
Advances in Monte Carlo Variational Inference and
Applied Probabilistic Modeling

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050063

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050063
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Advances%20in%20Monte%20Carlo%20Variational%20Inference%20and%20Applied%20Probabilistic%20Modeling&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=85b36506ce09c399d531a4616c6f2190&departmentEngineering%20and%20Applied%20Sciences%20-%20Computer%20Science
https://dash.harvard.edu/pages/accessibility

Advances in Monte Carlo Variational
Inference and Applied Probabilistic

Modeling

a dissertation presented

by

Andrew Colin Miller

to

The John A. Paulson School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

April 2018

©2018 – Andrew Colin Miller

all rights reserved.

Dissertation advisor: Professor Ryan P. Adams Andrew Colin Miller

Advances in Monte Carlo Variational Inference and Applied
Probabilistic Modeling

Abstract

Galvanized by the accelerated pace and ease of data collection, researchers in more

and more disciplines are turning to large, heterogeneous datasets to answer scientific

questions. Divining insight from massive and complex data, however, requires flexible

models and efficient inference of meaningful factors of variation. This thesis develops

new statistical models and methods to help practitioners answer quantitative questions

and more efficiently explore their data.

The first part of this thesis presents three applied probabilistic modeling case stud-

ies in a diverse set of domains: astronomy, healthcare, and sports analytics. For each

application we develop a probabilistic model for high-dimensional observations to ad-

dress a particular goal—to make robust, portable predictions, find latent structure, or

to organize and visualize interpretable factors of variation in the data. Guided by these

examples, we discuss the common challenges of specifying interpretable-yet-flexible prob-

abilistic models in applied settings.

Motivated by the challenges of applying probabilistic models to large datasets, the

second part of this thesis develops new algorithms for approximate Bayesian inference.

We focus on improving variational inference, a widely used class of approximation al-

gorithms. We develop two new techniques to improve the accuracy and computational

efficiency of variational inference methods. We further generalize one technique into a

class of computationally efficient Monte Carlo estimators.

iii

Contents

1 Introduction 1

1.1 Summary of contributions . 6

2 Background 8

2.1 Probability: Light Overview . 9

2.2 Probabilistic Modeling . 20

2.3 Inference . 30

2.4 Bayesian Inference . 36

2.5 Conjugacy . 38

2.6 Markov chain Monte Carlo . 39

2.7 Variational Inference . 41

2.8 Model Evidence Estimation . 44

3 Probabilistic Models for Scientific Discovery 46

3.1 Application: Photometric Redshift . 49

3.2 Application: Electrocardiogram Tracings 64

3.3 Application: Trajectory Modeling . 74

3.4 Conclusion and Discussion . 90

4 Improving Posterior Approximations: Variational Boosting 91

4.1 Introduction . 93

4.2 Variational Inference . 94

4.3 Variational Boosting . 96

iv

4.4 Experiments and Analysis . 108

4.5 Discussion and Conclusion . 114

Appendices 116

Appendix 4.A1 Initializing Components . 116

Appendix 4.A2 Fitting the Rank . 120

Appendix 4.A3 Experiment Figures . 122

5 Reducing Reparameterization Gradient Variance 125

5.1 Introduction . 126

5.2 Background . 128

5.3 Method: Modeling Reparameterization Gradients 132

5.4 Experiments and Analysis . 140

5.5 Conclusion . 144

Appendices 145

Appendix 5.A1 Control Variates . 145

Appendix 5.A2 Algorithm Details . 148

Appendix 5.A3 Model Definitions . 148

Appendix 5.A4 Variance Reduction . 150

6 Taylor Residual Estimators 152

6.1 Introduction . 153

6.2 Taylor Residual Monte Carlo Estimator 154

6.3 Variance Analysis . 157

6.4 Experiments . 160

6.5 Conclusion . 162

7 Conclusions and Future Directions 163

7.1 Directions of future research . 164

v

References 178

vi

Listing of figures

1.1 Astronomy photometric image data . 2

1.2 Electrocardiogram raw data . 3

2.1 Regression examples . 23

2.2 Clustering example . 26

2.3 Composition of model components example 30

3.1 Spectroscopy and photometry data . 50

3.2 Redshift comparison . 52

3.3 Quasar redshift graphical model . 55

3.4 Spectroscopic latent basis . 59

3.5 Photometric redshift predictions . 61

3.6 Example quasar posterior summaries 62

3.7 Raw electrocardiogram tracings and generative model 66

3.8 Modeling the pause between cardiac cycles 70

3.9 Nearest neighbor record examples . 71

3.10 Cardiac cycle morphology latent space 72

3.11 Player-tracking trajectory segments . 77

3.12 Clustered actions . 78

3.13 Basketball possession “bag of actions” 83

3.14 Basketball Possession topic model output 83

3.15 Possession map for the Golden State Warriors 85

vii

3.16 Possession similarity example . 87

3.17 Corner three possession map . 88

4.1 Mean field bias example . 92

4.2 Variational Boosting illustration . 99

4.3 Two-dimensional variational boosting example 103

4.4 Variational Boosting marginal posterior comparison 106

4.5 Variational Boosting covariance estimates compared to MCMC 107

4.6 Variational boosting applied to the frisk model 109

4.A2.1 Variational Boosting stopping criterion 122

4.A3.1 Variational Boosting marginal comparison on frisk model 123

4.A3.2 Variational Boosting covariance estimation on frisk model 124

5.1 Comparison of gradient estimators by variance 130

5.1 Reduced gradient estimator illustration 137

5.1 Reduced variance gradient estimator applied to frisk model 143

5.2 Reduced variance gradient estimator applied to bnn model 143

6.1 Illustration of Taylor residual estimators 154

6.1 Taylor residual estimators variance reduction condition 157

6.1 Taylor residual estimators applied to VI 160

viii

Acknowledgments

I am deeply grateful to my advisor, Ryan Adams. Working closely with Ryan has
been a fun and challenging and immensely rewarding experience. With Ryan’s guidance,
my time in graduate school reshaped my perspective on research, problem solving, and
the role of statistics and machine learning in a broader scientific and societal context.

The HIPS lab was an enriching environment for a young graduate student, and I
am fortunate to have met and acquired so much from its members, including Diana
Cai, David Duvenaud, Mike Gelbart, José Miguel Hernández-Lobato, Jonathan Hug-
gins, Scott Linderman, Dougal Maclaurin, Shamim Nemati, Yakir Reshef, Oren Rippel,
Jasper Snoek, and Albert Wu. I would like to single out and thank Matt Johnson, who,
on many occasions, patiently detailed a technical concept or discussed a research idea
with an unflagging and infectious enthusiasm.

I am indebted to the members of the XY Research group, Alex D’Amour, Dan Cer-
vone, Alex Franks, Kirk Goldsberry, and Luke Bornn. My statistics education is rooted
in discussions dissecting basketball analytics with this group.

I would also like to thank Finale Doshi-Velez, who welcomed me into her research
group, along with other members of the broader ML community at Harvard, including
Mike Hughes, Arjumand Masood, Deborah Hanus, Taylor Kilian, Omer Gottesman,
Andrew Ross, Yoon Kim, and Jon Malmaud.1

My time in graduate school has been deeply collaborative, and I am fortunate to have
worked closely with a mix of researchers with an eclectic range of expertise, including
Nick Foti, Jeff Regier, Jon McAuliffe, Sendhil Mullainathan, and Ziad Obermeyer.

I want thank my parents, Chris and Timm, and my sister, Ashley, whose support
over the last six years never wavered (that much). Though my family always stressed
the importance of education, I am sure they are surprised I took that advice so literally.

And finally, thank you, Cassie.

1And Sam Wiseman, I guess.

ix

The best thing about being a statistician is that

you get to play in everyone’s backyard.

John Tukey

1
Introduction

The analysis of noisy and uncertain data is an exercise common to nearly every field

of scientific inquiry. The resolution of a scientific question requires weighing evidence

associated with alternative hypotheses. An astronomer might ask, what is a quasar’s

redshift1 given a noisy image? More specifically, how plausible is a particular value of

redshift out of all possible values given our observation (visualized in Figure 1.1)? How

can we reliably estimate such quantities for hundreds of thousands of objects? Answering

these questions raises challenges that are physical, statistical, and computational in

nature.

Alternatively, a scientist may want to explore a large dataset for previously unknown
1Redshift is a physical property of a source (e.g. a star, galaxy, quasar) that characterizes

cosmological expansion observed between the source and the Earth.

1

(a) Small SDSS patch (b) Zoom in (25×25 pixels)

Figure 1.1: Example photometric image from the Sloan Digital Sky Survey (SDSS) [Kent et al.].
Each pixel in each band represents a noisy photon count, conveying some information about the
physical parameters of the imaged source. How can we reliably measure these parameters of inter-
est, including our uncertainty about them?

patterns. For example, a doctor might want to systematically inspect a large collection

of electrocardiogram tracings, two examples of which appear in Figure 1.2. This re-

searcher may want to describe how these tracings vary within a patient (e.g. from beat

to beat) and between patients. Further, they may want to discovery dimensions of vari-

ation associated with patient types. For instance, some patients may have paroxysmal

atrial fibrillation2 and exploring the variation between these and healthy patients could

shed light on the underlying mechanism that causes this abnormality. How can we

systematically explore variation relevant to the researcher’s goals? How can we explore

variation associated with a massive number of patients?

This thesis develops new statistical models and methods to help scientists answer

quantitative questions and more efficiently explore their data—to perform better data

analysis. We develop models of complex phenomena to measure an otherwise immea-

surable quantity of interest— e.g. a prediction, a counterfactual (or potential) outcome,

a correlation, a treatment effect, or unobserved structure that explains variation in the

observed data.
2Paroxysmal atrial fibrillation is a classification that indicates a patient goes in and out of

atrial fibrillation, a heart arrhythmia.

2

(a) Patient a

(b) Patient b

Figure 1.2: Example electrocardiogram traces. How can we characterize within-patient variation,
and between-patient variation? How can we measure variation associated with certain patient-
types?

Reliably estimating some quantity or finding a meaningful decomposition of the vari-

ation of a dataset for exploration (among other data analysis tasks) can be challenging.

This task typically requires us to explain some high-dimensional, possibly noisy signal in

terms of simpler latent structure. For example, a single-lead electrocardiogram (EKG)

tracing is a high-dimensional (i.e. thousands of samples) observation of real-valued volt-

ages that encodes the structure of a patient’s cardiac cycle—the quasi-periodicity of the

heart rate and the morphology of each individual cycle. Explaining an EKG observation

in terms of latent structure allows us to create simpler, more intuitive representations

that explain the variation in our observations at a level of abstraction useful to cardi-

ologists. In order to make these representations more meaningful, we want this latent

structure to reflect scientific knowledge of the underlying phenomenon—the physical

process by which the data come to be measured. By incorporating known and invariant

information, we can specify more portable models—models not tied to a particular sta-

tistical sample, but can make reasonable predictions when observing the phenomenon

within a new context.

We also want to quantify our uncertainty. Typically, the analysis of data is in support

3

of a decision—e.g. to make a diagnosis, select a treatment, or collect more data. If the

information in the data is insufficient to answer a query, our model should reliably

report this uncertainty. We also want to interpret the learned structure of a model.

Particularly when the goal is scientific discovery, a model that maps an input to an

output via some black-box will be insufficient for our understanding the phenomenon.

When specifying models, there will be a tension between flexibility of model components

and interpretability, and navigating this tradeoff is a constant challenge when working

on applied modeling problems.

Probabilistic modeling is a natural framework to address this set of challenges. A

probabilistic model defines a simplified data generating procedure in terms of random

variables—observed data, global parameters, and latent variables. These random vari-

ables have parameterized relationships that describe their dependence structure. This

framework enables the user to specify interpretable, scientifically-informed latent vari-

ables. Encoding this structure in a probabilistic model allows us to use statistical

inference to infer these hidden quantities, which can then be used to make predictions,

measure unobserved quantities, report uncertainties—to answer quantitative questions

about the underlying phenomenon.

