We apply our meta-solving
approach to a nonlinear Poisson’s equation, 1D Burgers’ equation, and hyperelasticity equations
with varying parameters, geometries, and boundary conditions. The resulting Meta-PDE method
finds qualitatively accurate solutions to most problems within a few gradient steps; for the nonlinear
Poisson and hyper-elasticity equation this results in an intermediate accuracy approximation up to
an order of magnitude faster than a baseline finite element analysis (FEA) solver with equivalent
accuracy. In comparison to other learned solvers and surrogate models, this meta-learning approach
can be trained without supervision from expensive ground-truth data, does not require a mesh, and
can even be used when the geometry and topology varies between tasks.

1 Introduction

Partial differential equations (PDEs) can be used to model many physical, biological, and mathematical systems. Such
systems include those governing thermodynamics, continuum mechanics, and electromagnetism. Applications of PDEs
outside science include modeling of traffic, populations, optimality of continuous control, and finance. Analytical
solutions are rarely available for PDEs of practical importance; thus, computational methods must be used to find
approximate solutions.

One of the most widely used approximation methods is finite element analysis (FEA). In FEA, the continuous problem
is discretized and the solution is represented by a piecewise polynomial on a mesh. Solving PDEs with FEA can be
computationally prohibitive, particularly when the problem geometry requires a fine mesh; the size of the system to
be solved grows in proportion to the number of mesh cells. The main purpose of this paper is to use gradient-based
meta-learning to accelerate solving PDEs with physics-informed neural networks (PINNs). This results in solvers
that can achieve accurate solutions at reduced computational cost relative to FEA. Although these solvers have an
initial training cost, they may provide computational savings in problems where a PDE must be solved repeatedly. Such
problems could include parameter identification, design optimization, or in the solution of coupled time-dependent
PDEs where, e.g., an elliptic equation is solved at each timestep.
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PINNs use a neural network (NN) to represent the approximate solution of a PDE. The idea was popularized by Raissi
et al. [24], and has been widely researched since. The key advantage of PINNs over traditional numerical solvers is that
the PINN is able to provide a solution without the need to discretize the problem domain, i.e., the learned PDE solution
is mesh-free. However, PINNs suffer from two major issues that limit their utility as forward solvers [28]. First, PINNs
have not demonstrated the ability to solve all PDEs. In particular, PINNs tend to struggle to solve time-dependent PDEs
whose solutions exhibit chaotic behavior or turbulent flow [27]. Second, vanilla PINNs tend to be dramatically slower
than classic numerical methods. We attempt to mitigate this second issue by applying meta-learning to partially amortize
the cost of optimization, thereby reducing the time required to find an accurate solution on a particular problem.

Forward-solving with PINNs requires optimization (i.e., learning); thus to accelerate forward solving we need to
accelerate learning. Recent work in meta-learning has focused on how to construct learning algorithms that can adapt to
a new task with as little additional training as possible. We focus on gradient-based meta learning algorithms such as
MAML [9], REPTILE [17], and LEAP [10]. These algorithms view meta-learning as a bi-level optimization problem:
the inner learning loop optimizes the model parameters for a given task, and the outer learning loop optimizes the inner
loop’s learning process across the tasks that the inner loop might encounter.

Main contribution: We introduce a framework which accelerates PDE solving by combining meta-learning and
PINNs: Meta-PDE. PDE solving is accelerated by using gradient-based meta-learning techniques such as LEAP and
MAML to train a PINN initialization which will converge quickly when optimized for a task drawn from a set of related
tasks. The distribution of problems consists of different parameterizations of the PDE, such as different boundary
conditions, initial conditions, the coefficients in the governing equation, or even the problem domain of the PDE. During
deployment, the meta-learned model can be used to produce fast solutions to instances of PDEs in the distribution.

Our scheme has three important properties:

1. Training does not require supervised data provided by PDE solvers. This is in contrast to other learned
PDE solvers and surrogate models, which typically train the solver to minimize the residual between the
ground-truth solution and the predicted solution [3–5, 7, 13, 21, 29]. We instead minimize a residual of the
governing equation (see section 2.1), eliminating the need for ground-truth data.

2. Meta-PDE is mesh-free and can be used on a broad class of boundary value problems, including problems
with arbitrary geometries, and both time-dependent and time-independent PDEs.

