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ABSTRACT

Intelligent biological systems are characterized by their embodiment in a complex
environment and the intimate interplay between their nervous systems and the
nonlinear mechanical properties of their bodies. This coordination, in which the
dynamics of the motor system co-evolved to reduce the computational burden on
the brain, is referred to as “mechanical intelligence” or “morphological computa-
tion”. In this work, we seek to develop machine learning analogs of this process, in
which we jointly learn the morphology of complex nonlinear elastic solids along
with a deep neural network to control it. By using a specialized differentiable sim-
ulator of elastic mechanics coupled to conventional deep learning architectures—
which we refer to as neuromechanical autoencoders—we are able to learn to per-
form morphological computation via gradient descent. Key to our approach is the
use of mechanical metamaterials—cellular solids, in particular—as the morpho-
logical substrate. Just as deep neural networks provide flexible and massively-
parametric function approximators for perceptual and control tasks, cellular solid
metamaterials are promising as a rich and learnable space for approximating a
variety of actuation tasks. In this work we take advantage of these complemen-
tary computational concepts to co-design materials and neural network controls to
achieve nonintuitive mechanical behavior. We demonstrate in simulation how it is
possible to achieve translation, rotation, and shape matching, as well as a “digital
MNIST” task. We additionally manufacture and evaluate one of the designs to
verify its real-world behavior.

1 INTRODUCTION

Mechanical intelligence, or morphological computation (Paul, 2006; Hauser et al., 2011), is the idea
that the physical dynamics of an actuator may interact with a control system to effectively reduce
the computational burden of solving the control task. Biological systems perform morphological
computation in a variety of ways, from the compliance of digits in primate grasping (Jeannerod,
2009; Heinemann et al., 2015), to the natural frequencies of legged locomotion (Collins et al., 2005;
Holmes et al., 2006; Ting & McKay, 2007), to dead fish being able to “swim” in vortices (Beal et al.,
2006; Lauder et al., 2007; Eldredge & Pisani, 2008). Both early (Sims, 1994) and modern (Gupta
et al., 2021) work have used artificial evolutionary methods to design mechanical intelligence, but it
has remained difficult to design systems de novo that are comparable to biological systems that have
evolved over millions of years. We ask:

Can we instead learn morphological computation using gradient descent?

Morphological computation requires that a physical system be capable of performing complex tasks
using, e.g., elastic deformation. The mechanical system’s nonlinear properties work in tandem with
neural information processing so that challenging motor tasks require less computation. To learn an
artificial mechanically-intelligent system, we must therefore be able to parameterize a rich space of
mechanisms with the capability of implementing nonlinear physical “functions” that connect input
forces or displacements to the desired output behaviors. There are various desiderata for such a
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Figure 1: A schematic depiction of a neuromechanical autoencoder. A neural encoder is parame-
terized by θ, while a mechanical decoder has geometry (morphology) parameterized by φ. A task
is sampled from a distribution and is fed into the neural network encoder. The neural network pro-
duces actuations which displace the mechanical structure to perform the task, in this case being
shape matching (Section 3.2). Given a task loss, θ and φ are optimized jointly by gradient descent.

mechanical design space: 1) it must contain a wide variety of structures with complex nonlinear
elastic deformation patterns; 2) its parameters should be differentiable and of fixed cardinality; and
3) the designs should be easily realizable with standard manufacturing techniques and materials.
These characteristics are achieved by mechanical metamaterials.

Metamaterials are structured materials that have properties unavailable from natural materials. Al-
though metamaterials are often discussed in the context of electromagnetic phenomena, there is
substantial interest in the development of mechanical metamaterials in which geometric heterogene-
ity achieves unusual macroscopic behavior such as a negative Poisson’s ratio (Bertoldi et al., 2010).
In biological systems, morphological computation often takes the form of sophisticated nonlinear
compliance and deformation, resulting in a physical system that is more robust and easier to control
for a variety of tasks (Paul, 2006; Hauser et al., 2011), This type of behavior is typically not present
in off-the-shelf robotic systems and is difficult to design a priori. Mechanical metamaterials, on the
other hand, offer a platform for mechanically-intelligent systems using relatively accessible manu-
facturing techniques, such as 3-D printing.