A probabilistic model specifies the relationship between each random variable, hid-

den or observed. However, variation in high-dimensional signals (e.g. electrocardiogram

tracings or images) can be difficult to prescribe in a generative way. For these high-

dimensional signals, advances in flexible function approximation (e.g. deep learning)

has refined a set of flexible modeling tools that can approximate difficult-to-prescribe

relationships—e.g. deep neural networks, deep generative models, and Gaussian pro-

cesses (among other non-linear function approximators). However, balancing the flexi-

bility of these model components with the interpretability of simpler, parametric compo-

nents can be challenging. For a particular model, the domain and the task typically call

for a level of abstraction for the model to operate. This can be dictated by particular

4

physical quantities we need to infer or by an existing understanding of the phenomenon

that we wish to augment.3 We will see examples of this balance in Chapter 3.

Additionally, the application of a probabilistic model to a large dataset presents a

computational challenge—statistical inference. The goal of statistical inference is to

characterize all of the hypotheses (e.g. setting of model parameters) that are consistent

with the observed data. Statistical inference combines the simplified representation of

the underlying phenomenon posited by the model with the information in the data—the

probabilistic model lays the scaffolding and the process of statistical inference fills in

the details. Making statistical inferences, however, can be computationally challenging,

and often requires devising tractable approximations that trade off compute time and

statistical accuracy.

This thesis addresses some of these challenges associated with building interpretable-

yet-expressive probabilistic models, and performing computationally tractable inference.

In the first part of this thesis, we describe models for data in a variety of application

domains. The common theme is that these models that balance high-dimensional, non-

parametric components with interpretable probabilistic structure.

In the second part of this thesis, we develop new approximate Bayesian inference

techniques that improve upon existing variational inference algorithms. We devise a

method that allows variational inference approximations to become more expressive.

We also develop a new estimator that makes a general class of variational inference

algorithms more computationally efficient. We further generalize our reduced variance

estimator, enabling its use in more general approximations, and characterize its variance

properties.
3As a concrete example, the trajectories of basketball players are not often reasoned about

as an autoregressive process or a linear dynamical system, but as a sequence of distinct actions
at a level of abstraction discussed by coaches and players—e.g. a baseline cut, a V-cut, or a pick
and roll.

5

1.1 Summary of contributions

Chapter 2 Chapter 2 reviews some of the foundational concepts upon which this

thesis builds. We describe probabilistic modeling and its component parts, including

common probability distributions and their properties, modeling techniques, inference

algorithms, model checking and validation, and common difficulties and pitfalls.

Chapter 3 In Chapter 3 we present a selection of data analysis and applied modeling

projects. We will look closely at three modeling case studies for data in (i) astronomy,

(ii) medicine, and (iii) sports analytics. Though the applications are varied, these statis-

tical models share similar approaches to describing sources of interpretable parametric

variation as well as difficult-to-prescribe variation, non-parametric variation. These ex-

amples highlight important principles of statistical modeling, challenges with modern

data sources, and the need for reliable inference algorithms.

Chapter 4 Variational inference is a widely used and scalable approach to approxi-

mate Bayesian inference. However, variational inference algorithms can be frustrated

by inexpressive families of approximating distributions. This can have a variety of neg-

ative consequences, including local minima in the objective surface, under-dispersed

marginal variances, and poor estimation of the marginal likelihood. These drawbacks

can be mitigated by using a more expressive family of approximating distributions. Us-

ing expressive variational families can be challenging—the tractability of the typical

variational objective and number of free variational parameters can make optimization

practically difficult or analytically intractable. In Chapter 4 we present a method for

fitting expressive variational approximations by greedily adding capacity to our existing

variational family.

Chapter 5 When probabilistic models are non-conjugate (i.e. in general), the varia-

tional objective can be analytically intractable to compute. This is because the vari-

6

ational objective (and its gradient) is an expectation with respect to the approximate

distribution, and a non-conjugate models may not admit an analytical expression. Vari-

ational inference algorithms for non-conjugate models often rely on stochastic gradient

estimators to optimize the variational objective—practitioners compute relatively cheap

Monte Carlo estimates of the gradient as a subroutine for a stochastic optimization al-

gorithm. However, when these gradient estimators are too noisy, typical gradient-based

optimization routines must take smaller steps to reliably increase the variational ob-

jective. This makes variational inference more time consuming or more brittle. In

Chapter 5 we present a method for reducing the variance of these gradient estimators

in a computationally inexpensive way, resulting in faster and more stable learning of

variational approximations.

Chapter 6 Monte Carlo estimation underpins many statistical algorithms. Drawing

samples from a probability distribution, and computing the sample average of some test

function is a general way to approximate an intractable integral. The quality of an

unbiased Monte Carlo estimate is a function of its variance—the lower the better. In

many situations, however, Monte Carlo estimators do not take advantage of common

structure—the smoothness and curvature of the test function; the known moments of

the probability distribution. We present a simple and computationally inexpensive way

to reduce the variance of a Monte Carlo estimator with a few additional assumptions,

based on the relationship between Taylor expansions and moment generating functions.

We study the variance of our estimators, and characterize a condition under which

we are guaranteed to perform no worse than the original estimator. We also examine

empirically inference algorithms for which our new estimator can improve performance.

Chapter 7 In Chapter 7 we conclude the thesis with a summary of contributions and

a discussion of directions of future research.

7

2
Background

For a particular application, our focus is on building a probabilistic model—

a distillation of useful information contained within a large set of data. To do this,

a probabilistic model encodes a “generative story” for how a set of data came to be

measured—a coarsening of the physical process that generated our measurements, ex-

plicitly specifying factors of “important” and “unimportant” variation.1

Specifying a probabilistic models, as the name suggests, draws upon probability the-

ory and statistics for its core components. Probability theory provides a calculus that

we can use to represent and reason about our uncertain measurements. As probabilistic

modeling is rooted in probability and statistics, this chapter will detail some important
1The the definition of “important” will be domain (and task) specific—the distinction between

what is “signal” and what is “noise”.

8

concepts in probability and statistics that will be used throughout this thesis.

Using a probabilistic model in practice typically introduces a computational challenge

in the form of statistical inference—the process by which we generalize properties of

a sample to a population through a probabilistic model. Algorithms for statistical

inference present a computation-accuracy tradeoff—perfect characterization of model

uncertainty is often computationally intractable, and we rely on approximate methods

to make practical use of probabilistic models.

The following sections describe the component parts of probabilistic models and prob-

abilistic inference algorithms. We start with a light overview of probability theory and

a sampling of important properties of random variables. We then describe some prob-

abilistic model building blocks. The second part of this chapter focuses on statistical

inference methods and some of their properties.

2.1 Probability: Light Overview

Probabilistic models are a composition of primitives—random variables and their rela-

tionships. As such, some light background in probability theory is necessary for under-

standing both the construction of probabilistic models and the algorithms we use for

inference.

2.1.1 Random Variables and Distributions

A random variable is a deterministic function from an underlying random event space

to some measurement space (e.g. real numbers, the unit interval, discrete classes, etc.).

A probability space is defined by the tuple (Ω,B,P), where

• Ω is the sample space, with ω ∈ Ω some outcome. An outcome ω conceptually
represents “the state of the world” at the finest resolution measurable, and Ω

represents all possible “realities” that could be measured.

• B is a collection of measurable events, where each event is a set of elements in Ω

for which we define probability measure (i.e. a sigma algebra).

9

• P is a probability measure that maps events in B to values in [0, 1], and allocates
exactly one unit of probability to all measurable events,

∑
b∈B P(b) = 1.

A real-valued random variable X is a map X : Ω 7→ R, and the distribution (or law)

of the original space allows us to define a probability measure over the random variable

space X

P (X ∈ A) = P(ω ∈ X−1(A)) (2.1)

for some set A, and the pre-image of A, X−1(A), defined as the set of events in Ω that

map to A under the transformation X.

The intuitive purpose of this formalism is to push the “randomness” or uncertainty

into the abstract event space, allowing us to analyze deterministic mappings. Within

this thesis, we will operate at the level of the random variables themselves. That is,

we will typically define a probabilistic model with random variables that correspond

to observed measurements or latent structure. However, the abstract event space of

random variables is an instructive formalism—we view our measurements as a coarsening

of the underlying “true state” of the world, and our level of abstraction for such a

coarsening will strongly influence how interpretable, computationally tractable, and

ultimately useful our model will be. Further, the principles of a deterministic mapping

of randomness, and meticulous preservation of measure applies to random variables

themselves, which we address in more detail in Section 2.1.4.

Under mild conditions, a random variable X admits a probability density function,

denoted pX(·), which relates to the probability distribution measure via integration

P (X ∈ A) =

∫
x∈A

pX(x)dx . (2.2)

When X lives on a discrete space, pX(x) is often referred to as the probability mass

function.

10

We can also define the cumulative distribution function (CDF) of a univariate random

variable, denoted PX(x), as

PX(x) = P (X < x) (2.3)

=

∫
x′<x

pX(dx) . (2.4)

Within a probabilistic model, the probability density and cumulative distribution func-

tions are the primitives with which we define fundamental model objects: the likelihood,

prior, and posterior distributions, which we describe in further detail in Section 2.2.1.2

Probability theory is a rich field that provides the understanding and tools to manipu-

late random variables within a statistical modeling framework. See Williams [1991] for

a more thorough treatment of probability theory.

2.1.2 Some properties of distributions

This section describes a handful of useful properties of random variables that we will

use when formulating probabilistic models for data and deriving statistical inference

algorithms. Consider a random variable X ∼ PX on a general space with probability

density (or mass) function given by pX(x).

Expectations and Moments

Some properties of random variables formalize intuitive questions about the variable. If

we were to sample X, what is a “typical” value that we might expect? What range of
2 Within this thesis, we will try to maintain a consistent capitalization scheme for random

variables:
• X: a random variable with distribution PX

• x: a realization of X with density pX(x) and cdf PX(x)

Further, it will sometimes be convenient to use the density as a stand in for the entire distri-
bution, e.g. x ∼ pX(x).

11

values can we expect? Given a large sample, would we see more samples in the higher

range, or the lower range (or is the distribution symmetric)? The moments of a random

variable give us a way to precisely characterize these properties. The most used and

manipulated moment of a random variable is its first, also known as its expectation.

Definition 2.1.1 Expectation . The expectation of a random variable X is
∫
x∈X xpX(x)dx,

and is denoted E[X] or EPX
[X].

Also referred to as the mean of X or first moment, the expectation of a random

variable is a fundamental property used in many types of inference algorithms and

model definitions—it will be used throughout this thesis.

Definition 2.1.2 Moments . The nth moment of a distribution X is given by E[Xn].

The moments of the distribution are expectation of the powers of that random vari-

able. The second moment is related to the variance of the random variable (also known

as the centered second moment)

V[X] ≜ E[(X − µ)2] (2.5)

= E[X2 + µ2 − 2Xµ] = E[X2] + µ2 − 2µ2 (2.6)

= E[X2]− µ2 (2.7)

where µ ≜ E[X] is common shorthand for the first moment.

Definition 2.1.3 Moment-Generating Function . The moment-generating function of a

random variable X is defined

MX(t) = E
[
etX
]
, t ∈ R (2.8)

While its use may not be immediately obvious, a moment-generating function is an

alternative characterization of the distribution of X that admits a recipe for computing

12

each moment E[Xn] via differentiation

E[Xn] =
∂nMX

∂tn
(0) . (2.9)

In words, the nth moment of X can be computed by evaluating the nth derivative of the

moment-generating function at t = 0. We will use the moment-generating function and

efficient automatic differentiation software to construct estimators with better variance

properties than typical Monte Carlo estimators, which we describe further in Chapter 6.

The average of a sample of random variables has an important convergence property

that relates to the expectation of the distribution.

Theorem 2.1.1 Strong Law of Large Numbers . Given a sequence of independent random

variables X1, X2, . . . such that

E[Xk] = 0 , E[X4
k] ≤ K for all k (2.10)

Let Sn = X1 + · · ·+Xn, then

1

n
Sn → 0 , almost surely (2.11)

The law of large numbers tells us that the average of realized samples will converge

to the expectation of the distribution over X. Proof and further details can be found

in Chapter 7 of Williams [1991]. The law of large numbers directly motivates the use

of Monte Carlo estimators—sample-based estimators of expectations with respect to

a random variable (described further in Section 2.4.1. It (and convergence rates) also

illustrates the computation-efficiency tradeoff of these estimators—more samples will

more likely provide a better estimate, but at an additional collection or computational

cost.