3. Geometry, boundary conditions, and even the PDE are free to vary between tasks. Meta-PDE does not require
a vector representation of the factor of variation between tasks which can be input to a neural network: instead,
the user supplies an appropriate sampler for the domain and a loss function to measure the residual of the PDE
solution. This differs from other learned PDE solvers and surrogate models, which are almost always trained
for a single mesh or geometry and cannot be used when the geometry varies [11, 12, 14, 26].

Previous work has also explored meta-learning for PINNs. de Avila Belbute-Peres et al. [8] meta-trains a hyper-network
that for each task can generate weights for a small neural network. The small neural network then becomes the
approximate solution to the PDE. Psaros et al. [23] meta-learns a loss function which is used to optimize the NN;
this is found to achieve performance benefits in comparison to both hand-crafted and online adaptive loss functions.
Penwarden et al. [22] proposes a meta-learning approach which, like our Meta-PDE approach, learns an initialization of
weights such that the NN can be optimized quickly. Penwarden et al. [22] compares MAML to other meta-learning
approaches that initialize weights using a linear combination of basis functions. An important way in which these
approaches are different from our MAML and LEAP-based approach is that the weight initialization depends on the
task parameter that is varied. Penwarden et al. [22] finds that MAML achieves poor performance, only marginally better
than random initialization; both our approach and the recently published Liu et al. [15] (which uses REPTILE instead
of MAML) come to the opposite conclusion.
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2 Meta-learning mesh-free PDE operators

We take our problems to be defined on the spatial domain Ω ⊂ Rd with boundary ∂Ω, and consider time-dependent
PDEs

∂

∂t
u(x, t) + F [u(x, t)] = 0 x ∈ Ω, t ∈ [0, T ],

G(u)(x, t) = 0 x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = ū0(x) x ∈ Ω,

(1)

as well as time-independent PDEs which only have spatial dependence:
F [u(x)] = 0 x ∈ Ω,

G(u)(x) = 0 x ∈ ∂Ω.
(2)

For time-dependent PDEs the time horizon is [0, T ]. The function u(x, t) is the (unknown) solution to the PDE, while
ū0(x) is the initial condition. In both cases F and G are governing equation and boundary operators that involve u and
partial derivatives of u with respect to spatial coordinates x.

2.1 Physics-Informed Neural Networks (PINN)

The goal of a PINN is to represent the approximate solution u(x, t) with a neural network fθ(x, t). Doing so requires
learning θ ∈ Rp such that fθ approximates the solution to the PDE over the problem domain. Learning these parameters
is an optimization problem, which requires defining a loss function whose minimum is the solution of the PDE. We
choose a “physics-informed loss” which consists of an integral of the local residual of the differential equation over the
problem domain as well as the boundary. Analytically, the residual should be integrated over the problem domain to
compute the residual from satisfying the governing equation, and the initial condition and integrated over the boundary
domain to compute the residual from satisfying the boundary conditions. For time-independent PDEs, this loss function
is

J (u) =

∫
Ω

||F(u)(x)||22 dx+

∫
∂Ω

||G(u)(x)||22 dx. (3)

For time-dependent PDEs, this loss function is:

J (u) =

∫
Ω

∣∣∣∣∣∣∣∣ ∂∂tu(x, t) + F(u)(x, t)

∣∣∣∣∣∣∣∣2
2

+ ||u(x, 0)− ū0(x)||22 dx+

∫
∂Ω

||G(u)(x, t)||22 dx. (4)

During training, we randomly and uniformly sample collocation points from the PDE domain Ω and boundary ∂Ω and
use these points C ∈ Ω and ∂C ∈ ∂Ω to form a Monte Carlo estimate of the true loss. For time-independent PDEs, this
training loss is

LPINN(fθ) =
1

|C|
∑
x∈C
||F(fθ)(x)||22 +

1

|∂C|
∑
x∈∂C

||G(fθ)(x)||22 . (5)

For time-dependent PDEs, the training loss is

LPINN(fθ) =
1

|C|
∑
x∈C

∣∣∣∣∣∣∣∣ ∂∂t (fθ)(x, t) + F(fθ)(x, t)

∣∣∣∣∣∣∣∣2
2

+

1

|∂C|
∑
x∈∂C

||G(fθ)(x, t)||22 +
1

|C|
∑
x∈C
||fθ(x, 0)− ū0(x)||22 .