The mechanical metamaterials we explore in this paper are cellular solids: porous structures where
different patterns of macroscopic pores can lead to different nonlinear deformation behaviors. By
constructing a solid with a large number of such pores, and then parameterizing the pore shapes
nonuniformly across the solid, it is possible to achieve a large design space of nonlinear mechanical
structures while nevertheless having a differentiable representation of fixed cardinality. The key to
modern machine learning has been the development of massively-parametric composable function
approximators in the form of deep neural networks; cellular solids provide a natural physical analog
and—as we show in this work—can also be learned with automatic differentiation.

To make progress towards the goal of learnable morphological computation, in this paper we com-
bine metamaterials with deep neural networks into a framework we refer to as a neuromechanical
autoencoder (NMA). While traditional mechanical metamaterials are designed for single tasks and
actuations, here we propose designs that can solve problems drawn from a distribution over tasks,
using a neural network to determine the appropriate actuations. The neural network “encoder” con-
sumes a representation of the task—in this case, achieving a particular deformation—and nonlin-
early transforms this into a set of linear actuations which play the role of the latent encoding. These
actuations then displace the boundaries of the mechanical metamaterial inducing another nonlinear
transformation due to the complex learned geometry of the pores; the resulting deformation corre-
sponds to the “decoder”. By using a differentiable simulator of cellular solids we are able to learn
in an end-to-end way both the neural network parameters and the pore shapes so that they can work
in tandem. The resulting system exhibits morphological computation in that it learns to split the
processing task across the neural network and the physical mechanism.

The paper is structured as follows. We first introduce the abstract setup for the neuromechanical
autoencoder, followed by a brief description of our mechanics model, geometry representation, and
differentiable simulation. Although important for the success of our method, the details of our dis-
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(a) Visualization of the decomposition of a cell
into patches. The pore shapes are parameterized
by radii, ranging from 0.0 to 1.0. Radii of all 0.0
represents a completely closed shape.

(b) Visualization of a sample initial geometry. The
corners of the cells are a geometic parameter; their
constraints during NMA optimization are speci-
fied by the dotted boxes.

Figure 2: Geometry representation of pores and corners.

cretization and solver for computational nonlinear elasticity problems are in the appendix. We then
describe and detail results of our experiments, which include mechanical tasks, a shape matching
experiment, and a new mechanical twist on MNIST classification. We end with related work and a
discussion on future steps.

2 METHODS

2.1 NEUROMECHANICAL AUTOENCODER SETUP

We describe the overall setup as pictured in Figure 1. We begin by considering a bounded do-
main D ⊂ R2 (often square) on which our material exists (in this work we only consider the ac-
tuation of 2D geometries). When actuations are applied on the material, its deformation can be
described by a displacement field u : D → R2, where u(X) represents the displacement of the par-
ticle originally at coordinate X ∈ D. For simplicity, assume u can be discretized and identified by a
finite-dimensional vector q ∈ RN . The exact form of the discretization is based on a finite element
method variant and is described in the appendix in Section A.1.

Next we specify a distribution of tasks T and an associated loss function L(q; ti) : RN × Rm → R,
which depends on a task descriptor ti ∼ T , ti ∈ Rm, and a displacement field specified by q. The
loss function often only looks at the deformation of a subset of the material, such as the displacement
of a single point, but we are not restricted to this. The task descriptor is meant to be generic: it can
be a coordinate, an image, a scalar parameter, etc.

To map task descriptors to displacements, we use a neural encoderEθ : Rm → Rk and a mechanical
decoder Dφ : Rk → RN . The output of the encoder at ti is understood to be the latent dimension
of the autoencoder, and represents the actuations to the mechanical structure. The goal is to choose
parameters {θ, φ} to minimize the loss over the distribution of tasks:

θ∗, φ∗ = arg min
θ,φ

Et∼T [L(Dφ(Eθ(t)); t)] .