13

Conditioning and Independence

Consider two random variables, X and Y . The sum and product rule are two fundamen-

tal manipulations of their joint distribution. These manipulations will be useful when

specifying a probabilistic model, and when inferring latent structure.

Definition 2.1.4 Product Rule . The product rule of probability describes how joint

distributions can be composed of conditionals and marginals. Given random variables

X and Y , we can factor the joint distribution

P (X,Y) = P (X)P (Y |X) (2.12)

= P (X|Y)P (Y) . (2.13)

Definition 2.1.5 Sum Rule . The sum rule of probability describes how joint marginals

relate to each other via the conservation of measure

P (X) =
∑
Y

P (Y,X) (2.14)

Definition 2.1.6 Bayes’ Rule . Bayes’ rule describes how conditional distributions in

both directions relate to each other.

P (X|Y) =
P (Y |X)P (X)

P (Y)
(2.15)

Bayes’ rule is a consequence of the sum and product rules of probability.

Definition 2.1.7 Independence . Two random variables X and Y are independent if they

contain no information about each other, that is

X ⊥ Y =⇒ P (X,Y) = P (X)P (Y) . (2.16)

The CDF and PDF also factorize for independent random variables.

14

Information and Divergence

The entropy of a random variable is a measure of how much information that random

variable carries.

Definition 2.1.8 Shannon Entropy . The Shannon entropy of a random variable X is

given by

H(X) = −EX∼PX
[ln pX(X)] (2.17)

For a continuous-valued random variable, this is often referred to as differential en-

tropy. Intuitively, the entropy can be thought of as the complexity of a random variable—

the higher the entropy, the more information a random variable conveys. Consider a

uniform random variable on a discrete space, X(ω) ∈ {1, . . . , C}. The underlying mecha-

nism that generates X is as unpredictable as can be, so observing the value of X gives us

a lot of information about the underlying event ω driving the observation. Now consider

a random variable Y (ω) ∈ {1, . . . , C} such that P (Y = 1) = 1 and P (Y ̸= 1) = 0—that

is, we always observe Y = 1. This variable has no information about the underlying

event ω; it will always reveal a measurement of Y = 1. This random variable has very

low entropy (in fact, zero entropy).

The mutual information between two random variables is a measure of how much

information is shared between the two variables.

Definition 2.1.9 Mutual Information . The mutual information between two random

variables X and Y is given by

I(X;Y) = EX,Y [ln p(X,Y)− ln p(X)p(Y)] (2.18)

= H(X)−H(X|Y) = H(Y)−H(Y |X) (2.19)

= H(X) +H(Y)−H(X,Y) = H(X,Y)−H(X|Y)−H(Y |X) . (2.20)

15

where the conditional entropy is defined H(X|Y) = Ex∼PX
[H(Y |X = x)].

Mutual information has the appealing property of transformation invariance—the

mutual information between two variables remains the same under continuous transfor-

mations of each variable Kraskov et al. [2004].

Entropy and mutual information are fundamental properties of a random variables

that are relevant to both the specification of models and statistical inference. The

principle of maximum entropy [Jaynes, 1957] provides guidance for specifying the form of

a probability model or the selection of a prior distribution [Jaynes, 1968]. Entropy, and

its related information theoretic quantities (e.g. KL divergence and mutual information)

appear in the variational objective for approximate Bayesian inference [Jordan et al.,

1999, Wainwright and Jordan, 2008, Blei et al., 2017b]. The information bottleneck is

another modeling principle that draws upon entropy and conditional entropy to learn

useful representations of high-dimensional data [Tishby et al., 2000, Chechik et al., 2005,

Tishby and Zaslavsky, 2015].

Random variables can have different distributions, and it is often desirable to quantify

how the difference between the two distributions via some kind of divergence. A useful

and commonly used divergence is the Kullback-Leibler divergence.

Definition 2.1.10 Kullback–Leibler divergence (KL divergence) . Given two random

variables, X and Y , defined on the same space with probability density functions pX(·)

and pY (·), the KL divergence from X to Y is given by

KL(X || Y) = EX∼PX

[
ln

pX(X)

pY (X)

]
=

∫
pX(dx) ln

pX(x)

pY (x)
(2.21)

Note that the KL divergence is not a symmetric measure of divergence—that is

KL(X || Y) ̸= KL(Y || X) in general.

KL divergence is a natural measure of how different two distributions are, and arises in

many areas; maximum likelihood can be interpreted as minimizing the KL divergence

16

between an empirical distribution and the parametric family of distributions (via an

information projection) [Murphy, 2012]; the Hessian of the KL divergence is the Fisher

information metric that defines a statistical manifold, used to characterize the statistical

manifold [Cover and Thomas, 2012]; and as the most popular divergence for variational

inference, a class of approximate Bayesian inference algorithms [Jordan et al., 1999,

Wainwright and Jordan, 2008, Blei et al., 2017b].

Example: Gaussian Random Variables

Perhaps the most useful family of random variables is the Gaussian family.3 A Gaussian

distributed random variable X is a continuous-valued random variable with probability

density function given by

p(x;µ, σ2) =
1√
2πσ2

exp

(
1

σ2
(x− µ)2

)
(2.22)

and denoted X ∼ N (µ, σ2).4

A multivariate normal random variable X ∈ RD is a continuous-valued random vector

with probability density function given by

p(x;µ,Σ) = |2πΣ|−
1
2 exp

(
−1

2
(x− µ)⊺Σ−1(x− µ)

)
(2.23)

characterized by mean vector µ ∈ RD and positive definite covariance matrix Σ ∈ RD×D

Normal random variables have many useful properties. We can analytically compute

moments, differential entropy, mutual information and KL divergence. For random

variables with a given mean and variance, they are the maximum entropy distribution,

motivating their use within statistical models [Jaynes, 1957]. Further, the central limit

theorem states that the sum of finite variance independent random variables tend toward
3Also referred to as the normal family, we will use Gaussian and normal interchangeably.
4When convenient we overload notation and use N (x|µ,Σ) as a stand in for the probability

density function of a normal random variable.

17

a normal distribution as their numbers grow, providing yet another motivation for their

use modeling complex, emergent phenomenon [Williams, 1991, Section 18.4]. Normal

random variables are also computationally straightforward to manipulate—we typically

assume that drawing spherical normals (i.e. ϵ ∼ N (0, I)) is a computational primitive.

Given access to a spherical normal sampler, it is a simple operation to compute samples

with any mean and covariance

ϵ ∼ N (0, ID) (2.24)

x = µ+Σ1/2ϵ ∼ N (µ,Σ) (2.25)

where the matrix square root can be any matrix C such that CC⊺ = Σ. The Cholesky

decomposition of Σ is frequently used for this computation.

Normal random variables are invariant under linear transformations—a linear func-

tion of a normal random variable remains normal with a new (easily characterized) mean

and covariance. This is an immensely useful property that we will exploit in Chapter 6

to construct lower variance Monte Carlo estimators.

2.1.3 Mixture Distributions

A mixture distribution is constructed by taking a convex combination of component

distribution probability density functions. A random variable X is distributed according

to a mixture of component distributions Pc(X) (each with density pc(x)) if its density

is

p(x) =
C∑
c=1

ρcpc(x) , such that ρc ≥ 0 and
∑

ρc = 1 . (2.26)

Mixtures provide a way to construct a more expressive distribution out of simpler com-

ponent distributions. For instance, a mixture of Gaussians allows us to construct distri-

butions that have non-zero skew or multiple modes. The method developed in Section 4

18

builds upon mixture distributions.

2.1.4 Transformations of Random Variables

A deterministic function of a random variable is itself a random variable, and naturally

we might want to characterize its distribution. If X ∼ PX , then what is the distribution

of F ≜ f(X) for some invertible f?

pX(x)dx = pF (f(x))df(x) (2.27)

pF (f(x)) = pX(x)

∣∣∣∣ dx

df(x)

∣∣∣∣ = pX(x)

∣∣∣∣ dfdx
∣∣∣∣−1 (2.28)

This change of variables rule preserves local probability measure. As a simple example,

imagine a uniform random variable X, on the interval [0, 1]. Its probability density

function is simple; p(x) = 1 when x ∈ [0, 1] and 0 otherwise. What is the probability

density of a simple rescaling of X, Y = 2 · X? Random variable Y is now a uniform

variable on [0, 2]. However, p(y) can’t be 1 on that interval as the integral of p(y) over

[0, 2] has to equal 1 (i.e. preservation of probability measure), and in this case integrating

p(y) = 1 over [0, 2] is 2. The change of variables formula tells us that we only need to

compute the dy
dx = 2, and re-scale the density function p(y) = p(x)2−1 = 1/2 on the

interval [0, 2], which properly integrates to one.

The change of variables formula tells us that point-wise evaluation of the transformed

density requires only local geometric information—we only need to evaluate the Jacobian

determinant at x (or y). Carefully tracking this local change in volume ensures the global

preservation of probability measure.

This change of variables formula is a commonly used tool when manipulating proba-

bilistic models. In variational inference, the normalizing flows [Rezende and Mohamed,

2015] class of distributions is designed to exploit this relationship to construct flexible

and tractable posterior approximations.

19

2.2 Probabilistic Modeling

A probabilistic model defines a coarsened data generating procedure that describes

certain factors of variation that lead to our observation. A good probabilistic model can

be quite useful—given a model that well-describes the observed data, we can manipulate

the model to make predictions about future observations, to fill in missing observations,

to reason about counterfactual situations, to detect and explore relationships among

variables, among many other use cases.

Although defining a probabilistic generative model of data is agnostic to statistical

paradigm, this thesis will focus on Bayesian inference. While we will focus on approx-

imating Bayesian posteriors, model validation and comparison can (and should) make

use of frequentist tests.5

2.2.1 Priors, Likelihoods, and Posteriors

A probabilistic model is defined by the observed and unobserved random variables used

to describe observed data. Given observed data D and model parameters θ, a probabilis-

tic model is specified by the likelihood and the prior. The likelihood is the conditional

probability density of the data viewed as a function of model parameters

ℓ(θ) = p(D | θ) . (2.29)

The prior, p(θ), is a distribution we place over model parameters, specified before we

see any data (e.g. it defines a “reasonable” setting of parameters). Despite the sim-
5 Bayesian vs. Frequentist Inference The frequentist paradigm considers model parameters

to be “non-random”—that is, θ are fixed population quantities—which simply means that we
do not use a probability distribution to account for their uncertainty. Frequentist inference
quantifies the uncertainty of our estimators with respect to replicates of future data. We note
that there are inherent trade-offs for each approach [Jordan, 2009]. The Bayesian paradigm
offers a recipe for defining a probabilistic model (including informative priors) and inferring a
coherent posterior distribution. This, coupled with frequentist tests for model checking and
validation provide a robust recipe for fitting useful models [Gelman and Shalizi, 2013].

20

plicity of the above presentation, each model component can be quite complex. The

likelihood might encode know structure behind the true data generating procedure, or

it might include a composition of flexible, non-linear maps (e.g. multi-layer perceptrons

or neural networks); the prior may encode information from previous scientific studies—

information we might already know about the population distribution.

The posterior distribution is defined by Bayes’ rule

p(θ | D) = p(D | θ)p(θ)
p(D)

(2.30)

∝ ℓ(θ)p(θ) (2.31)

Given the assumptions baked into ℓ(θ) and p(θ), the posterior distribution characterizes

all of the information about θ that we can learn from our data D. We can use the

posterior distribution to make predictions, report uncertainties in our measurements,

explore structured variation in our data—essentially answer any statistical query that

our model supports. For this reason, the goal of statistical inference is to characterize

the posterior distribution in some way. In a restricted class of models, this can be done

exactly. More often, however, we will have to approximate p(θ | D).

2.2.2 Model Components

The prior and likelihood are made up of model components. The components of a

probabilistic model describe either marginal distributions or conditional distributions

between two groups of random variables. In the next few sections we give examples of

some types of model components used in this thesis.

Example: Linear Regression

It is often necessary to describe the relationship between two variables, X ∈ RD and

Y ∈ R within a probabilistic model. Linear regression is one approach to parametrically

21

specifying such a relationship. This model component assumes that the dependence of

Y upon X can be described by a linear function

X⊺β = Y + ϵ (2.32)

where β is some D-dimensional parameter (also called regression coefficients), and ϵ is

a random variable with mean 0 and some variance σ2
ϵ . We can make a distributional

assumption about the noise term, for example ϵ ∼ N (0, σ2
ϵ), which will influence our

inference of unknown parameter β (and noise variance σ2
ϵ).