(6)

When the training converges, we expect fθ to approximately satisfy the above equations, meaning that LPINN(fθ) should
be nearly zero.

2.2 Meta-PDE

Meta-PDE involves using gradient-based meta-learning to amortize the training time needed to fit fθ on a problem
drawn from a distribution of parameterized PDEs. We focus specifically on two meta-learning methods: LEAP [10] and
MAML [9]. We describe LEAP-based Meta-PDE briefly here. MAML-based Meta-PDE is a straightforward extension
and is described in Appendix A.

Most PDEs can be fully specified by their domain, boundaries, an operator representing governing equations, and an
operator representing boundary conditions. When using Meta-PDE as a surrogate to compute an approximate solution
to a given parametrization of the PDE (one task), the inputs to the Meta-PDE model imitate this general specification:
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• A sampler s(Ω) which returns points in the domain Ω,
• A sampler s(∂Ω) which returns points on the boundary ∂Ω,
• An operator F representing governing equations,
• An operator G representing boundary conditions.

The operators F and G may be supplied directly and do not require a particular parametric form. The geometric
dimension RdΩ and solution dimension Rdu must remain fixed across PDEs in the distribution, even though Ω is
allowed to vary. The samplers and operators are sufficient to construct an estimator L̂ for the task loss L using Eqn.5
for time-independent problems and Eqn.6 time-dependent problems. Although L̂(f) is unbiased as long as s(·) return
points with uniform probability over their supports, note that unbiased estimation is not necessarily essential if we are
interested in the case where L(f) = L̂(f) = 0. Biased sampling will not change the minimizer of the energy estimator
if we have a sufficiently expressive hypothesis class for f .

The LEAP-based Meta-PDE method learns the model initialization θ0 ∈ Rp for a neural network fθ, which can then be
trained to approximate the solution u : RdΩ → Rdu of an individual parametrization of the PDE. To learn θ0, we start
with a distribution of tasks, where each task represents a different parameterization of the PDE. Each task is specified
by samplers and constraint operators for the boundary and loss. Then we draw a batch of n tasks with individual loss
functions L̂i, i ∈ [n]. The initialization for each inner task is θ0, and is updated by the inner gradient update rule.
During each inner gradient update, we update the meta-gradient per the LEAP algorithm. We unroll the inner learning
loop K steps to find fθKi : the approximate solution for each task i in the batch. After unrolling K update steps for n
tasks, we update the learned model initialization θ0 with the meta-gradient:

θ0 ← θ0 − β∇θ0

n∑
i=1

1

n
d(θ0;Mi), (7)

where d(θ0;Mi) is the distance of the gradient path for task i on its manifold Mi, as specified in Flennerhag et al. [10].
MAML involves a slightly different loss function and also learns step sizes for each parameter.

During deployment time, a “forward pass” computes an approximate solution for a given PDE parametrization with K
steps of stochastic optimization. The K gradient steps minimize the training loss for the task L(f). If the model has
been trained with LEAP-based Meta-PDE method, it will start from the meta-learned model initialization θ0. If the
model has been trained with MAML-based Meta-PDE method, it will start from the meta-learned model initialization
θ0 and the step size α will be also be specified for each parameter and each step:

θk = θk−1 − α∇θk−1L̂(fθk−1) k = 1, . . . ,K . (8)

In both cases, the Meta-PDE method returns the approximate solution fθK , the neural network with the final set of
parameters. One could further fine tune the model beyond K gradient steps to achieve higher solution accuracy at the
cost of longer solving time.
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3 Experiments

We evaluate the application of Meta-PDE to three example PDE problems: the nonlinear Poisson’s equation, the 1D
Burgers’ equation, and the hyper-elasticity equation. We discuss the results of training on Burgers’ equation in section 4,
as well as in Appendix C. Meta-PDE methods are implemented in JAX [6]. In training, we sample points uniformly
on the domain and the boundary. Our LEAP and MAML-based Meta-PDE models use a small NN with sinusoidal
activation functions. The sinusoidal activation is initialized according to the scheme in Sitzmann et al. [25], although
we replace ω0 = 30.0 in that paper with ω0 = 3.0 to avoid numerical issues when taking higher-order derivatives of a
neural network’s input-output function. Gradients in both inner and outer loop are clipped to have maximal norm 100.0.
Additional NN hyperparameters are in Table 1 while training hyperparameters are in Table 2. We compare Meta-PDE’s
performance with a baseline FEniCS [2, 16] solver. We use the Mumps linear solver backend.