Given ∇φL(Dφ(Eθ(t)); t) and ∇θL(Dφ(Eθ(t)); t) for t ∼ T , we can optimize the objective with
standard first-order stochastic gradient methods. One difficulty is that Dφ(·) is an implicit function
of its inputs, computed by solving a partial differential equation (PDE). Furthermore, φ represents
geometric parameters defining the domain on which the PDE is solved. To effectively compute
derivatives of Dφ, we developed a JAX-based (Bradbury et al., 2018) differentiable elasticity simu-
lator, as described in the next section.

2.2 DIFFERENTIABLE SIMULATION

We developed a custom solver for static nonlinear elasticity problems which model the equilibrium
of elastic materials under load. The goal is to have a robust and end-to-end differentiable simulator
for 2D neuromechanical autoencoders based on mechanical metamaterials. Given geometric design
parameters, our solver simulates the structure described by the parameters and computes the gradient
(adjoint) with respect to both geometric design parameters and boundary conditions (actuations).
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Figure 3: Visualization of the transla-
tion task, and the unoptimized initial
geometry. The goal is to translate the
green pointer to anywhere within the
blue square (such as the labeled red dot
on the right), using only linear actua-
tions on the two sides. With the start-
ing geometry, only horizontal transla-
tions are possible.

In order to make the solver differentiable with respect to geometric parameters, we implement a ver-
sion of isogeometric analysis (IGA) (Hughes et al., 2005), a finite element method (FEM) (Hughes,
2012) variant where both the underlying solution and geometry basis are based on B-splines. Us-
ing B-spline patches allows us to parameterize our geometry in a flexible and yet robust way while
maintaining a differentiable map from geometry parameters to PDE solution.

As our simulator is implemented entirely in JAX, we backpropagate gradients directly through both
the simulator and a neural network using automatic differentiation and adjoint methods in tandem.
In the next sections, we describe the relevant physics and the geometric representation we used.

2.3 MECHANICAL MODEL

We give a high level description of the mechanical model here, and detail it further in the appendix.
In the static equilibrium problems we consider, the solution is a displacement that minimizes some
energy. The elastic properties are captured by a hyperelastic strain energy density function, which
depends on the local deformation of the material and is independent of the path of deformation.
For a given deformation, the potential energy functional Ψ(u) is the integral of the strain energy
density over the material domain D. Given boundary conditions, the resulting physical deformation
u : D → R2 is one that minimizes Ψ(u) subject to boundary conditions:

u∗ = arg min
u∈H

Ψ(u)

where H is the set of all displacement fields that satisfy prescribed Dirichlet boundary conditions
(expressed as equality constraints on the displacement field). To solve this in practice, we dis-
cretize u and define a standard representation of the geometry. NMA training is bi-level, where
in the inner loop we perform the energy minimization using second-order methods. In the outer
loop, the solution u∗ can be regarded as an implicit function of the design parameters and boundary
conditions, and gradients with respect to these can be computed using implicit differentiation.

2.4 GEOMETRY REPRESENTATION

The central unit of the metamaterials we design is the cell, a porous shape with a quadrilateral
boundary. We initialize the geometry to a regular grid of square cells with simple square pore shapes,
similar to that in Figure 2b. During training of the neuromechanical autoencoder, we modify this
geometry to minimize the expected loss over a distribution of tasks.

To represent the geometry, we decompose the domain into B-spline patches, each with its own
B-spline control points. Each cell is generally composed of four patches; we visualize the decompo-
sition of a representative cell in Figure 2a. The shape of the cell pore is defined by radii (illustrated
by ri), whose values specify relative distance of the pore edge from the centroid of the cell (e.g., a
cell having radii all 0.0 corresponds to a completely closed cell). We combine all the radii in all cells
into a radii array r ∈ [0, 1]R, which becomes one of our geometric parameters. For further flexibil-
ity, we also allow the shapes of the cells to change within a grid of cells. The corners of the cells,
labeled ci in Figure 2b, are allowed to deviate within a specific box around its values in the initial
square lattice-like geometry. Figure 2a shows a cell that its corners perturbed during training. The
deviation bound ensures that the shapes do not degenerate during NMA training. The array of corner
locations c and radii r comprise our geometric parameters. The outer boundary of the structure is
constrained not to change during NMA optimization, as this would otherwise create inconsistent
boundary conditions between designs.