Figure 2.1a depicts a linear relationship between X and Y with modest noise, σ2
ϵ .

The posterior distribution over linear relationships is depicted by the solid area (with

the posterior mean Ep(β|Y,X)[β] depicted by the solid line). Linear relationships are easy

to manipulate—the posterior distribution in this case can be characterized in closed

form.

While a linear relationship may seem unrealistically simple, linear models can be

quite useful—a linear relationship might not be as restrictive as it first appears. For

instance, a linear relationship may be appropriate for a different choice of “basis” (e.g.

parameterization or representation of variable X). As a concrete example, we use a

linear component to model the complex, non-linear trajectories of basketball players

(Section 3.3.6), using a non-linear basis as X. In fact, deep neural networks can be

viewed as an approach to learn an appropriate basis X such that the relationship be-

tween this basis and the output is linear. In this way, a linear relationship can be used

as a component within a more complex model.

Example: Gaussian Processes

The relationship between X and Y may be non-linear and difficult to specify with a

known parametric form. In this case, a flexible, non-linear function approximation may

be appropriate. A Gaussian process (GP) is a stochastic process that can be used as

22

X

Y
E[Y|X]
observed data

(a) Linear regression example.

X

Y

E[Y|X]
observed data

(b) Gaussian process regression example.

Figure 2.1: Linear and Gaussian process regression examples. In both cases the solid area depicts
the posterior distribution over the (noiseless) linear (left) and non-linear (right) functions (with
two standard deviations visualized). Note that this is not a depiction of the predictive distribution,
but of the posterior distribution over functions.

a prior distribution over a class of flexible functions. These functions can be used to

model a potentially non-linear and difficult-to-prescribe relationship between two vari-

ables. Formally, a Gaussian process is a stochastic process, f : X → R, such that any

finite collection of random variables, f(x1), . . . , f(xN) ∈ R, is distributed according to

a multivariate normal distribution. GPs are frequently used as priors over unknown

functions, f , where the random variables f(x1), . . . , f(xN) correspond to evaluations of

the function at inputs x1, . . . , xN ∈ X . The covariance between any two outputs, f(xi)

and f(xj), encodes prior beliefs about the function f ; carefully chosen covariance func-

tions can encode beliefs about a wide range of properties, including smoothness and

periodicity.

There is a rich collection of covariance functions that can be used, and a calculus

for composing them to create new covariance functions [Duvenaud, 2014]. One common

covariance function that we will use in this thesis is the Matérn [Matérn, 1986] covariance

23

function

kMatern(r) =
21−ν

Γ(ν)

(√
νr

ℓ

)ν

Kν

(√
2νr

ℓ

)
(2.33)

where r = |x1 − x2|, and Kν is a modified Bessel function. The parameter ν controls the

smoothness and ℓ is the length scale of the function. The Matérn class is an example of

a stationary covariance function—that is, the covariance is determined strictly by the

distance between two points in the space X . See Rasmussen and Williams [2006] for a

thorough treatment of Gaussian processes in machine learning.

Figure 2.1b depicts a Gaussian process model for a non-linear relationship between X

and Y . In this Figure, we visualize the posterior distribution over functions that relate

the two variables—notice that the uncertainty over the function value grows as we move

farther away from observed x values. Gaussian processes admit a closed form posterior

distribution for p(f |X,Y) when the noise model is Gaussian (and approximate methods

exist when the noise model is non-Gaussian). One drawback is computation—inference

in Gaussian process models require computation O(N3), where N is the number of

observed X,Y pairs. This complexity makes scaling to massive datasets infeasible—

as a result, approximate methods for scaling Gaussian processes is an active area of

research.

Example: Clustering Models

One type of inductive bias we might want to encode in our model is that observations

may come from some small number (relative do number of data observations) of clusters.

That is, two similar observations may be similar because they belong to the same un-

observed group (and two dissimilar observations may be dissimilar because they belong

to different unobserved groups).

One way to encode this idea in a probabilistic model is to use an observation-specific

24

latent variable that indicates cluster membership. For each cluster, a probability dis-

tribution describes what the members of each cluster tend to look like. Given data

D = x1, . . . ,xn, a clustering latent variable model can be defined

Zn ∼ Cat(π) (2.34)

Xn | zn ∼ P (zn)(X) =

C∑
c=1

1(zn = c)P (c)(X) (2.35)

where 1(Zn = c) is an indicator that takes the value of 1 when its argument is true

(e.g. Zn = c). The probability density function of our observed data in this clustering

model is a mixture distribution

p(xn) =
C∑
c=1

p(xn, zn = c) (2.36)

=

C∑
c=1

p(zn = k)p(xn|zn = c) (2.37)

=
∑
c

πcpc(xn) . (2.38)

When fitting a mixture model, the inferential goal is to estimate the component mixture

probabilities, π, and component-specific parameters, e.g. parameters that characterize

each distribution pc(xn). For example, pc(xn) is commonly chosen to be Gaussian, with

component-specific parameters µc and σ2
c . A common way to estimate these parameters

is a procedure called expectation maximization, which we detail further in Section 2.3.1.

Figure 2.2 depicts this kind of clustering model and inference. Within X space, we

see two unlabeled groups—we can use a clustering latent variable model to infer which

group each element belongs to.

25

(a) Original, unlabeled observations. (b) Result of a clustering model.

Figure 2.2: Clustering example (best viewed in color). Left: observations in the original space,
locations x1, x2. Right: individual observations are labeled with their observation-specific cluster
identity variable (green and orange).

Example: Latent Factor Models

High-dimensional data can be a challenge to model. One inductive bias that is widely ap-

plicable is that high-dimensional data do not vary meaningfully along each dimension—

there are (sometimes quite large) correlations between dimensions that induce structured

variation. This effectively lowers the overall dimension of the observed data.

One way to encode this idea is with a latent factor model. Concretely, x ∈ RD

is a high-dimensional vector, we might imagine that there exists some basis B =

B1, . . . ,BK , Bk ∈ RD such that

w ≜ w1, . . . , wK ∼ p(w1, . . . , wK) (2.39)

x =

K∑
k=1

wkBk + ϵ , ϵ ∼ N (0, σ2
nID) (2.40)

is a good description of the original vector x (i.e. σ2
n is low).6 That is, our model posits

6Note that additive Gaussian noise may be appropriate for continuous-valued data, but this
latent factor model construction generalizes to other noise models (e.g. Bernoulli, Poisson, Multi-
nomial, etc.).

26

that there exists some (potentially unknown a priori) basis B that allows us to describe

our high-dimensional observation with just a few basis weights, w = w1, . . . , wK for

K ≪ D.

Modeling the dimensions of “useful” or “meaningful” variation is at the heart of prob-

abilistic modeling—the representation w of x can often be a useful summary for data

exploration, to define a meaningful distance between units, and the basis itself B can

reveal meaningful (and potentially unknown) structure in the space that x lives. We can

push this representation to be more useful by incorporating meaningful constraints—for

instance we could force the basis vector Bk to take on only positive values. This may be

a sensible constraint if the latent bases correspond to something physical (e.g. a spectral

energy distribution), or if they are used to encode rates that must be positive (e.g. for

a Poisson noise model). Models that have this (or a similar) form include probabilistic

principal components analysis [Tipping and Bishop, 1999] and factor analysis, Latent

Dirichlet Allocation [Blei et al., 2003], and in models presented in Section 3 as well as

methods we describe in Section 4. Expectation maximization or its variational general-

ization is a common way to infer both the basis B and data-specific weights w in latent

factor models.

Example: Deep Generative Models

Describing the generative process of a high-dimensional signal, such as an image, can

be difficult. A deep generative model is another way to define a low-dimensional latent

variable space that induces a distribution on the high-dimensional space. Unlike a linear

latent factor model, a deep generative model typically defines a non-linear relationship

between latent variable and observation, which can often admit a more efficient and

useful representation of the data.

Given high-dimensional vector x ∈ RD, a deep generative model defines the relation-

27

ship

z ∼ p(z) ,z ∈ RK (2.41)

x = f(z;θ) + ϵ , ϵ ∼ N (0, σ2
nID) (2.42)

where f : RK × θ 7→ RD describes a non-linear mapping of our latent variable z to the

data space, given by generative global parameter θ, such as a multi-layer perceptron or

other functions differentiable in both arguments.

The mapping f is usually defined to be much more flexible than the linear function in

a latent factor model, which can enable the representation z to be more compact than

the weights from the previous section. More concretely, we can often achieve the same

reconstruction error of the original data with a smaller value for K.

One drawback is that there is no longer a learned basis, B that can be interpreted in

the data space. This is an example of trading off flexibility for interpretability—often

direct inspection of Bk can tell you what variation is being captured by each latent basis

in a latent factor model. For a deep generative model, inspection of samples along latent

dimensions is an alternative way to understand the variation that the model encodes.

Another drawback is that this non-linear model can be much harder to fit than a similar

linear model. Though methods exist [Kingma and Welling, 2013, Rezende et al., 2014],

reliably estimating θ and shaping z given a set of x1, . . . ,xN data vectors is an open

problem [Chen et al., 2018].

Example: Composing Model Components

Composing model components allows us to define models with richer and more expres-

sive structure. As an example, we can compose a mixture model with a latent factor

model to create a mixture of factor analyzers [Ghahramani and Hinton, 1996]. Consider

the simple dataset depicted in Figure 2.3. The data clearly cluster into two groups

28

and within each cluster there seems to be only one dimension of meaningful variation.

Inferring cluster membership and these cluster-specific dimensions can be accomplished

by composing a mixture model with a latent factor model. For each observation n, the

data generating procedure can be specified

zn ∼ Cat(π) (2.43)

wn|zn ∼ p(w|zn) (2.44)

xn|zn,wn = w⊺
nB

(zn) + ϵn , ϵ ∼ N (0, σ2) (2.45)

This model defines C clusters, and each cluster has its own cluster-specific basis B(c).

This enables us to capture both the grouping structure, and the low-dimensional struc-

ture within each group, which can be useful when modeling high-dimensional observa-

tions.

Both mixture and latent factor models are examples of latent variable models, a

useful abstraction when defining model structure and inference algorithms. In general,

a latent variable model draws a distinction between local latent variables (often denoted

z) and global parameters (often denoted θ). A local latent variable is an unobserved

variable associated with a particular observation unit (e.g. the latent weights w or cluster

indicator z). Global parameters govern the structure shared by all of the data. This

type of model structure not only gives us unit-specific latent structure, but also may

give us some computational or algorithmic traction when inferring global parameters θ.

We will see an example of the algorithmic advantage of some latent variable models in

Section 2.3.1.

Probabilistic Modeling Discussion

This previous section has addressed ways to specify latent and conditional structure to

describe the data generating procedure. This included ways to low-dimensional latent

29

(a) Original, unlabeled observations. (b) Result of the mixture of latent factors.

Figure 2.3: A mixture of latent factor models example (best viewed in color). Left: observations
in the original space, locations x1, x2. These observations visually cluster into two groups, and
within each group, only one of the two dimensions contains most of the variation. Right: individ-
ual observations are labeled with their cluster identity (blue and orange) and within each cluster
we have inferred and labeled the dimension of maximum variation.

structure, latent clusters, autoregressive properties, linear and non-linear conditional

relationships, and function smoothness as a prior. Composing these primitives is a useful

approach for analyzing, exploring, and making decisions with a large, complex dataset.

However, the specification of a useful model is one distinct challenge in the statistical

analysis of data. Another fundamental challenge is inference—or the algorithms we use

to distill the information in a dataset into the model we have specified.

2.3 Inference

Specifying a probabilistic model for data introduces a new problem—inference. In this

section, consider a dataset D, model parameters θ, a likelihood p(D|θ) defined by a

data generating procedure, and a prior distribution p(θ). Further, assume the data D

were generated according to the model, with some parameter θ(true). In practice, θ(true)

is unobserved, and the goal of inference is to construct some estimate, θ̂, from our data

and model assumptions.

