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Abstract— Model identification for physiological systems is
complicated by changes between operating regimes and mea-
surement artifacts. We present a solution to these problems by
assuming that a cohort of physiological time series is gener-
ated by switching among a finite collection of physiologically-
constrained dynamical models and artifactual segments. We
model the resulting time series using the switching linear
dynamical systems (SLDS) framework, and present a novel
learning algorithm for the class of SLDS, with the objective
of identifying time series dynamics that are predictive of
physiological regimes or outcomes of interest. We present
exploratory results based on a simulation study and a physiolog-
ical classification example of decoding postural changes from
heart rate and blood pressure. We demonstrate a significant
improvement in classification over methods based on feature
learning via expectation maximization. The proposed learning
algorithm is general, and can be extended to other applications
involving state-space formulations.

I. INTRODUCTION

Physiological control systems involve multiple interact-
ing variables operating in feedback loops that enhance an
organism’s ability to self-regulate and respond to internal
and external disturbances. The resulting multivariate time
series often exhibit rich dynamical patterns that are altered
under pathological conditions, and are therefore informative
of health and disease [1], [2], [3], [4]. Using nonlinear
[1], [2] indices of heart rate (HR) variability (i.e., beat-
to-beat fluctuations in HR), researchers have shown that
subtle changes to the dynamics of HR may act as an early
sign of adverse cardiovascular outcomes (e.g., mortality after
myocardial infarction [3]) in large cohort studies. However,
these studies fall short of assessing the multivariate dynamics
of the vital signs (e.g., heart rate, blood pressure, respi-
ration, etc.), and do not yield any mechanistic hypotheses
for the observed deteriorations of normal variability. This
shortcoming is in part due to the inherent difficulty of
parameter estimation in physiological time series, where
one is confronted by nonlinearities (including rapid regime
changes), measurement artifacts, and/or missing data, which
are particularly prominent in ambulatory recordings (due to
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patient movements) and bedside monitoring (due to equip-
ment malfunction).

In previous work [5], [6], we developed a framework
for automated discovery of shared dynamics in multivariate
physiological time series from large patient cohorts. A central
premise of our approach was that even within heterogeneous
cohorts (with respect to demographics, genetic factors, etc.)
there are common “phenotypic” dynamics that a patient’s
vital signs may exhibit, reflecting underlying pathologies
(e.g., detraction of the baroreflex system) or temporary phys-
iological state changes (e.g., postural changes or sleep/wake
related changes in physiology). We used the switching linear
dynamical system (SLDS) framework to automatically seg-
ment the time series into regions with similar dynamics, i.e.,
time-dependent rules describing the evolution of the system
state. Importantly, the framework allows for incorporation of
physiologically-constrained linear models (e.g., via lineariza-
tion of the nonlinear dynamics around equilibrium points of
interest) to derive mechanistic explanations of the observed
dynamical patterns, for instance, in terms of directional
influences among the interacting variables (e.g., baroreflex
gain or chemoreflex sensitivity).

Although we assumed a priori knowledge of the under-
lying physiology to constrain the dynamical models, the
model parameters have to be learned from the data. As noted
earlier, artifacts in physiological recordings and incomplete
knowledge of the underlying physiology may hinder system
identification using traditional approaches such as maximum
likelihood estimation. In this work, we propose a learning
algorithm specifically designed to learn dynamical features
of data that are predictive of patient outcomes such as a
patient’s physiological state or long-term survival. Previous
approaches have used a two-stage procedure: unsupervised
feature extraction followed by supervised learning for out-
come discrimination. Here we take the novel approach of
jointly learning the dynamics and the classifier. Rather than
depending on label-free unsupervised learning to discover
relevant features of the time series, we build a system that
expressly learns the dynamics that are most relevant for
predicting patient outcome.