During deployment, the Meta-PDE solutions can be further improved by extending the number of “inner” training steps
beyond what is used at training time. In our MAML-based Meta-PDE method for example, we train the meta-learned
initialization using 5 inner-gradient steps. At deployment time, we can refine the Meta-PDE solution by using a
greater number of inner-gradient steps. We compare the speed/accuracy trade-off achieved by varying the number of
inner-gradient steps Meta-PDE takes during deployment with the speed/accuracy trade-off achieved by varying the
resolution of the mesh used in FEA.

Table 1: Neural network hyperparameters for our Meta-PDE methods
PDE Problem Meta-PDE Method Hyperparameters

Num. of layers Layer Size Activation Inner Steps Inner LR Outer LR

Nonlinear Poisson’s
MAML

3
64 sin 5

1.0× 10−4 1.0× 10−5

Burgers’ 8 1.0× 10−4 1.0× 10−5

Hyper-elasticity 5 1.0× 10−5 5.0× 10−6

Nonlinear Poisson’s
LEAP

5 64
sin

60 2.5× 10−5 5.0× 10−5

Burgers’ 10 128 80 1.0× 10−6 5.0× 10−5

Hyper-elasticity 10 128 20 5.0× 10−6 5.0× 10−6

Table 2: Training hyperparameters for our meta-PDE methods and training time on one NVIDIA T4 GPU
PDE Problem Meta-PDE Method Hyperparameters

Batch Size Sampled Points Iterations Training Time Inner Optimizer Outer Optimizer

Nonlinear Poisson’s
MAML 8

2048 120,000 4 hrs
SGD AdamBurgers’ 1024 60,000 11 hrs

Hyper-elasticity 1024 180,000 21 hrs

Nonlinear Poisson’s
LEAP 8

4096 55,000 5 hrs
Adam AdamBurgers’ 2048 7,000 7 hrs

Hyper-elasticity 1024 140,000 8 hrs

3.1 Nonlinear Poisson’s Equation

Poisson’s equation is one of the most ubiquitous equations in physics. For example, the linear Poisson equation
calculates the electrostatic or gravitational field caused by electric charges or mass particles. Solving systems of coupled
time-dependent PDEs often requires the solution of a Poisson equation at each timestep [18]. Since the linear Poisson’s
equation can be solved analytically, we demonstrate Meta-PDE on a nonlinear Poisson problem with varying source
terms, boundary conditions, and geometric domain. This nonlinear Poisson’s equation takes the form

∇ ·
[
(1 + 0.1u2)∇u(x)

]
= f(x) x ∈ Ω

u(x) = b(x) x ∈ ∂Ω

where u ∈ R1 and Ω ⊂ R2. Using our notation from the previous section, this is equivalent to constraining the solution
in the domain with an operator F(u) = ((1 + 0.1u2)∇u)− f , and constraining the solution on the boundary with an
operator G(u) = u− b.
The domain Ω is a disc-like shape centered at the origin, defined in polar coordinates with varying radius about the
origin r(θ) = r0[1 + c1 cos(4θ) + c2 cos(8θ)], where the varying parameters are c1, c2 ∼ U(−0.2, 0.2). The source
term f is a sum of radial basis functions f(x) =

∑3
i=1 βi exp ||x− µi||22, where βi ∈ R1 and µi ∈ R2 are both drawn

5
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Figure 1: (a) Solutions to nonlinear Poisson’s equations with varying domains, boundary conditions, and source
terms. First Row: Solution represented by Meta-PDE initial NN parameters. Second Row Onwards: Solution after
each gradient step in the Meta-PDE inner loop. Bottom: Ground truth FE solution. (b) Speed/Accuracy trade-off for
Meta-PDE and FEA. The x-axis is time to solve and y-axis is accuracy, as measured by MSE. For Meta-PDE, we
vary the number of training steps after deployment. For FE, we vary the mesh resolutions. Overall, Meta-PDE yields
comparable speed/accuracy performance on CPU at intermediate accuracy but better performance on GPU. Meta-PDE
reaches an accuracy ceiling at an MSE between 10−3 and 10−4, while the FEA solution may be refined to higher
accuracy by increasing the resolution of the mesh.

from standard normal distributions. The boundary condition b is a periodic function, defined in polar coordinates as
b(x) = b0 + b1 cos(θ) + b2 sin(θ) + b3 cos(θ) + b4 sin(θ), where the parameters b0:4 ∼ U(−1, 1).