30

2.3.1 Maximum Likelihood Estimation

A widely used estimator of θ(true) is the maximum likelihood estimate (MLE). The prin-

ciple behind the MLE is that we want to find the setting of θ that makes our observed

data the most probable—the setting that is most consistent with our observations. The

maximum likelihood estimator is the value of θ that maximizes the probability of ob-

serving our dataset D under the model assumptions

θ̂
(ml)

= argmax
θ

p(D|θ) . (2.46)

We can also incorporate a prior distribution over our model parameters, θ, which serves

as a form of regularization. This leads to the maximum a posteriori (MAP) estimator

θ̂
(map)

= argmax
θ

p(D|θ)p(θ) . (2.47)

Under certain conditions, the maximum likelihood estimator has a handful of desir-

able properties. Given certain assumptions it can be shown that the maximum likelihood

estimator is consistent and efficient as sample size grows [Cramér, 1946, Chapter 33, Sec-

tion 3]. By consistent, we mean that the estimator converges to the true model param-

eter, θ(ml) → θ(true) as the number of samples grows. By efficient, we mean that the

estimator variance V(θ(ml)) achieves the Cramér-Rao lower bound, a lower bound on

the variance that any (asymptotically) unbiased estimator can achieve. These two prop-

erties provide strong motivation to use maximum likelihood to estimate parameters, as

opposed to alternative statistical estimators, such as the method of moments. There is,

however, a computation-efficiency tradeoff—though the maximum likelihood estimator

may theoretically have optimal properties, it may be intractable to compute and alter-

native estimators may be a better option. Maximum likelihood estimation also connects

to empirical risk minimization, M-estimation [Van der Vaart, 1998, Chapter 5], among

31

other optimization-based forms of statistical modeling and inference.

Expectation-Maximization

Expectation maximization is an algorithm for performing maximum likelihood (or MAP)

inference for latent variable models. As discussed in the previous section, it is often

useful to define a set of latent variables (e.g. cluster assignments, factor weights) within

our model, which can be defined with respect to the complete-data likelihood

p(D, z | θ) = p(D | z,θ)p(z | θ) . (2.48)

where z are our “latent variables” and θ are “model parameters”.7 In this situation, the

principle of maximum likelihood dictates that we maximize the marginal likelihood of

our data

p(D | θ) =
∫

p(D | z,θ)p(z | θ)dz , (2.49)

where we marginalize out our latent variable z. In some situations, however, the integral

in Equation 2.49 is intractable—that is, we cannot even compute the likelihood of our

data given this model, let alone maximize it. Expectation-maximization is a method

for maximizing a general class of models of the form in Equation 2.48 [Dempster et al.,

1977].

The EM algorithm starts with some initial setting of θ, θ(0). At every iteration n,

the EM iterates between two steps: the E-step and the M-step.

• The E-step defines an objective function, the expected complete-data log likelihood,
7The only distinction here is that we’re maximizing the likelihood with respect to θ, but not

z. The reasoning behind this choice might be that we care about the posterior distribution over
z, but not θ—for instance we may have a z for each data observation, but only one set of global
θ parameters. If we were to maximize over z in that situation, we may overfit our data and
return a poor estimate of the distribution of our data.

32

that is a function of the posterior distribution over z given D and θ(n).

Q(θ;θ(n)) = Ep(z|D,θ(n)) [ln p(D, z|θ)] (2.50)

• The M-step maximizes this objective function with respect to free parameters θ

θ(n+1) = argmax
θ

Q(θ;θ(n)) (2.51)

Note that the current setting θ(n) is fixed only with respect to the expectation—the

free parameter θ that appears within the expectation is the target of our optimization

procedure. Also note that the Q function in Equation 2.50 would include a term p(θ)

if we were using EM to do MAP estimation.

The Q function that EM defines is a lower bound to the marginal likelihood, p(D|θ).

We can see this by first deriving a general lower bound to the marginal likelihood

ln p(D|θ) = ln

∫
p(D,z|θ)dz = ln

∫
q(z)

p(D, z|θ)
q(z)

dz (2.52)

= lnEq

[
p(D, z|θ)

q(z)

]
(2.53)

≥ Eq

[
ln

p(D, z|θ)
q(z)

]
by Jensen’s inequality (2.54)

where we have introduced a distribution q(z) as a free parameter. Regardless of the

choice of this distribution q(z), the resulting right hand side function will lower bound

the marginal likelihood.

How tight this lower bound is will be determined by our choice of q(z). One sensible

choice for q is the posterior distribution p(z|D,θ), which will actually result in a tight

lower bound at that value of θ. This connects us back to the Q function in Equation 2.50.

33

At iteration n, we have a Q function

ln p(D|θ) ≥ Ep(z|D,θ(n)

[
ln

p(D, z|θ)
p(z|D,θ(n))

]
(2.55)

= Q(θ|θ(n)) +H(p(z|D,θ(n))) (2.56)

where we see that the lower bound to the marginal likelihood decomposes into our Q

function, and an entropy term. This entropy term is fixed, so it can be ignored when

performing the M-step.

A simple illustrative use case for EM is fitting a cluster model with a mixture dis-

tribution. Recall that a cluster assignment z ∈ {1, . . . , C} can be viewed as a latent

variable for each observation. Given a clustering model with Gaussian observations, we

can write the generative model as

Z ∼ Cat(π) , π ∈ [0, 1]C ,
∑
l

πc = 1 (2.57)

x|z ∼ N (µz,Σz) (2.58)

where we have parameters θ =
(
π, {µc,Σc}Cc=1

)
. Given observations X = x1, . . . ,xN ,

and unobserved cluster assignments Z = z1, . . . , zN , the complete-data log likelihood

is

ln p(X,Z|θ) = ln
∏
n

∏
c

(p(xn|zn)p(zn))
1(zn=c) (2.59)

=
∑
n

∑
c

1(zn = c) (lnN (xn|µz,Σz) + lnπc) (2.60)

where the indicator 1(zn = c) keeps track of which cluster each observation n comes

from, and incorporates that term into the likelihood accordingly.

34

E-step will involve computing the posterior distribution

p(zn = c|xn,θ
(n)) =

p(xn|µ(n)
c ,Σ

(n)
c)∑

c′ p(xn|µ(n)
c′ ,Σ

(n)
c′)

≜ γn,c (2.61)

for each cluster. Because the number of clusters is finite, it is easy to normalize this

distribution. The resulting Q function is straightforward to write down

Q(θ|θ(n)) = Ep(zn=c|xn,θ
(n))

[∑
n

∑
c

1(zn = c) (lnN (xn|µz + lnπc)

]
(2.62)

=
∑
n

∑
c

γn,c (lnN (xn|µz + lnπc) (2.63)

The M-step maximizes this Q function with respect to mixture parameters. For a

Gaussian mixture model, the M-step is a weighted maximum likelihood solution which

is easy to compute in closed form. This is a recurring theme in EM—in Chapter 3 we

will look at a model that is essentially a mixture of linear regressors, which results in

an M-step that can be solved with weighted least squares.

EM is an effective inference tool for the class of models that admit closed form

expressions for the latent variable posterior p(z|D,θ). However, only a limited class

of models admit this posterior and the expected complete-data log likelihood in an

easily-maximized closed form. In these instances, this direct application of EM may not

be feasible, however applying this same principle—maximizing a lower bound to the

marginal log likelihood of the data—will yield useful inference algorithms.

Generalizations of EM, such as variational EM and other free-energy optimization

approaches, exist for more general models and inference outcomes (e.g. full Bayesian

inference over both θ and z). However, the main idea behind EM is the iterative

imputation of missing data—we estimate properties of our z given our data and our

current best guess at a model (either via analytic expectations or sampling), and then

use this inference to improve our best guess at the model. This iterative approach to

35

fitting latent variable models conceptually underpins many inference algorithms—for

example, Gibbs sampling.

In some cases, the marginal likelihood is computable (i.e. the integral in Equation 2.49

is tractable). In these instances, the user is presented with a choice for maximum-

likelihood optimization—do EM or directly optimize the marginal likelihood. There

are tradeoffs between the two approaches that are model and data dependent, and

algorithms that switch between the two have been explored [Salakhutdinov et al., 2003].

In cases where direct optimization of the marginal likelihood is impossible, EM is a

useful tool.

In Chapter 3, we use expectation maximization to fit a functional clustering model

to a massive dataset, and use a variational generalization to fit a deep generative latent

variable model (component).

2.4 Bayesian Inference

In some applications we will want to estimate the uncertainty of all parameters, includ-

ing “global” parameters in hierarchical latent variable models. The Bayesian paradigm

uses conditional probabilities to characterize uncertainty about model parameters—

uncertainty is not with respect to replications of data, but with respect to the posterior

distribution. The posterior distribution is a simple consequence of Bayes’ rule. Given a

prior p(θ) and a likelihood for data p(D|θ), the posterior distribution is

p(θ|D) = p(D | θ)p(θ)
p(D)

. (2.64)

By assuming a parametric model and using the rules of conditional probability, the

posterior distribution distills all of the information about θ that we can hope to learn

from D. Making predictions, reporting credible intervals, exploring inferred structure—

just about any desirable operation can be performed by computing some functional of

36

the posterior distribution. These model queries can be computed as expectations with

respect to the posterior distribution

µf = Ep(θ|D) [f(θ)] . (2.65)

The main drawback with Bayesian inference is computational tractability—computing

posterior expectations in general is infeasible. The main goal of approximate Bayesian in-

ference methods is approximating these expectations in a computationally efficient way.

Herein lies the computation-accuracy tradeoff—some methods can take a long time and

eventually produce a very accurate estimator, while other methods can be quick, but

produce an inaccurate estimator. Navigating this computation-accuracy tradeoff is a

challenge for applied Bayesian practitioners.

2.4.1 Monte Carlo Estimators

As the target of Bayesian inference are expectations against the posterior distribution, a

general purpose way to estimate these functions is via Monte Carlo estimation. A Monte

Carlo estimator uses samples drawn from the distribution with which the expectation

is taken, and simply computes a sample average of the function within the expectation.

With respect to a posterior distribution, these estimates can be computed

θ(ℓ) ∼ p(θ | D) , for ℓ = 1, . . . , L (2.66)

µ̂ =
1

L

∑
ℓ

f(θ(ℓ)) . (2.67)

These estimators will be useful in combination with Markov chain Monte Carlo or

variational inference samples to compute arbitrary expectations against the posterior

distribution.

The quality of an estimator is typically measured by its variance. Under certain

conditions, the variance of these Monte Carlo estimators decreases as more samples are

37

incorporated (as one would expect given the law of large numbers). If each sample is

independent with variance V(f(bθ)) = σ2 the variance decreases linearly in L

V(µ̂) = V

(
1

L

L∑
ℓ=1

f(θ(ℓ))

)
=

1

L2

L∑
ℓ=1

V(f(θ(ℓ)) (2.68)

=
1

L2

L∑
ℓ=1

σ2 =
1

L
σ2 . (2.69)

When samples are correlated, the variance of the estimator can have worse properties—

intuitively, each additional correlated sample provides less information than an addi-

tional independent sample. While low-variance estimators are desirable, simply incor-

porating more samples may be infeasible due to the cost of collection or the cost of

computing the estimator itself. In Chapter 5 we improve upon typical Monte Carlo

estimators to more efficiently solve a variational inference problem.

2.5 Conjugacy

For a certain classes of models, the posterior distribution can be analytically character-

ized. When a conjugate prior-likelihood pair is used to model data, the posterior dis-

tribution can be characterized analytically. A conjugate prior-likelihood pair is formed

when the posterior distribution (over model parameters) remains in the same family

as the prior distribution (over those same model parameters). As a concrete example,

consider a model parameter that is a the mean of a Gaussian likelihood with a Gaussian

prior

p(θ|D) ∝ p(D|θ)p(θ) (2.70)

= N (D|θ, σ2)N (θ|µ0, σ
2
0) . (2.71)

38

Because of the functional form of the likelihood and prior, the functional form of the

resulting posterior distribution remains an exponentiated quadratic with respect to θ.

This implies that the posterior distribution is Gaussian, and the normalizing constant

is straightforward to compute.

Conjugate prior-likelihood pairs need to be the same family—some exampls include

Beta-Bernoulli, Poisson-Gamma, Pareto-Gamma [Gelman et al., 2014]. Conjugacy is

closely tied to exponential family models—models with finite sufficient statistics vec-

tors[Casella and Berger, Theorem 6.2.10].