4



Published as a conference paper at ICLR 2023

Figure 4: After optimization, we are able to achieve both horizontal and vertical translation using
linear actuations. The learned diagonal pore shapes allow compressive actuation to be translated into
downwards motion, and tensile actuation into upwards motion. The neural network, jointly learned
along with the geometry, successfully translates the goal coordinate to the appropriate actuations.

Figure 5: Real-world design of the translation task. (a) the material in its starting unactuated con-
figuration, (b-d) shows the structure in tension, compression, and one sided compression to achieve
upwards, downwards, and diagonal pointer displacement. In (e-g) the reference picture (a) is over-
layed on top of the actuated material(b-d) to demonstrate the displacement of the pointer.

2.5 DISCRETIZATION AND END-TO-END DIFFERENTIABILITY

The details of our discretization are in the Appendix. We mention two important notes here. The
first is that careful selection of geometric parameters is critical to being able to differentiate with
respect to them. In particular, given the geometric parameters we can construct a differentiable map
to the B-spline control points representing the geometry of the model. The analogy in standard
FEM would be that our “meshing” operation is fully differentiable. Part of the reason differentia-
bility is always satisfied is that the cardinality and topology of the control points remain the same
given any valid setting of geometric parameters. Another important note is that all of our geometric
parameters, {r, c}, are only constrained by simple box constraints, so that first order constrained
optimization with them is straightforward. This parameterization is robust in the sense that for any
value of the geometric parameters within the box constraints, we have a valid geometry.

3 EXPERIMENTS

3.1 TRANSLATION AND ROTATION

The first task we tackle is how to perform translation given a limited degree of control. Consider the
setup in Figure 3. We have a 5× 5 cellular solid fixed on the corners. The goal is to be able to move
the green pointer in the middle of the solid to anywhere within the blue square given only horizontal
displacements of the edges. The space of tasks is a small box B, and the task is defined by a single
coordinate; the task descriptor t ∈ R2 is sampled uniformly from B. The task descriptor is mapped
to two horizontal actuations by a simple fully-connected neural network (NN). The loss function is
mean squared error of the green pointer after deformation from the goal.

5



Published as a conference paper at ICLR 2023

Figure 6: Single direction rotation with
a single actuation. The left figure de-
scribes the setup and learned geome-
try. Using a single actuation applied
equally on both sides of the metama-
terial, we can achieve any single direc-
tion rotation up to an angle π/4 of the
middle box.

In the absence of a domain-specific design, the allowed actuations limit the achievable motions to
only left-right displacements. As demonstrated in Figure 3 (right), given a red goal point on the
bottom right the best we can do with the unoptimized geometry is match the x-coordinate. If we do
end-to-end NMA training, however, we converge on the shape in Figure 4. The learned geometry is
able to achieve any translation within the blue square. The diagonal pore shapes enable translating
compression of the material to downwards motion of the pointer, and tension to upwards motion.
Here the joint learning of geometry and control offers a clear benefit: we converge to a nontrivial
solution that discovers how to use its geometric nonlinearity with its NN controller.

To demonstrate transfer to the real world, we manufactured the resulting structure and qualitatively
verified its behavior. As predicted by our simulation the neuromechanical autoencoder can facili-
tate displacement of a central point in the upwards via tension, downwards via compression, and
diagonally via partial compression. See Figure 5 for details.

The next task is another mechanical task: rotation. We would like to see how the NN and metamate-
rial can work together to learn to translate linear actuation into rotation of part of the structure. The
task description is now the angle of rotation: t ∈ [−π, π]. We have two setups for this problem. In
the first, we use a small fully-connected NN to map angle into a single actuation, applied equally on
both sides of the metamaterial (Figure 6). We apply actuations on both sides to avoid translating the
middle square in addition to rotation. In the second, the NN maps into two actuations, one applied
left-right and one applied top-down (Figure 7). In both cases we consider a 7× 7 metamaterial. The
goal is rotation of the blue stick counter-clockwise by an angle t around the center; the loss function
is mean square error from the goal of the two points on the ends of the stick.