II. METHODS

Assume we are given a collection of N multivari-
ate time series and the associated outcome variables:
{(y(1),O(1)),(y(2),O(2)), · · · ,(y(N),O(N))}, where the n-th
time series y(n) is of length Tn, and may include M channels.
The corresponding label O(n) can be a scalar such as a
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(b) Tilt-table experiment
Fig. 1. (a) An example bivariate time series out of the 200 simulated. The
time series were divided into 4 categories, each statistically having different
proportions of four modes (M1, · · · , M4, color-coded as red, blue, green,
and black, respectively). Here, we introduced an offset of 2 in one of the
channels of each time series to improve visibility. (b) An example of heart
rate and mean blood pressure from the tilt-table experiment is shown in the
bottom panel (actual values in gray and filtered values in black). The ground
truth segmentation is indicated using color-coded horizontal lines – green
to cyan: slow tilt up and down to supine; red to pink: rapid tilt up and down
to supine; yellow: standing up and back to supine.

discrete patient outcome, or it may itself be be a length-
Tn time series vector that assigns a label to each instant.
Our objective is to find shared dynamical features across the
different time series that are predictive of the labels.

A. Datasets

1) Simulated time series with Switching Dynamics:
We simulated 200 bivariate time series with dynamic
switching among four modes (J = 4, color-coded in Fig.
1(a)). All four dynamical modes were stable bivariate
(M = 2) autoregression (AR) models of order two (P = 2).
To increase the heterogeneity of the dataset, the time series
were simulated using four different Markov transition
matrices (the stationary distribution of the four categories
were [0.67, 0.10, 0.10, 0.13], [0.14, 0.57, 0.19, 0.10],
[0.08, 0.16, 0.54, 0.22], and [0.09, 0.09 , 0.23, 0.59]).
Additionally, we introduced approximately 10% variation
in the AR coefficients across each realization by adding
white Gaussian noise with standard deviation 0.05 to each
of the AR coefficients. Finally, all time series included two
randomly-placed large-amplitude artifacts (uniform random
noise in the interval of [0,15]) of 10 samples duration. Fig.
1(a) shows an example of the simulated time series.

2) Tilt-Table Experiment: Time series of HR and mean
arterial blood pressure (MAP) were acquired from 10 healthy
subjects undergoing a tilt-table experiment. The details of the
protocol are described in Heldt et al. [7]. Briefly, subjects
were placed in the supine position and secured to a table.
Tilting was performed at various speeds from the horizontal
position to the vertical position and back to supine, gen-
erating four postural categories of (1) supine, (2) slow-tilt,

(3) fast tilt, and (4) standing. One example of the resulting
time series is shown in Fig. 1(b).

Data Pre-processing: Since we were interested in the
interaction between HR and MAP in the frequency range
pertinent to sympathetic and parasympathetic regulation [5],
the time series of HR and MAP were high-pass filtered to
remove the steady-state baseline and any oscillation in the
time series with a period slower than 100 beats. This filtering
was done using a 7th order Butterworth digital filter with
cutoff frequency of 0.01 cycles/beat.

B. Learning Switching Dynamics in Cohort time series

Switching Linear Dynamical Systems: The switching lin-
ear dynamical system (SLDS) framework [8] models time
series using two layers of evolution. In the high-level layer,
the time series evolves through a set of J modes according
to Markovian dynamics. In the lower level, each of these
modes corresponds to a unique linear dynamical system that
evolves a continuous state and produces the observed time
series. The generative model is as follows: a latent process
for each time series S(n)t ∈ {1, · · · ,J} evolves according to
Markovian dynamics with initial distribution π(n) and J× J
transition matrix Z. Each of the n series has an unobserved
continuous state variable x(n)t ∈ RM that evolves according
to linear dynamics which are determined by the current
mode S(n)t , and produces observations y(n)t . The jth linear
system has state dynamics A( j), observation matrix C( j), state
noise covariance Q( j), and observation noise covariance R( j):

x(n)t = A(S(n)t )x(n)t−1 + vt vt ∼ N(0,Q(S(n)t ))

y(n)t =C(S(n)t )x(n)t +wt wt ∼ N(0,R(S(n)t )).