More complex models can have conditional conjugacy structure—interacting com-

ponents can have conjugate prior-likelihood relationships. This conditional conjugacy

structure can admit efficient inference algorithms. For example, fast variational infer-

ence updates can be devised by iterating between conditionally conjugate components,

or easy-to-sample conditional distributions appropriate for a Gibbs sampler can be com-

puted. These sort of inference strategies are discussed in the next two sections.

2.6 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a class of methods designed to simulate samples

from unnormalized probability distributions, and it is frequently used to estimate pos-

terior summaries in computationally intractable Bayesian models [Brooks et al., 2011].

MCMC methods are rooted in the observation that, though independent posterior sam-

ples are infeasible to compute, dependent samples can be instantiated and used as a

surrogate to estimate posterior expectations.

MCMC draws samples from a stochastic process on the parameter space whose equi-

librium distribution is the posterior distribution of interest. The empirical distribution

of these samples approximates the posterior distribution, and statistics of this empirical

distribution approximate the statistics of the true posterior.

39

For a given posterior distribution p(θ|D), MCMC instantiates samples

θ(1), . . . ,θ(T) (2.72)

using a local sampling step

θ(t+1) ∼ T (θ(t+1),θ(t)) (2.73)

where T (θ(t+1),θ(t)) is an algorithm-specific transition kernel defined to perform local

updates that leave the posterior distribution invariant along the margins

p(θ(t))→ p(θ|D) as t→∞ . (2.74)

The typical goal when using MCMC is to choose a transition kernel that leads to as

many effectively independent samples as possible given a fixed computational budget.

Transition kernels often have hyper-parameters that require tuning, such as step sizes,

proposal variances, and temperature schedules. These hyper-parameters can greatly

effect the computational efficiency of an MCMC sampler.

There are many variants of MCMC: Metropolis-Hastings [Hastings, 1970], slice-sampling

[Neal, 2003], Hamiltonian Monte Carlo [Neal, 2011], the no u-turn sampler [Hoffman

and Gelman, 2014], parallel tempering [Swendsen and Wang, 1986], Gibbs sampling

Geman and Geman [1987], among others. Some algorithms target specific difficul-

ties (e.g. multi-modal posterior distributions), whereas some are considered general

workhorse algorithms that sit behind robust probabilistic programming environments

[Bob Carpenter and Riddell, 2015]. In many cases one algorithm can be combined

with another (e.g. slice-sampling within parallel-tempering) to efficiently sample from a

tricky posterior distribution.

40

One issue with MCMC algorithms is that they are difficult to scale. To generate

an asymptotically correct Markov chain, each likelihood evaluation must incorporate

information from the entire dataset.8 When optimizing an objective, on the other hand,

we can use noisy gradient estimators computed from a subsample of our data—which can

be computationally advantageous when we have a massive dataset. This next section

describes a set of methods that frame approximate Bayesian inference as an optimization

problem, which can be a more scalable alternative to MCMC.

2.7 Variational Inference

Variational inference (VI) is an alternative family of approximate Bayesian inference

methods. VI methods view the posterior approximation problem as an optimization

problem over a space of approximating distributions.

Given a model, p(θ,D) = p(D|θ)p(θ), of data D and parameters/latent variables θ,

the goal of VI is to approximate the posterior distribution p(θ|D). VI approximates this

intractable posterior distribution with one from a simpler family, Q = {q(θ;λ),λ ∈ Λ},

parameterized by variational parameters λ. VI procedures search for the member of

that family, q(·;λ) ∈ Q, that minimizes some divergence between the approximation q

and the true posterior p(θ|D).

Variational inference can be framed as an optimization problem, usually in terms of

Kullback-Leibler (KL) divergence, of the following form

λ∗ = argmin
λ∈Λ

KL(q(θ;λ) || p(θ|D))

= argmin
λ∈Λ

Eθ∼qλ [ln q(θ;λ)− ln p(θ|D)] .

The task is to find a setting of λ that makes q(θ;λ) close to the posterior p(θ|D) in
8Though, for some structured models there exist methods to only compute a subsample,

e.g. in Maclaurin and Adams [2014].

41

KL divergence.9 Directly computing the KL divergence requires evaluating the posterior

itself; therefore, VI procedures use the evidence lower bound (ELBO) as the optimization

objective

L(λ) = Eθ∼qλ [ln p(θ,D)− ln q(θ;λ)] , (2.75)

which, when maximized, minimizes the KL divergence between q(θ;λ) and p(θ|D). In

special cases, parts of the ELBO can be expressed analytically (e.g. the entropy form

or KL-to-prior form [Hoffman and Johnson, 2016]) — we focus on the general form in

Equation 5.1.

Monte Carlo VI and Gradient Estimators

The ELBO objective in Equation 5.1 (and its gradient) is an expectation against the

variational approximation qλ. In many interesting cases, this expectation cannot be

computed analytically, making optimization more difficult. One way to circumvent this

issue is to use an unbiased estimator of the ELBO and its gradient to do optimization

[Paisley et al., 2012, Ranganath et al., 2014]. Because we’ve chosen the family q, we

can generate inexpensive estimates of the ELBO and its gradient with respect to λ.

The target of these estimators is the gradient of the ELBO

∇λL(λ) = ∇λEθ∼qλ [f(θ,λ)] . (2.76)

where we have defined f(θ,λ) ≜ ln p(θ,D)− ln q(θ;λ) for notational simplicity.

One such estimator of the gradient is the score function estimator, based around the
9We use q(θ;λ) and qλ(θ) interchangeably.

42

identity

∇λEθ∼qλ [f(θ,λ)] = Eθ∼qλ [f(θ,λ)∇λ ln qλ(θ)] (2.77)

≈ 1

L

∑
ℓ

f(θ(ℓ),λ)∇λ ln qλ(θ
(ℓ)) (2.78)

≜ ĝ
(sf)
λ (2.79)

The score function estimator is quite general, though often exhibits high variance.

Alternatively, the reparameterization gradient estimator estimates the expectation by

differentiating through the random sampling procedure. To compute the this estimator,

first we define a sampling procedure that separates a random seed from λ. For a normal

distribution, qλ(θ) = N (θ;mλ, s
2
λ), one such transformation is

ϵ ∼ N (0, I) (2.80)

θ(ϵ,λ) = mλ + sλ · ϵ (2.81)

where we overload θ(·, ·) to be a deterministic transformation that takes spherical noise

ϵ and parameters λ and produces a random variate with the distribution N (mλ, s
2
λ).

Given this transformation, the reparameterization gradient estimator can then be

computed

∇λEθ∼qλ [f(θ,λ)] = ∇λEϵ∼q0 [f(θ(ϵ,λ),λ)] (2.82)

= Eϵ∼q0 [∇λf(θ(ϵ,λ),λ)] (2.83)

≈ 1

L

∑
ℓ

∇λf(θ(ϵ
(ℓ),λ),λ) (2.84)

≜ ĝ
(rg)
λ (2.85)

The reparameterization gradient estimator is limited to continuous-valued random vari-

43

ables θ, as it requires differentiating through the sampling procedure. Though less

general, it is often more efficient than the score function estimator. In Chapter 5, we

improve upon the reparameterization gradient estimator by constructing a lower vari-

ance estimator that exploits model structure.

2.8 Model Evidence Estimation

Given alternative models for data, pa(D|θ(a)) and pb(D|θ(b)), the question often arises,

“which model is better?” Within the Bayesian paradigm, one can directly compare

the likelihood of each model. For instance, denoting model a as Ma, we can compute

the model evidence, or the marginal likelihood of the observed data, integrating out all

model parameters

p(D|Ma) =

∫
pa(D|θ(a))p(θ(a))dθ(a) . (2.86)

The marginal likelihood for each model can be compared—both are simply probability

densities of the data. Even when θ(a) and θ(b) have different dimension or constraints,

the coherent use of probability over these parameters makes the marginal likelihood a

fair comparison between models. These marginal likelihoods can then be combined with

priors over which model is more likely to be true a priori, e.g. Pr(Ma) vs Pr(Mb) to

compute a posterior over models.

Computing the integral in Equation 2.86 can be intractable in general. Methods for

efficiently estimating model evidence is an active area of research. Annealed importance

sampling [Neal, 2001], bridge and path sampling [Gelman and Meng, 1998], and nested

sampling [Skilling et al., 2006] are examples of such methods that rely on generating a

Monte Carlo estimator of the model evidence.

Even if we’re not using Bayesian model evidence to decide between models, model

evidence estimation can be important. A common practice in machine learning is to

44

compare the out-of-sample data likelihood between two models to see which generalizes

better. For certain complex latent variables models, just computing the out-of-sample

likelihood for each observation is itself a (conditional) model evidence problem that

requires marginal likelihood estimation. This appears when comparing the test log-

likelihood of variational autoencoders, which can be a fraught exercise when ELBO

estimates are not a good approximation of marginal likelihood estimates (or even their

ordering) [Wu et al., 2016].

Discussion Given the building blocks of probabilistic modeling, this next chapter will

describe a few applied probabilistic models in a range of areas.

45

3
Probabilistic Models for

Scientific Discovery

Big, heterogeneous data require expressive models to explain their many sources of

variation. This chapter describes probabilistic modeling case studies in three applied

domains: astronomy, healthcare, and sports analytics. While the goals of each model

are application specific, the challenges of specifying a useful probabilistic model and

inferring its latent structure are shared.

In each of these applied projects, we model a high-dimensional spatial, temporal, or

spatiotemporal signal with unobserved structure—spectroscopic and photometric mea-

surements of quasars, electrocardiogram recordings of the cardiac cycle, and spatiotem-

poral trajectories of basketball player movement and decision-making throughout live

46

game-play. Our goal is to describe this unobserved structure with an accurate and

interpretable probabilistic model—this will allow us to make predictions about new ob-

servations, visualize the structure discovered in our data, and explore the data to obtain

new insights about the underlying phenomenon.

We also want to incorporate existing knowledge into our probabilistic model. For ex-

ample, we understand the physical relationship between redshift and rest-frame spectral

energy distributions. This information is invariant to statistical sampling, and its incor-

poration into our model will make its inferences more portable—structure that is not

tied to a particular statistical sample, but able to make reliable predictions in different

contexts. We will see a concrete example of this portability in the astronomy modeling

project.

In each case, the probabilistic model itself is not the end goal—it will be used as a

tool to aid decision-making. We want our model to be able to report what it can not

know from the data its observed. It is necessary for our model to quantify these sources

of uncertainty.

We must also navigate the trade-off between flexibility and interpretability. The

underlying phenomena of each are understood by domain experts at a particular level

of abstraction, and building models that reveal new knowledge about the underlying

phenomenon requires that we operate (at least partially) at this level of abstraction. In

each model, we use a flexible (and difficult-to-interpret) model component to capture

important difficult-to-prescribe structure in the data—a latent Gaussian process factor

component to capture structure in spectral energy distributions; a deep generative model

to describe the variation in cardiac morphology; a mixture of Bezier curves to describe

the discrete actions of basketball players.

The following applied probabilistic modeling projects are described in the next three

sections within this chapter.

47

Photometric redshift In Section 3.1, we describe a novel probabilistic model of

two different types of astronomical data that measure the same underlying phenomenon,

and apply the idea to a particular type of source, quasi-stellar radio objects or quasars.

We use a Gaussian process latent factor model to capture complex variation in the un-

derlying latent variables, and a physically motivated data generating process that allows

us to accurately measure a source’s redshift, a particular physical quantity of interest,

from a low-information data source. This section is based on previously published work

in Miller et al. [2015].

Electrocardiogram modeling In Section 3.2 we develop a new probabilistic gener-

ative model of electrocardiogram (EKG) tracings. This model describes multiple sources

of variation in EKGs, including patient-specific cardiac cycle morphology and between-

cycle variation that leads to quasi-periodicity. We use a deep generative network as a

flexible model component to describe factors of variation in beat-specific morphology.

We apply our model to a set of 549 EKG records, including over 4,600 unique beats, and

show that it is able to discover interpretable dimensions of variation, such as patient

similarity and meaningful physiological features (e.g., T wave inversion). This section

is based on previously published work in Miller et al. [2017d].