Figure 1a shows the ground truth (baseline) solution for eight PDE problems used in the validation set. The same figure
also shows the MAML meta-learned initialization, which can quickly adapt to each PDE problems in five gradient steps.

Figure 1b shows the mean squared error (MSE) of each solution and solving time required for the desired accuracy. For
the Fenics solution, we vary the mesh resolution (Spatial Res in Figure 1b). For the Meta-PDE solution, we increase the
number of training steps, starting from the meta-learning initialization. For MAML-based Meta-PDE method, we also
start from the meta-learned step size. The highest-resolution FEA method was taken as ground truth and was used to
compute MSE. The MSE and solving times were evaluated using 8 held-out problems from the same distribution, and
the 8 held-out problems were not used during training. Mean-squared errors are computed between the value of a given
approximate solution and the value of the ground truth (highest resolution finite element solution) at 1024 randomly
sampled points within the domain. The held-out set configuration remains the same for the other two experiments
below.

Meta-PDE learns to efficiently output moderately accurate solutions. When run on the same CPU (3.6 GHz Intel Xeon
Platinum 8000 series) it is about 1− 2× faster than a finite element method with similar accuracy. Unlike finite element
models, Meta-PDE can be easily accelerated by a GPU, and on GPU we see close to 50× speed up in deployment over
similar accuracy CPU-based finite element models.

3.2 Hyper-Elasticity Equation

Hyper-elastic materials undergo large shape deformation when force is applied and the stress-strain relation for those
materials are highly nonlinear. Rubber is a common example of hyper-elastic materials. the Hyper-elasticity equation
models the deformation of those rubber-like materials under different external forces. In particular, we model a
homogeneous and isotropic hyper-elastic material under deformation when compressed uniaxially. We assume no
additional body or traction force applied to the structure. The goal is to model the final deformation displacement u,
which maps the material position change from the initial reference position X to its current deformed location x.

There are two different approaches to encode the loss function for the hyper-elasticity equation. First, one could directly
minimize the residual term in the original strong form, the same approach as we have done for the nonlinear Poisson’s
equation and for the Burgers’ equation. For example, Abueidda et al. [1] has used the first approach to encode the loss
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Figure 2: (a) Solutions to hyper-elasticity equations with varying domains. First Row: Solution represented by Meta-
PDE initial network parameters. Second Row Onwards: Solution after each gradient step in the Meta-PDE inner loop.
Bottom: Ground truth FE solution. (b) Speed/Accuracy trade-off for Meta-PDE and FEA. The x-axis is time to solve
and y-axis is accuracy, as measured by MSE. For Meta-PDE, we vary the number of training steps after deployment.
For FE, we vary the mesh and boundary resolution. Meta-PDE yields a better speed/accuracy trade-off at intermediate
accuracy but is not able to efficiently reach very high accuracy.

function for PINN. Alternatively, one can minimize the Helmholtz free energy of the system and find the corresponding
minimizer u. We use the second approach to solve the hyper-elasticity equation. See Appendix B for details of the PDE
formulation and loss function derivation.

We consider the deformation of a two-dimensional porous hyper-elastic material under compression. Their material
properties could be very different from their solid counterparts. Because of these interesting differences, the hyper-
elastic behavior of porous structures is an active field of research in material science [19, 20]. Following the problem
setup in [19], we use the following parametrized equations to model the shape of the pores:

x1 =r(θ) cos θ, x2 =r(θ) sin θ

r(θ)=r0 [1+c1 cos(4θ)+c2 cos(8θ)]

r0 =
L0

√
2φ0√

π (2+x2
1+x2

2)

φ0 is the initial porosity of the structure, and it is sampled uniformly: φ0 ∼ U(0.0, 0.75) in our experiment setup. The
parameter pair (c1, c2) determines the shape of the pore, and we fixed them to (0.0, 0.0) so that we only work with the
circular porous shape. L0 is the initial center-to-center distance between neighboring pores. We also fixed the distance
L0 so we work with fixed number of pores on the given material size. With the pore shape and the distance between
pore centers L0 fixed, the size of the pore determines the porosity of the structure. The porosity of the structure affects
the macroscopic deformation behavior of the structure. Figure 2a shows the ground truth (baseline) solution for eight
PDE problems used in the validation set. The same figure also shows the LEAP meta-learned initialization, which can
quickly adapt to each PDE problems in 20 gradient steps.