We refer to these mode-specific dynamics together as Θ( j).
EM for Parameter Learning in Switching Dynamical Sys-

tems: A comprehensive treatment of the EM algorithm for
SLDS is presented in Murphy (1998) [8]. Briefly, in practice
we neither know the set of switching variables nor the
parameters that define the modes. EM is a two-pass iterative
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Fig. 2. time series dynamics-based sequential labeling. The first three layers
(from bottom) depict a graphical model representation of the switching lin-
ear dynamical system, and the last layer estimates parameters of multinomial
probability of outcomes (µ1, · · · ,µT ); via the multinomial logistic regression
function σ(.;β ), with parameters β . The round nodes are continuous and
Gaussian random variables, the square nodes are discrete random variables,
and the elliptical nodes are deterministic functions. Shaded nodes are
observed and the rest are hidden. Solid arrows denote the conditional
dependencies among the random variables.
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(b) Tilt-table Results
Fig. 3. (a) Panels A-E show classification performance over ten folds using the EM for 5, 8, 10, 13, and 15 iterations, and EM followed by 30 iterations
of supervised learning (BP). (b) Panel A shows 10-fold cross-validation results, comparing the accuracy achieved using 10 iteration of EM versus 10
iterations of EM followed by 30 iterations of the L-BFGS optimizer. Panel B shows a comparison of the two techniques in terms of classification accuracy.

algorithm: (1) in the expectation (E) step we obtain the
expected values of the latent variables {{x(n)t ,S(n)t }Tn

t=1}N
n=1

using a modified Kalman smoother [8], and (2) in the maxi-
mization (M) step we find the model parameters {Θ( j)}J

j=1,
Markov dynamics Z and initial conditions π(n) that max-
imize the expected complete data log likelihood. In our
implementation of the EM algorithm, we achieve shared
dynamics by pooling together all subjects’ inferred variables
in the M step. We impose physiological constraints on the
model parameters using a constrained least square approach.
Iteration through several steps of the EM algorithm results
in learning a set of J shared modes and a global transition
matrix Z for all the patients.

Sequential Labeling: After using the EM algorithm to
estimate model parameters, the E-step estimates of switching
variables S(n)t can be used to predict the training labels O(n)

t .
Here we assume that each label O(n)

t can take on any one of
K possible outcomes, and can be modeled using a softmax
classifier with parameters β . We take the classification ob-
jective to be the negative log likelihood (negentropy) of the
outcome labels, given the time series:

− logPr(O|µ(Θ,Z,β )) =−
N

∑
n=1

Tn

∑
t=1

K

∑
k=1

O(n)
t,k log µ

(n)
t,k (Θ,Z,β ).

(1)

where O denotes the set of all the outcomes, and the
estimated multinomial outcome probabilities, as a function
of the various SLDS parameters, are denoted µ(Θ,Z,β ) (see
Fig. 2).

Outcome-Discriminative Learning: Within the EM frame-
work, unsupervised learning of the dynamics is treated
separately from the discriminative learning of a mapping
between switching states and outcome labels. Our objec-
tive is to design purely-supervised learning algorithm that
discovers dynamical features in series that are predictive
of the outcome variables. The key insight of the proposed
learning algorithm is that the gradient of the objective
calculated in Eq. (1) can be backpropagated through the
network architecture depicted in Fig. 2 to efficiently calculate
the gradient with respect to model parameters. The details
of the analytical expressions for the involved derivatives,
which allows a two-pass algorithm for calculating the exact
gradients, are given in Nemati [9].

The objective of the proposed leaning algorithm is there-
fore to minimize the cost function in Eq. (1):

Θ
?,Z?,β ? = argmin

Θ,Z,β
{− logPr(O|µ(Θ,Z,β ))} (2)

subject to the constraints that covariance matrices Q( j) and
R( j) remain positive definite, and all the elements of Z stay
nonnegative and each row sums to one.

1) EM-based Initialization: Due to the large number of
free parameters in Eq. (2), it is necessary to carefully manage
the optimization procedure in order to avoid overfitting and
local minima. We initialize the parameters by running a
few iterations of the EM, and then switch to a nonlinear
optimization procedure, such as the L-BFGS quasi-Newton
method.

III. RESULTS
A. Simulation Study

We assumed that the number of modes and the model
order is known a priori, and tested the performance of
both the EM and the proposed learning algorithm on the
classification problem of labeling each time series sample as
belonging to one of four modes. The results summarized in
Fig. 3(b) show that the classification performance using EM
improves up to 13 iterations, but further EM iterations do
not improve performance on the held-out test data. Notably,
the figure demonstrates the dependence of the proposed joint
supervised learning on the EM initialization. In particular,
supervised learning benefits from initialization with up to 8
iterations of the EM; further EM iterations seem to lower its
performance, presumably due to local minima and overfitting
of artifacts.