Unsupervised structure discovery in basketball possessions In Section 3.3,

we present a new model for representing variation in basketball possessions, with the goal

of organizing and exploring a massive database of basketball player-tracks. This model

describes player-specific movements and team interaction that compose the offensive

structure in a basketball possession. We show that our model is able to group together

possessions with similar offensive structure, allowing efficient search and exploration of

the entire database of player-tracking data. We show that our model finds repeated

offensive structure in teams (e.g. strategies), providing a much more sophisticated, yet

interpretable lens into basketball player-tracking data. This section is based on work

48

previously published in Miller and Bornn [2017].

3.1 Application: Photometric Redshift

Enormous amounts of astronomical data are collected by a range of instruments at

multiple spectral resolutions, providing information about billions of sources of light in

the observable universe [Alam et al., 2015, Martin et al., 2005]. Among these data are

measurements of the spectral energy distributions (SEDs) of sources of light (e.g. stars,

galaxies, and quasars). The SED describes the distribution of energy radiated by a

source over the spectrum of wavelengths or photon energy levels. The SED is of interest

because it conveys information about a source’s physical properties, including type,

chemical composition, and redshift, which will be an estimand of interest in this model.

The SED can be thought of as a latent function of which we can only obtain noisy

measurements. Measurements of SEDs, however, are produced by instruments at widely

varying spectral resolutions—some instruments measure many wavelengths simultane-

ously (e.g. spectroscopy), while others average over large swaths of the energy spectrum

and report a low dimensional summary (e.g. photometry). Spectroscopic data describe

a source’s SED in finer detail than broadband photometric data. For example, the

Baryonic Oscillation Spectroscopic Survey [Dawson et al., 2013] measures SED sam-

ples at over four thousand wavelengths between 3,500 and 10,500 Å. In contrast, the

Sloan Digital Sky Survey (SDSS) [Alam et al., 2015] collects spectral information in

only 5 broad spectral bins by using broadband filters (called u, g, r, i, and z), but at a

much higher spatial resolution. Photometric preprocessing models can then aggregate

pixel information into five band-specific fluxes and their uncertainties [Stoughton et al.,

2002], reflecting the weighted average response over a large range of the wavelength spec-

trum. The two methods of spectral information collection are graphically compared in

Figure 3.1.

Despite carrying less spectral information, broadband photometry is more widely

49

(a)

u g r i z
band

0

1

2

3

4

5

6

7

8

flu
x

(n
an

om
ag

gi
es

) PSFFLUX

(b)

Figure 3.1: Left: example of a BOSS-measured quasar SED with SDSS band filters, Sb(λ),
b ∈ {u, g, r, i, z}, overlaid. Right: the same quasar’s photometrically measured band fluxes. Spec-
troscopic measurements include noisy samples at thousands of wavelengths, whereas SDSS photo-
metric fluxes reflect the (weighted) average response over a large range of wavelengths. Compared
to spectroscopy, photometric data convey much less information about the underlying spectral
energy distribution.

available and exists for a larger number of sources than spectroscopic measurements.

This work develops a method for inferring physical properties sources by jointly modeling

spectroscopic and photometric data. One use of our model is to measure the redshift

of quasars for which we only have photometric observations. Redshift is a phenomenon

in which the observed SED of a source of light is stretched toward longer (redder)

wavelengths. This effect is due to a combination of radial velocity with respect to

the observer and the expansion of the universe (termed cosmological redshift) [Hogg,

1999, Harrison, 1993]. Quasars, or quasi-stellar radio sources, are extremely distant

and energetic sources of electromagnetic radiation that can exhibit high redshift [Silk

and Rees, 1998]. Accurate estimates and uncertainties of redshift measurements from

photometry have the potential to guide the use of higher spectral resolution instruments

to study sources of interest. Furthermore, accurate photometric models can aid the

automation of identifying source types and estimating physical characteristics of faintly

observed sources in large photometric surveys [Regier et al., 2015].

We directly model a quasar’s latent SED and the process by which it generates spec-

troscopic and photometric observations to jointly describe both resolutions of data. Rep-

resenting a quasar’s SED as a latent random measure, we describe a Bayesian inference

50

procedure to compute the marginal probability distribution of a quasar’s redshift given

observed photometric fluxes and their uncertainties. The following section provides

relevant application and statistical background. Section 3.1.2 describes our probabilis-

tic model of SEDs and broadband photometric measurements. Section 3.1.3 outlines

our MCMC-based inference method for efficiently computing statistics of the posterior

distribution. Section 5.4 presents redshift and SED predictions from photometric mea-

surements, among other model summaries, and a quantitative comparison between our

method and two existing “photo-z”. We conclude with a discussion of directions for

future work.

3.1.1 Background

The SEDs of most stars are roughly approximated by Planck’s law for black body ra-

diators and stellar atmosphere models [Gray et al., 2001]. Quasars, on the other hand,

have complicated SEDs characterized by some salient features, such as the Lyman-α

forest that indicates the absorption of light at many wavelengths from neutral hydro-

gen gas between the earth and the quasar [Weinberg et al., 2003]. One of the most

interesting properties of quasars (and galaxies) conveyed by the SED is redshift, which

gives us insight into an object’s distance and age. Redshift affects our observation of

SEDs by “stretching” the wavelengths, λ ∈ Λ, of the quasar’s rest frame SED, skewing

toward longer (redder) wavelengths. Denoting the rest frame SED of a quasar n as a

function, f (rest)
n : Λ→ R+, the effect of redshift with value zn (typically between 0 and

7) on the observation-frame SED is described by the relationship

f (obs)
n (λ) = f (rest)

n

(
λ

1 + zn

)
. (3.1)

Some observed quasar spectra and their “de-redshifted” rest frame spectra are depicted

in Figure 3.2. The BOSS spectra are stored in units 10−17 · erg · cm−2 · s−1 ·Å−1.

51

Figure 3.2: Spectroscopic measurements of multiple quasars at different redshifts, z. The up-
per graph depicts the sample spectrograph in the observation frame, intuitively thought of as
“stretched” by a factor (1 + z). The lower figure depicts the “de-redshifted” (rest frame) version
of the same quasar spectra, The two lines show the corresponding locations of the characteristic
peak in each reference frame. Note that the x-axis has been changed to ease the visualization -
the transformation is much more dramatic. The appearance of translation is due to missing data;
we don’t observe SED samples outside the range 3,500-10,500 Å.

3.1.2 Model

This section describes our probabilistic model of spectroscopic and photometric obser-

vations.

Spectroscopic flux model The SED of a quasar is a non-negative function f : Λ→ R+,

where Λ denotes the range of wavelengths and R+ are non-negative real numbers repre-

senting flux density. Our model specifies a quasar’s rest frame SED as a latent random

function. Quasar SEDs are highly structured, and we model this structure by imposing

the assumption that each SED is a convex mixture of K latent, positive basis functions.

The model assumes there are a small number (K) of latent features or characteristics

and that each quasar can be described by a short vector of mixing weights over these

features.

We place a normalized log-Gaussian process prior on each of these basis functions

(described in supplementary material). The generative procedure for quasar spectra

52

begins with a shared basis

βk(·)
iid∼ GP(0,Kθ), k = 1, . . . ,K, Bk(·) =

exp(βk(·))∫
Λ exp(βk(λ)) dλ

, (3.2)

where Kθ is the kernel and Bk is the exponentiated and normalized version of βk. For

each quasar n,

wn ∼ p(w) , s.t.
∑
wk

wk = 1, mn ∼ p(m) , s.t. mn > 0, zn ∼ p(z), (3.3)

where wn mixes over the latent types, mn is the apparent brightness, zn is the quasar’s

redshift, and distributions p(w), p(m), and p(z) are priors to be specified later. As each

positive SED basis function, Bk, is normalized to integrate to one, and each quasar’s

weight vector wn also sums to one, the latent normalized SED is then constructed as

f (rest)
n (·) =

∑
k

wn,kBk(·) (3.4)

and we define the unnormalized SED f̃
(rest)
n (·) ≡ mn · f (rest)

n (·). This parameterization

admits the interpretation of f
(rest)
n (·) as a probability density scaled by mn. This in-

terpretation allows us to separate out the apparent brightness, which is a function of

distance and overall luminosity, from the SED itself, which carries information pertinent

to the estimand of interest, redshift.

For each quasar with spectroscopic data, we observe noisy samples of the redshifted

and scaled spectral energy distribution at a grid of P wavelengths λ ∈ {λ1, . . . , λP }. For

quasar n, our observation frame samples are conditionally distributed as

xn,λ|zn,wn, {Bk}
ind∼ N

(
f̃ (rest)
n

(
λ

1 + zn

)
, σ2

n,λ

)
(3.5)

where σ2
n,λ is known measurement variance from the instruments used to make the

53

observations.

Due to the complicated shape of quasar SEDs, we use a Gaussian process (GP) prior to

flexibly encode our prior beliefs about their structure and shape. Refer to Section 2.2.2

for a brief review of Gaussian processes.

Photometric flux model Photometric data summarize the amount of energy ob-

served over a large swath of the wavelength spectrum. Roughly, a photometric flux

measures (proportionally) the number of photons recorded by the instrument over the

duration of an exposure, filtered by a band-specific sensitivity curve. We express flux in

nanomaggies [SDSSIII, 2013]. Photometric fluxes and measurement error derived from

broadband imagery have been computed directly from pixels [Stoughton et al., 2002].

For each quasar n, SDSS photometric data are measured in five bands, b ∈ {u, g, r, i, z},

yielding a vector of five flux values and their variances, yn and τ2n,b. Each band, b, mea-

sures photon observations at each wavelength in proportion to a known filter sensitivity,

Sb(λ). The filter sensitivities for the SDSS ugriz bands are depicted in Figure 3.1, with

an example observation frame quasar SED overlaid. The actual measured fluxes can

be computed by integrating the full object’s spectrum, mn · f (obs)
n (λ) against the filters.

For a band b ∈ {u, g, r, i, z}

µb(f
(rest)
n , zn) =

∫
f (obs)
n (λ)Sb(λ)C(λ) dλ , (3.6)

where C(λ) is a conversion factor to go from the units of fn(λ) to nanomaggies (details

of this conversion are available in the supplementary material). The function µb takes

in a rest frame SED, a redshift (z) and maps it to the observed b-band specific flux.

The results of this projection onto SDSS bands are modeled as independent Gaussian

random variables with known variance

yn,b | f (rest)
n , zn

ind∼ N (µb(f
(rest)
n , zn), τ

2
n,b) . (3.7)

54

xn,λ

σ2
n,λ

wn

mn

zn

Bkℓ, ν

yn,b

τ 2n,b

λ ∈ Λ b ∈ {u, g, r, i, z}

K

Nspec Nphoto

Figure 3.3: Graphical model representation of the joint photometry and spectroscopy model. The
left shaded variables represent spectroscopically measured samples and their variances. The right
shaded variables represent photometrically measured fluxes and their variances. The upper box
represents the latent basis, with GP prior parameters ℓ and ν. Note that Nspec +Nphoto replicates
of wn,mn and zn are instantiated.

Conditioned on the basis, B = {Bk}, we can represent f
(rest)
n with a low-dimensional

vector. Note that f
(rest)
n is a function of wn, zn,mn, and B (see Equation 3.4), so we

can think of µb as a function of wn, zn,mn, and B. We overload notation, and re-write

the conditional likelihood of photometric observations as

yn,b |wn, zn,mn, B ∼ N (µb(wn, zn,mn, B), τ2n,b) . (3.8)

Intuitively, what gives us statistical traction in inferring the posterior distribution over

zn is the structure learned in the latent basis, B, and weights w, i.e., the features that

correspond to distinguishing bumps and dips in the SED.

Note on priors For photometric weight and redshift inference, we use a flat prior

on zn ∈ [0, 8], and empirically derived priors for mn and wn, from the sample of spec-

troscopically measured sources. Choice of priors is described in the supplementary

55

material.