Figure 2b shows the mean squared error (MSE) of each solution and solving time required for the desired accuracy.
Meta-PDE learns to output accurate solutions, and when run on the same CPU is about 5− 10× faster than a finite
element method with similar accuracy. Running Meta-PDE on a GPU gives close to 100× speed up in deployment over
a similar accuracy finite element model run on CPU.
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(a) (b)

Figure 3: Problems instances where Meta-PDE has difficulty. (a) Solutions to Burgers’s Equations with varying initial
conditions, and boundary conditions. First Row: Solution represented by Meta-PDE initial NN parameters. Second
Row Onwards: Solution after each gradient step in the Meta-PDE inner loop. Bottom: Ground truth FEA solution.
Although the Meta-PDE method achieves qualitatively accurate results after a few gradient steps, and is faster than a
naive application of FEA, the meta-solver is still slower than a well-chosen baseline for Burgers’ equation. (b) Solutions
to hyper-elasticity equations with varying porous shape. Top Row: solution represented by Meta-PDE initial neural
network parameters. Second row onwards: solution after each gradient step in the Meta-PDE inner loop. Bottom:
Ground truth FEA solution. Looking at the bottom two rows, we can see that on many problem instances Meta-PDE
fails to find an accurate solution.

4 Discussion

Meta-PDE Methods Comparison MAML-based Meta-PDE outperforms LEAP-based Meta-PDE during deploy-
ment time in accuracy for a given runtime, while requiring less hyperparameter tuning during training. We believe that
this superior performance is due to MAML having a meta-learned per-state per-parameter step size. The advantage of
LEAP-based Meta-PDE lies in the meta-training process: LEAP is faster to train and uses less memory than MAML,
which required checkpointing for some PDEs.

Task Domain Generalizability In our study, we restrict each meta-learner to one type of PDE, and for each type of
PDE we define the distribution of related tasks via different parameterizations of the same PDE type. As we increase
the volume of this distribution, either by increasing the range of parameters or by increasing the number of parameters,
the meta-learning tasks becomes harder. As a result, we need to use a larger network architecture, increase the number
of inner training steps, and increase the meta-learner’s training time to allow it to converge. The quality of the final
model also deteriorates. To illustrate this, we looked at a how different pore shapes affect the macroscopic behavior of
the material, which is the hyper-elasticity problem studied by Overvelde and Bertoldi [19]. Following the set up in
Section 3.2, we fix the initial porosity of the structure φ0 = 0.5. We now vary the pore shape by sampling c1 and c2
in the parameter pair (c1, c2) from a uniform distribution: c1,2 ∼ U(−0.4, 0.4). The initial center-to-center distance
between neighboring pore L0 is fixed like before. In this setup, the shape of the pore determines the macroscopic
deformation behavior of the structure. As we enlarge the range of possible shapes by increasing the range that we draw
possible (c1, c2) value from, the accuracy of the solutions produced by Meta-PDE starts to degrade. Figure 3bshows
that for many pore shapes, Meta-PDE finds an incorrect solution.

Easy-to-solve PDEs and Hard-to-solve PINNs In addition to our experiments in section 3 we used Meta-PDE to
train a meta-solver for the 1D Burgers’ equation. Our distribution of tasks consists of varying initial and boundary
conditions. The trained meta-solver was able to consistently achieve accurate results with 5 or fewer gradient steps (see
fig. 3a). Although our meta-solver was successful in this regard, and was more efficient than a baseline FEA method
written in FEniCS, it was not able to compete with an efficient finite volume method with Godunov flux written in JAX.
This suggests that a naive application of Meta-PDE is not well suited for cases where nonlinear FEA under-performs
compared to another simple baseline. Appendix C and tables 1 and 2 contain a full explanation of the distribution of
problems and training hyperparameters for the Burgers’ equation experiment.
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We also tried applying Meta-PDE to the Navier-Stokes equations and the 2D Burger’s equation. Here, Meta-PDE could
not find reasonable solutions for a non-trivial distribution of tasks. PINNs generally find these time-dependent PDEs
hard to solve, so it is not surprising that our meta-learning approach failed to learn how to solve them. However, recent
work [28] has found that by modifying the loss function to better respect the principle of causality in time-dependent
PDEs, hard-to-solve PDEs such as the Navier-Stokes equations can be successfully solved with PINNs. We are
interested in seeing whether incorporating this modified loss function into our meta-learning approach could help us
meta-learn solvers for these PDEs.