B. Tilt-Table Experiment
We constructed a sequential labeling/classification task

involving the four maneuvers depicted in Fig. 1(b). We
used four modes, each corresponding to an AR model of
order three, to model the bivariate time series of heart rate
and blood pressure. The supervised learning algorithm was
initialized using 10 iterations of the EM algorithm, followed
by 30 iterations of L-BFGS. The results shown in Fig. 3(b)
indicate that the joint supervised learning slightly improves
the negentropy cost function. We also considered the clas-
sification accuracy, which shows a significant improvement
(Wilcoxon Signed-Rank Test, p <0.05) as a consequence of
joint supervised learning.



1) Physiological Interpretation of the Discovered Dynam-
ics: Since we modeled the dynamics using multivariate AR
models, we were able to derive the parametric power spectra
corresponding to the individual channels of each time series
[4]. We observed a progressive increase in the ratio of the low
frequency (LF: periods of 6-20 beats) to the high frequency
(HF: periods of 2-5 beats) power of the HR time series
(also know as the LF/HF ratio; an index of sympathovagal
activation) from supine to slow tilting, fast tilting, and
standing. This indicates increased sympathetic modulations.
These results were obtained by (1) calculating the parametric
power spectrum of the HR for each mode, using its AR
coefficients, and (2) calculating a weighted average of the HR
spectrum within the segments corresponding to each postural
regime, where the weights were given by the probabilities
of belonging to a given mode. The estimated increase in
LF/HF ratio from supine to standing was significant with
both learning techniques (EM: 4.6 [4.3, 5.4] to 8.4 [8.3,
8.6] † , supervised: 4.4 [3.7 4.8] to 5.53 [5.2 6.5] †, median
[interquartiles]; † indicates p < 0.05 using Kruskal-Wallis
nonparametric ANOVA test).

IV. DISCUSSION AND FUTURE DIRECTION

We presented a novel technique for discriminative learning
of dynamics in cohort time series. The main idea of our
approach was to provide the learning algorithm with the
outcomes (labels) corresponding to each time series sample
(e.g., supine, slow-tilt, etc), and to learn switching linear
dynamics that are maximally discriminative. Using simulated
time series, we showed that the joint supervised learning
algorithm provides a significant improvement over EM fea-
ture extraction, and benefits from an EM-based initialization.
Furthermore, we demonstrated a significant improvement
in classification accuracy when decoding postural changes
involved in the tilt-table experiment, using the multivariate
switching dynamics of HR and BP time series. The technique
developed in this work is also significant from a theoretical
point of view, since we demonstrated that one may apply
backpropagation-based learning algorithm to inference in
dynamic Bayesian networks. This results in dynamical fea-
tures that are predictive of outcome. Since the EM learning
objective is the log likelihood of the unlabeled time series,
it may learn artifacts and other features that are not relevant
to classification. As expected, increasing the number of EM
steps in the simulation study (where high amplitude artifacts
were randomly inserted into all time series) did not improve
the discriminative performance, even though we observed
a significant increase in training log likelihood. Notably, the
proposed EM-based initialization step is qualitatively similar
to the unsupervised learning step used for training Deep
Belief Networks (DBN), where “unsupervised pre-training”
is known to significantly improve the predictive performance
of discriminative neural networks [10].

As demonstrated through the tilt-table example, the pro-
posed approach has the added advantage of having physio-
logical interpretability. Since the features used for prediction
are based on the dynamics of the underlying time series, one

can link the most predictive features for a given outcome
back to the underlying physiology. For instance, tilting is
known to disrupt the sympathovagal balance in the direction
of increased sympathetic activation. Notably, modes that
were most probable during the tilting events had higher
LF/HF ratios, indicating increased sympathetic modulation.

As with any learning algorithm, one must address potential
problems with overfitting to the training data. Although,
in the case of the simulated data we did not observe any
overfitting (see Fig. 3(a)), the tilt-table results shown in
Fig. 3(b) exhibits a slight performance decrease in two out
of ten testing folds. We believe this is due to the small
number of time series within the tilt-table cohort (10 time
series versus 200 time series in the simulation study). Future
work should involve exploring the full potential (and pos-
sible shortcomings) of the proposed learning algorithm for
extracting dynamical features in large physiological cohort
time series, with the goal of characterizing and predicting
patient state and outcomes.
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