In the first setup, we are able to achieve unidirectional rotation between [0, π/4] (Figure 6, right),
while for the second setup, we can achieve bi-directional rotations between [−π/6, π/6] (Figure 7).
Without geometry and control co-design, we would not be able to achieve rotation with linear actu-
ation without an intuition-driven design, but the joint NMA training is able to make good progress.

Figure 7: With two inde-
pendent actuations, we can
achieve bi-directional ro-
tation from [−π/6, π/6].
One actuation is applied
equally on top and bot-
tom, and the other applied
equally left to right.

3.2 SHAPE MATCHING

Next we consider a much higher-dimensional task space. Given a family of shapes parameterized
by 2-dimensional coordinates, we would like to design a mechanical decoder and a neural encoder
that can map coordinates to actuations deforming the structure to resemble a sampled shape from
the family as closely as possible.

In particular, we consider a family generated by a log Gaussian process in polar coordinates, ap-
proximated via random Fourier features (Rahimi & Recht, 2007). Given a metamaterial with a large
central pore, such as in Figure 8a, we would like to deform it to match any of the shapes in the
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(a) Undeformed configuration of both materials.
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(b) Loss curve

Figure 8: Pore shape matching experiments. (a) The undeformed configuration of the unoptimized
geometry and the optimized geometry. The 12 actuations applied on the material are depicted with
the square brackets. (b) The stochastic loss during training. The optimized geometry achieves a
significantly smaller loss since it is able to capture the finer features in the shapes. The geometry
can tune itself to the particular random shapes that comprise the dataset.
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Figure 9: Comparison on random shapes. The optimized geometry is able to capture finer features
of the dataset compared to the non-optimized geometry. Note that our loss function is rotation-
invariant, so the orientation of the shapes do not necessarily match the orientation of the pores.

family. The task description t is an n × 2 dimensional array of coordinates defining the shape.
A fully-connected neural network translates these to 12 actuations applied around the material (as
shown in Figure 8a). The final loss function is an `1 loss between the control points defining the
middle pore after deformation and the points defining the shape. When comparing, we normalize
the scale of both shapes, and perform Procrustes analysis for rotation invariance.

We train one version where the geometry and neural network are optimized jointly, and one version
where only the neural network is optimized for the starting geometry. Figure 8a shows the non-
optimized and optimized geometry. After learning, Figure 9 shows qualitative results of how well
the jointly learned metamaterial compares with the control-only material. Jointly learning geometry
for the shape family allows us to capture much finer features in the target shape. In Figure 8b
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(a) The starting color map. (b) The optimized color map. (c) Color map with slits.

Figure 10: The shapes for digital MNIST, along with labeled locations for actuations. The learned
color map is highly nontrivial, and allows us to perform underactuated control of the seven slits.
Note that the undeformed configuration happens to look like the digit “5”, which is surprising as the
average of digits across the seven-segment display is not a 5.

we visualize the (stochastic) loss during training. The jointly learned metamaterial converges to a
significantly lower loss value, showing the benefit of harnessing the geometric nonlinearity.

3.3 DIGITAL MNIST

For our last task we attempt to create a mechanical seven-segment display for classifying MNIST
digits. Towards this we add an additional design variable for the material: color. Our starting
metamaterial is pictured in Figure 10a, a version of metamaterial that is originally assigned a color
value 0 everywhere. We treat color, parameterized by a B-spline patch over the metamaterial, as an
additional geometric design parameter that can be optimized with NMA training.

Figure 11: The setup for the digital MNIST task. The MNIST digit is fed into a neural network,
which then produces actuations to deform the material in six locations. After deformation the slits
show a digital seven-segment representation of the MNIST digit.