5 Conclusion

Meta-PDE uses meta-learning to amortize PDE solving by accelerating optimization of a PINN representation of
the solution. Unlike other fast surrogate models (but like PINNs) our method is mesh-free and data-free, a desirable
property when geometry is complex and/or varying across problems within the class we wish to amortize. Unlike
PINNs, which are generally too slow to be competitive even with FEA, our method improves on the Pareto frontier of
computational cost vs accuracy over FEA. We apply our method to amortize solving of PDEs with varying and complex
geometries and terms: non-linear Poisson’s equations, hyper-elasticity equations and a 1D Burgers equation. After
meta-training, our method both (a) achieves qualitatively correct results for most problems in the distribution and (b)
achieves these results after only a few gradient steps, resulting in a solver that is between 1 and 10 times faster than our
FEniCS baseline.

This method has some caveats. First, our meta-solvers take a long time to train—several hours on a GPU. Second, our
meta-solvers do not have the convergence guarantees that come with methods such as FEA. Third, meta-PDE appears
to be better suited for time-independent (i.e., elliptic) PDEs, rather than time-dependent (i.e., hyperbolic) PDEs where
information travels along characteristics. For example, we apply Meta-PDE to the 1D Burger’s equation, and although
we achieve qualitatively accurate results in a few gradient steps, our meta-solver is slower than a strong JAX baseline
using the finite volume method with Godunov flux. Finally, there is a vast world of difficult-to-solve PDEs which
require specially tailored computational tricks to solve (whether with PINNs or FEA) due to structure in the governing
equations, and in this paper we consider only some relatively simple example PDEs. Despite these caveats, we believe
that meta-PDE provides a generic and compelling approach to accelerated solving of PDEs with challenging domain
geometries without ground-truth data or mesh.
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A MAML Based Meta-PDE

The MAML-based Meta-PDE method learns the model initialization θ0 for a neural network fθ and also learns the
learning rate α for each parameter at each inner step. To learn θ0 we start with a distribution of tasks, where each task
represents a different parameterization of the PDE. Then we draw a batch of n tasks with individual loss functions
Li, i ∈ [n]. The initialization for each inner task is θ0. The gradient update rule for the inner task is simply SGD:

θji = θj−1
i − α∇θL̂i(fθ) j ∈ {1, 2, 3, ...,K}

We unroll the inner learning loop K steps to find fθKi : the approximate solution for each task i in the batch. The
meta-loss is the average loss for those n tasks:

LMAML =
1

n

n∑
i=1

L̂i(fθKi )

We perform backpropagation through the inner loop to find the gradients w.r.t meta-initialization θ0 and use the gradients
to update θ0 in the outer loop training:

θ0 ← θ0 − β 1

n
∇θ0

n∑
i=1

L̂i(fθKi ) (9)

We also perform backpropagation through the inner loop to find the gradients w.r.t. the per-step, per-parameter step size
α and use the gradients to update the α in the outer loop training:

α← α− β 1

n
∇α

n∑
i=1

L̂i(fθKi ) (10)

Eqn. 7 defines the meta-gradient for the LEAP-based Meta-PDE method. Eqn. 9, 10 defines the meta-gradient for the
MAML-based Met-PDE method.

B Hyper-Elasticity Equation Details

The material’s initial reference position is X and its current deformed location is x. The unknown function u maps the
material’s position change from the initial reference position X to its current deformed location x:

u = x−X

The deformation gradient F is defined as

F ≡ ∂x

∂X
=

∂

∂X
(X + u) =

∂X

∂X
+
∂u

∂X
= I +

∂u

∂X

The constitutive law in continuum mechanics relates Piola-Kirchhoff stress P with deformation gradient F using the
following relations:

P =
∂ψ

∂F
,

where ψ is the Helmholtz free energy. For a Neo-Hookean hyperelastic material in 2-D, the energy is given by:

ψ =
1

2
λ (log(J))

2 − µ log(J) +
µ

2
(Ic − 2).