Our input to the neural network is an image sampled from the MNIST dataset. The neural network
then produces actuations that deform the metamaterial to produce a seven-segment representation
of the MNIST digit when viewed through small slits. Figure 10b visualizes the learned colop map,
and Figure 10c shows the structure with slits added. The loss function is manually specified for each
digit, e.g. if an MNIST digit has a label of “1” then the right two slits should contain color value
1.0, while the rest should contain 0.0. The full setup is displayed in Figure 11, with samples after
training displayed in Figure 12. Although this can be learned from scratch end-to-end, to speed up
training we first learned colors and actuations to be able to reproduce all 10 digits, and then trained
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a small feed-forward neural network to match the actuations for each digit. We then set up the entire
pipeline and finetuned end-to-end for better performance. We note that the 7 segments are controlled
by only 6 actuations, so by restricting the family of objects displayed to the 10 digits, we allow the
neural encoder and mechanical decoder to learn underactuated control of all 7 segments. Additional
samples are presented in the Appendix. We also note that the pore shapes did not have to change
significantly to accomplish this task. The only “geometry” design was through the coloring, which
as visualized in Figure 10b turns out to be highly nontrivial.

4 DISCUSSION AND RELATED WORK

Figure 12: Some MNIST samples
and results. Additional samples
available in appendix.

Differentiable Simulation The abundance of differentiable
simulators has demonstrated their usefulness in designing
novel systems. Hu et al. (2019) developed a differentiable
simulator with hand-written custom CUDA physics kernels
that enabled material inference, control of a soft walker, and
co-design of a swinging robot arm. Sanchez-Gonzalez et al.
(2020) presents an ML framework to model a variety of phys-
ical domains to solve forward and inverse problems using a
graph neural network approach. Mozaffar & Cao (2021) de-
veloped a differentiable finite element simulator to control and
infer material parameters within the context of additive manu-
facturing processes. Liang et al. (2019) developed a differen-
tiable cloth simulator, and Ham et al. (2019) automated the cal-
culation of weak shape derivatives within the context of finite
elements to solve PDE constrained shape optimization prob-
lems. In our work, our differentiable simulator is developed
specifically to aid in neuromechanical autoencoder design.

Mechanical Metamaterials As the rational design of nonlin-
ear mechanical materials is often unintuitive, modern machine
learning approaches have enabled faster design. Deng et al.
(2022) coupled a neural accelerated mass spring model that fa-
cilitated an evolutionary approach to design functional struc-
tures. Mao et al. (2020) applied generative adversarial net-
works to design unit cells for architected metamaterials, Ku-
mar et al. (2020) introduces a novel class of anisotropic meta-
materials and a machine learning method for the inverse design of their geometry given desired
elasticity properties, Beatson et al. (2020) learned a reduced order model to speed up simulation of
cellular metamaterials, Xue et al. (2020) introduced a homogenization approach for cellular meta-
materials, and Xue & Mao (2022) introduced a mapped shape approach to design metamaterials
to fit a prescribed strain energy curve. Our work uses classical gradient/adjoint methods to opti-
mize the geometric parameters, but could be combined with machine learning methods to speed up
simulation and hence faster NMA training.

4.1 LIMITATIONS AND FUTURE WORK

We introduce the framework of neuromechanical autoencoders, inspired by the biological co-
evolution of control and morphology. We present a method for automatic design of these systems,
and show a number of results that produce nontrivial behavior through co-design, both in simu-
lation and in real-world. We believe this is a small but significant step in the road to designing
mechanically-intelligent systems. The two major bottlenecks in our approach is the runtime of PDE
solving and geometry parameterization. Fast PDE solving, especially for nonlinear PDEs such as
the ones we use, is a very active area of research, and is crucial to scaling up NMA design. In terms
of geometry parameterization, the key is to find a space of materials that have a complex range of
mechanical deformation properties and yet are easy to simulate. For this paper, 2D cellular solids
with nonuniform pore shapes were a great ansatz, but a future work could understand and quantify
how much “computation” these materials can do. Scaling up to 3-dimensional intelligent mechanical
models, as well as including dynamics, would significantly improve the computation capabilities,
but would require much faster solvers. This is a key focus in our further work.
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Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yunwei Mao, Qi He, and Xuanhe Zhao. Designing complex architectured materials with generative
adversarial networks. Science Advances, 6(17):4169–4169, 2020.

Mojtaba Mozaffar and Jian Cao. Additive manufacturing process design with differentiable simula-
tions. CoRR, abs/2107.10919, 2021. URL https://arxiv.org/abs/2107.10919.