There are two invariants in the above equation. The first is Ic ≡ tr(C) and C is the right Cauchy-Green tensor,
defined as C = FTF . The second invariant is J ≡ det(F ). Substitute the two invariant into the above equation, the
Piola-Kirchohoff stress P becomes:

P =
∂ψ(F )

∂F
= µF (λ ln(J)− µ)F−T

In the absence of body and traction forces, the Hyperelasticity equations can be written as

∇X · P = 0 X ∈ Ω

û = g(u) X ∈ Γu
P ·N = T X ∈ ΓT .
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Figure 4: (a) Solutions to Burgers’s Equations with varying initial conditions and boundary conditions. First Row:
Solution represented by Meta-PDE initial NN parameters. Second Row Onwards: Solution after each gradient step in
the Meta-PDE inner loop. Bottom: Ground truth FEA solution (b) Speed/Accuracy trade-off for Meta-PDE and FEA.
The x-axis is time to solve and y-axis is accuracy, as measured by MSE. For Meta-PDE, we vary the number of training
steps after deployment. For FE, we vary the mesh resolution and number of timesteps.

N is the normal vector relative to X. Because the traction force is absent, we set T = 0 on boundary ΓT . Dirichlet
boundary conditions are imposed on boudnary Γu.
The solution u to the Hyperelasticity equations also acts as the minimizer of the Helmholtz free energy Π of the entire
system:

u = argminu Π(u) = argminu

[∫
Ω

ψ dx

]
During training, we randomly and uniformly sample collocation points from the PDE domain Ω and Dirichlet boundary
Γu and use these points C ∈ Ω and ∂C ∈ Γu to form a Monte Carlo estimate of the true loss. For the Hyperelasticity
equations, the training loss is

LPINN(fθ) =
1

|C|
∑
x∈C

ψ(fθ) +
1

|∂C|
∑
x∈∂C

||û− g(fθ)||22 .

C Burger’s Equation

Burger’s equation is a time-dependent PDE that models a system consisting of a moving viscous fluid. The 1D version
of the equation models the fluid flow through an ideal thin pipe. The strong form of Burger’s equation is given by

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0, x ∈ Ω, t ∈ [0, T ]

u(x, 0) = u0(x), x ∈ Ω

u(x, t) = ū, x ∈ ∂Ω, t ∈ (0, T ] .

The unknown u(x, t) is the speed of the fluid. If the viscosity ν is low, the fluid develops a shock wave. Following
the derivation in Eqn. 6, the equation is constrained in the domain with the operator F = u · ∂u/∂x− ν · ∂2u/∂x2, and
constrained on the domain boundary with the operator G = u(x, 0)− u0(x).

We look at the wave formation inside an ideal thin pipe with unit length: x ∈ [0, 1]. We also constrain the time horizon
t ∈ [0, 1]. The initial condition is defined by three sinusoidal functions u(x) = sin(πx) + θ1 sin(2πx) + θ2 sin(4πx).
The varying parameters are θ1, θ2 ∼ U(−2.0, 2.0). Dirichlet boundary conditions are imposed on both the left boundary
x = 0 and the right boundary x = 1, and are both set to ū = 0. The viscosity ν is set to 0.01.

For the ground truth comparison, we first used a baseline FEniCS solver with implicit Euler for the time integration. The
Meta-PDE method outperformed the Fenics baseline by 10− 20× in speed when executed on the same CPU. However,
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we found that the FEniCS baseline solver was significantly slower than a finite volume method with Godunov Flux
and explicit RK3 timestepping written in JIT-compiled JAX. Figure 4a shows the ground truth (baseline) solution for
the eight PDE problems used in the validation set. The same figure also shows the MAML meta-learned initialization,
which can quickly adapt to each PDE problems in 5 gradient steps. Figure 4b shows the speed and accuracy for the
eight PDE problems solved by the fast finite volume method. Resolution indicates the mesh resolution for the spatial
domin and the temporal resolution is fixed to be 10 times the corresponding mesh resolution. We see that Meta-PDE
learns to output accurate solutions, but when compared with the fast finite volume method, the Meta-PDE method is
slower than the finite element method with similar accuracy.
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