R. Ogden. Non-linear Elastic Deformations. Dover Civil and Mechanical Engineering, Dover
Publications, 1997.

Chandana Paul. Morphological computation: A basis for the analysis of morphology and control
requirements. Robotics and Autonomous Systems, 54(8):619–630, 2006.

Les Piegl and Wayne Tiller. The NURBS Book (2nd Ed.). Springer-Verlag, Berlin, Heidelberg, 1997.
ISBN 3540615458.

M. J. D. Powell and Ph. L. Toint. On the estimation of sparse hessian matrices. SIAM Journal on
Numerical Analysis, 16(6):1060–1074, 1979.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2007.

Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–
869, 1986.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and Aarti
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A APPENDIX

A.1 DISCRETIZATION AND IGA

Figure 13: Visualization of the decomposition of a cell into patches. Each patch is pulled back into a parent
space, which is a B-spline knot span. Quadrature and integration happens in this space. The pore shapes are
parameterized by radii.

We discretize the geometric domain into P isogeometric patches. All patches use the same B-
spline basis functions Bij(ξ, η) Piegl & Tiller (1997) with i, j ∈ [np] and ξ, η ∈ [0, 1], where
np is the number of control points. The domain of ξ and η correspond to the parent domain of
each patch (Figure 13). In the B-spline literature, the parent domain is often referred to as the knot
span. The basis functions are piecewise polynomial with degree specified as a parameter. In all
of our experiments, we use piecewise quadratic B-spline functions. Each B-spline basis function
corresponds to a control point, and each control point represents two degrees of freedom in 2D
space, i.e., each patch p ∈ [P ] has np × np × 2 degrees of freedom (xijp and yijp ).

The mapping from the parent domain of each patch to the physical domain is given by a linear
combination of B-spline basis functions, where the weights of the linear combination are given by
the control point coordinates. Explicitly, the mapping function φp from parent space of patch p to
physical space is given by

φp(ξ, η;x,y) =

np∑
i=1

np∑
j=1

[
xijp
yijp

]
Bij(ξ, η), (1)

where [xijp , y
ij
p ] are the control points parameterizing the mapping. In our simulator, we represent the

reference configuration with reference control points [Xij
p , Y

ij
p ]; these are determined by our geom-

etry parameters {r, c} through a differentiable map. We then parameterize the deformed geometry
with the same basis, using deformed control points [xijp , y

ij
p ]. For a given deformation, the integral

in Eq 3 representing the potential energy can be computed by a pullback in the parent domain, using
standard Gaussian quadrature as is standard in FEM (Hughes et al., 2005).

Dirichlet boundary conditions of the type we use in this paper can be represented as constraints
on a subset of the control points. For each boundary condition, the corresponding reference and
deformed control points are prescribed to have particular displacement values. Furthermore, since
our geometry is decomposed into multiple neighboring patches, the control points must also have
incidence constraints amongst them. These are kept track of using constraint groups, where each
group has a representative element.

A.2 MECHANICAL MODEL

In the static equilibrium problems we consider, the solution is a displacement that minimizes some
energy function. In particular, we use a nearly incompressible Neo-Hookean material model (Ogden,
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1997), in which the elastic properties are captured by a hyperelastic strain energy density function.
This function, W (F),W : R2×2 → R, is independent of the path of deformation and is a function
of the deformation gradient tensor, Fij = ∂ui/∂Xj + I where X ∈ D ⊂ R2 represents the position
of a particle in the undeformed reference configuration, and u(X) is the displacement field. Here,

W (F) =
µ

2
(I1 − 2− 2 log J) +

κ

2
(log J)2, (2)

where J = det(F), I1 = tr(FTF), and µ = E/2(1 + ν) and κ = E/3(1− 2ν) are shear and bulk
moduli of a material with Young’s modulus E and Poisson’s ratio ν, respectively. This is a standard
choice for hyperelastic material modeling that transfers well to the real-world. We can solve for the
displacement by finding the stationary point of the potential energy functional Ψ(u),

u∗ = arg min
u∈H

Ψ(u) Ψ(u) =

∫
D
W (F)dX =

∫
D
W

(
∂u

∂X

∣∣∣∣
X=X′

+ I

)
dX′ (3)

where H is the set of all displacement fields that satisfy prescribed Dirichlet boundary conditions
(expressed as equality constraints on the displacement field). To solve this in practice, we dis-
cretize u and define a standard representation of the geometry. Abstractly, the solution u∗ can be
regarded as an implicit function of the design parameters and boundary conditions. The solution u∗
can be computed in a discretized form using standard second-order optimization algorithms, and
gradients can be computed using implicit differentiation.

A.3 END-TO-END DIFFERENTIABILITY

We would like to reiterate that our differentiability conditions are satisfied, so that we can train
neuromechanical autoencoders end-to-end. We first define a differentiable map from geometry pa-
rameters and Dirichlet boundary condition values into the reference B-spline control points. This is
then used to construct the Πl,Πg functions, both of which are differentiable. The global vector q
is then passed into a black-box optimizer to produce the solution q∗. Gradients with respect to the
solution of the optimizer are computed using adjoint optimization. The solution q∗ is then mapped
back into local coordinates using Πl, and is used to compute the loss function L.

This pipeline ensures that we have a differentiable map from geometry parameters and boundary
conditions (actuations) to the NMA task loss function, so we can proceed to train the NMA objective
using stochastic gradient descent. In the next section, we demonstrate specific applications.

A.4 SOLVER DETAILS

After discretization to q, we solve the energy minimization using Newton’s method with incremental
loading. The Hessian of the energy is assembled in sparse form using the trick from Powell & Toint
(1979). Using the discretization of the system we automatically derive the sparsity pattern of the
Hessian, and then construct appropriate binary vectors to perform Hessian-vector products with. We
then reshape these into a CSR matrix representation of the Hessian.

The sparse linear systems are then solved by GMRES (Saad & Schultz, 1986) preconditioned by
an incomplete LU decomposition. Since the energy involves log detF , where F is the deformation
gradient, taking a finite step can lead to numerical blowup. Therefore our incremental loading is
adaptive, and a line search is performed to avoid inversion of elements in the geometry.

A.5 EXPERIMENTAL DETAILS

All B-spline patches used were quadratic and contained 5× 5 control points. Quadrature was done
by degree 5 Gauss-Legendre. Most computation was done on NVIDIA RTX 2080 GPUs. Each solve
instance was done on a single GPU, and mini-batching was done by parallelizing with MPI. Each
MPI task used a single GPU. The radii parameters were clipped to [0.1, 0.9] to aid solver stability.

A.5.1 TRANSLATION TASK

The learning rate was 0.0001∗M where M is the number of MPI tasks. In this case, we used 8 MPI
tasks. The neural network was a fully-connected network with activation sizes: 2−30−30−10−2
(including input/output). The final layer was clipped by a tanh and multiplied by a maximum
displacement of 60% of cell width.
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A.5.2 ROTATION TASK

The learning rate was 0.001 ∗M for single and 0.01 ∗M for double rotation. M is the number of
MPI tasks. In this case, we used 8 MPI tasks. The neural network was a fully-connected network
with activation sizes: 1 − 20 − 10 − 1 (including input/output) or 1 − 20 − 10 − 2 for the double
actuation. The final layer was clipped by a tanh and multiplied by a maximum displacement of 60%
of cell width.

A.5.3 SHAPE MATCHING TASK

The learning rate was 0.0001∗M whereM is the number of MPI tasks. In this case, we used 16 MPI
tasks. The neural network was a fully-connected network with activation sizes: 98−200−200−12
(including input/output). The final layer was clipped by a tanh and multiplied by a maximum
displacement of 60% of cell width.

A.6 DIGITAL MNIST TASK

Initially we learned colors and actuations for a lookup table of 10 digits. This was trained with
a learning rate of 0.01 ∗ M where M is the number of MPI tasks. We used 10 MPI tasks, one
per digit. We clipped the maximum displacement to 60% of cell width using tanh. Afterwards, we
trained a fully-connected neural network to map MNIST digits to the actuations of the corresponding
digit. We then put the neural network to map directly to actuations, and finetuned end-to-end with a
learning rate of 0.0001.
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A.7 ADDITIONAL PORE MATCHING RESULTS
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A.8 ADDITIONAL DIGITAL MNIST RESULTS
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