3.1.3 Inference

Basis estimation For computational tractability, we first compute a maximum a

posteriori (MAP) estimate of the basis, Bmap to condition on. Using the spectroscopic

data, {xn,λ, σ2
n,λ, zn}, we compute a discretized MAP estimate of {Bk} by directly opti-

mizing the unnormalized (log) posterior implied by the likelihood in Equation 3.5, the

GP prior over B, and diffuse priors over wn and mn,

p
(
{wn,mn}, {Bk}|{xn,λ, σ2

n,λ, zn}
)

(3.9)

∝
N∏

n=1

p(xn,λ|zn,wn,mn, {Bk})p({Bk})p(wn)p(mn) . (3.10)

We use gradient descent with momentum and LBFGS [Nocedal, 1980] directly on the

parameters βk, ωn,k, and log(mn) for the Nspec spectroscopically measured quasars. Gra-

dients were automatically computed using autograd [Maclaurin et al., 2015a]. Following

[Walcher et al., 2011], we first resample the observed spectra into a common rest frame

grid, λ0 = (λ0,1, . . . , λ0,V), easing computation of the likelihood. We note that although

our model places a full distribution over Bk, efficiently integrating out those parameters

is left for future work.

Sampling wn,mn, and zn The Bayesian “photo-z” task requires that we compute

posterior marginal distributions of z, integrating out w, and m. To compute these

distributions, we construct a Markov chain over the state space including z, w, and

m that leaves the target posterior distribution invariant. We treat the inference prob-

lem for each photometrically measured quasar, yn, independently. Conditioned on a

basis Bk, k = 1, . . . ,K, our goal is to draw posterior samples of wn, mn and zn for each

56

n. The unnormalized posterior can be expressed

p(wn,mn, zn|yn, B) ∝ p(yn|wn,mn, zn, B)p(wn,mn, zn) (3.11)

where the left likelihood term is defined in Equation 3.8. Note that due to analytic

intractability, we numerically integrate expressions involving
∫
Λ f

(obs)
n (λ)dλ and Sb(λ).

Because the observation yn can often be well explained by various redshifts and weight

settings, the resulting marginal posterior, p(zn|X,yn, B), is often multi-modal, with

regions of near zero probability between modes. Intuitively, this is due to the information

loss in the SED-to-photometric flux integration step.

This multi-modal property is problematic for many standard MCMC techniques.

Single chain MCMC methods have to jump between modes or travel through a re-

gion of near-zero probability, resulting in slow mixing. To combat this effect, we use

parallel tempering [Brooks et al., 2011], a method that is well-suited to constructing

Markov chains on multi-modal distributions. Parallel tempering instantiates C indepen-

dent chains, each sampling from the target distribution raised to an inverse tempera-

ture. Given a target distribution, π(x), the constructed chains sample πc(x) ∝ π(x)1/Tc ,

where Tc controls how “hot” (i.e., how close to uniform) each chain is. At each iteration,

swaps between chains are proposed and accepted with a standard Metropolis-Hastings

acceptance probability

Pr(accept swap c, c′) =
πc(xc′)πc′(xc)

πc(xc)πc′(xc′)
. (3.12)

Within each chain, we use component-wise slice sampling [Neal, 2003] to generate

samples that leave each chain’s distribution invariant. Slice sampling is an auxiliary

variable MCMC algorithm that instantiates a Markov chain based on draws from the

uniform distribution “under the probability density curve.” Slice-sampling is a (rel-

atively) tuning-free MCMC method, a convenient property when sampling from thou-

57

sands of independent posteriors. We found parallel tempering to be essential to accurate

posterior simulations and slice-sampling an easy-to-use MCMC transition.

3.1.4 Experiments and Results

We conduct three experiments to test our model, where each experiment measures

redshift predictive accuracy for a different train/test split of spectroscopically measured

quasars from the DR10QSO dataset [Pâris et al., 2014] with confirmed redshifts in

the range z ∈ (.01, 5.85). Our experiments split train/test in the following ways: (i)

randomly, (ii) by r-band fluxes, (iii) by redshift values. In split (ii), we train on the

brightest 90% of quasars, and test on a subset of the remaining. Split (iii) takes the

lowest 85% of quasars as training data, and a subset of the brightest 15% as test cases.

Splits (ii) and (iii) are intended to test the method’s robustness to different training

and testing distributions, mimicking the discovery of fainter and farther sources. For

each split, we find a MAP estimate of the basis, B1, . . . , BK , and weights, wn to use

as a prior for photometric inference. For computational purposes, we limit our training

sample to a random subsample of 2,000 quasars. The following sections outline the

resulting model fit and inferred SEDs and redshifts.

Basis validation We examined multiple choices of K using out of sample likelihood

on a validation set. In the following experiments we set K = 4, which balances gener-

alizability and computational tradeoffs. Discussion of this validation is provided in the

supplementary material. Following [Budavari et al., 2001] we set K = 4, and note that

this is also the number of PCA components that have been shown to carry over 90% of

the variation of quasar spectroscopy [Suzuki, 2006]. This value could also be fit using

model-checking methods for latent factorization models, which we do not address for

computational reasons.

58

Figure 3.4: Top: MAP estimate of the latent bases B = {Bk}Kk=1. Note the different ranges of
the x-axis (wavelength). Each basis function distributes its mass across different regions of the
spectrum to explain different salient features of quasar spectra in the rest frame. Bottom: model
reconstruction of a training-sample SED.

SED Basis We depict a MAP estimate of B1, . . . , BK in Figure 3.4. Our basis de-

composition enjoys the benefit of physical interpretability due to our density-estimate

formulation of the problem. Basis B4 places mass on the Lyman-α peak around 1,216 Å,

allowing the model to capture the co-occurrence of more peaked SEDs with a bump

around 1,550 Å. Basis B1 captures the H-α emission line at around 6,500 Å. Because of

the flexible nonparametric priors on Bk our model is able to automatically learn these

features from data. The positivity of the basis and weights distinguishes our model from

PCA-based methods, which sacrifice physical interpretability.

59

Photometric measurements For each test quasar, we construct an 8-chain parallel

tempering sampler and run for 8,000 iterations, and discard the first 4,000 samples as

burn-in. Given posterior samples of zn, we take the posterior mean as a point estimate.

Figure 3.5 compares the posterior mean to spectroscopic measurements (for three dif-

ferent data-split experiments), where the gray lines denote posterior sample quantiles.

In general there is a strong correspondence between spectroscopically measured redshift

and our posterior estimate. In cases where the posterior mean is off, our distribution

often covers the spectroscopically confirmed value with probability mass. This is clear

upon inspection of posterior marginal distributions that exhibit extreme multi-modal

behavior. To combat this multi-modality, it is necessary to inject the model with more

information to eliminate plausible hypotheses; this information could come from another

measurement (e.g., a new photometric band), or from structured prior knowledge over

the relationship between zn,wn, and mn. Our method simply fits a mixture of Gaus-

sians to the spectroscopically measured wn,mn sample to formulate a prior distribution.

However, incorporating the statistical relationship between zn, wn and mn, similar to

the XDQSOz technique, will be incorporated in future work.

Comparisons We compare the performance of our redshift estimator with two recent

photometric redshift estimators, XDQSOz [Bovy et al., 2012] and a neural network

[Brescia et al., 2013]. The method in [Bovy et al., 2012] is a conditional density estimator

that discretizes the range of one flux band (the i-band) and fits a mixture of Gaussians to

the joint distribution over the remaining fluxes and redshifts. One disadvantage to this

approach is there there is no physical significance to the mixture of Gaussians, and no

model of the latent SED. Furthermore, the original method trains and tests the model

on a pre-specified range of i-magnitudes, which is problematic when predicting redshifts

on much brighter or dimmer stars. The regression approach from [Brescia et al., 2013]

employs a neural network with two hidden layers, and the SDSS fluxes as inputs. More

features (e.g., more photometric bands) can be incorporated into all models, but we

60

0 1 2 3 4 5 6 7

zspec

0

1

2

3

4

5

6

7

zphoto

0 1 2 3 4 5 6 7

zspec

0

1

2

3

4

5

6

7

3 4 5 6 7

zspec

3

4

5

6

7

Figure 3.5: Comparison of spectroscopically (x-axis) and photometrically (y-axis) measured red-
shifts from the SED model for three different data splits. The left reflects a random selection
of 4,000 quasars from the DR10QSO dataset. The right graph reflects a selection of 4,000 test
quasars from the upper 15% (zcutoff ≈ 2.7), where all training was done on lower redshifts. The
red estimates are posterior means.

limit our experiments to the five SDSS bands for the sake of comparison. Further detail

on these two methods and a broader review of “photo-z” approaches are available in the

supplementary material.

Average error and test distribution We compute mean absolute error (MAE),

mean absolute percentage error (MAPE), and root mean square error (RMSE) to mea-

sure predictive performance. Table 3.1 compares prediction errors for the three different

approaches (XD, NN, Spec). Our experiments show that accurate redshift measure-

ments are attainable even when the distribution of training set is different from test

set by directly modeling the SED itself. Our method dramatically outperforms [Bovy

et al., 2012] and [Brescia et al., 2013] in split (iii), particularly for very high redshift

fluxes. We also note that our training set is derived from only 2,000 examples, whereas

the training set for XDQSOz and the neural network were ≈ 80,000 quasars and 50,000

quasars, respectively. This shortcoming can be overcome with more sophisticated in-

ference techniques for the non-negative basis. Despite this, the SED-based predictions

are comparable. Additionally, because we are directly modeling the latent SED, our

61

Figure 3.6: Left: inferred SEDs from photometric data. The black line is a smoothed approxi-
mation to the “true” SED using information from the full spectral data. The red line is a sample
from the posterior, f (obs)

n (λ)|X,yn, B, which imputes the entire SED from only five flux measure-
ments. Note that the bottom sample is from the left mode, which under-predicts redshift. Right:
corresponding posterior predictive distributions, p(zn|X,yn, B). The black line marks the spectro-
scopically confirmed redshift; the red line marks the posterior mean. Note the difference in scale of
the x-axis.

method admits a posterior estimate of the entire SED. Figure 3.6 displays posterior

SED samples and their corresponding redshift marginals for test-set quasars inferred

from only SDSS photometric measurements.

3.1.5 Discussion

We have presented a generative model of two sources of information at very different

spectral resolutions to form an estimate of the latent spectral energy distribution of

quasars. We also described an efficient MCMC-based inference algorithm for comput-

ing posterior statistics given photometric observations. Our model accurately predicts

and characterizes uncertainty about redshifts from only photometric observations and

a small number of separate spectroscopic examples. Moreover, we showed that we can

make reasonable estimates of the unobserved SED itself, from which we can make infer-

ences about other physical properties informed by the full SED.

62

Table 3.1: Prediction error for three train-test splits, (i) random, (ii) flux-based, (iii) redshift-
based, corresponding to XDQSOz [Bovy et al., 2012] (XD), the neural network approach [Brescia
et al., 2013] (NN), our SED-based model (Spec). The middle and lowest sections correspond to
test redshifts in the upper 50% and 10%, respectively. The XDQSOz and NN models were trained
on (roughly) 80,000 and 50,000 example quasars, respectively, while the Spec models were trained
on 2,000.

MAE MAPE RMSE
split XD NN Spec XD NN Spec XD NN Spec
random (all) 0.359 0.773 0.485 0.293 0.533 0.430 0.519 0.974 0.808
flux (all) 0.308 0.483 0.497 0.188 0.283 0.339 0.461 0.660 0.886
redshift (all) 0.841 0.736 0.619 0.237 0.214 0.183 1.189 0.923 0.831
random (z > 2.35) 0.247 0.530 0.255 0.091 0.183 0.092 0.347 0.673 0.421
flux (z > 2.33) 0.292 0.399 0.326 0.108 0.143 0.124 0.421 0.550 0.531
redshift (z > 3.20) 1.327 1.149 0.806 0.357 0.317 0.226 1.623 1.306 0.997
random (z > 3.11) 0.171 0.418 0.289 0.050 0.117 0.082 0.278 0.540 0.529
flux (z > 2.86) 0.373 0.493 0.334 0.112 0.144 0.103 0.606 0.693 0.643
redshift (z > 3.80) 2.389 2.348 0.829 0.582 0.569 0.198 2.504 2.405 1.108

We see multiple avenues of future work. Firstly, we can extend the model of SEDs

to incorporate more expert knowledge. One such augmentation would include a fixed

collection of features, curated by an expert, corresponding to physical properties al-

ready known about a class of sources. Furthermore, we can also extend our model

to directly incorporate photometric pixel observations, as opposed to preprocessed flux

measurements. Secondly, we note that our method is more more computationally bur-

densome than XDQSOz and the neural network approach. Another avenue of future

work is to find accurate approximations of these posterior distributions that are cheaper

to compute. Lastly, we can extend our methodology to galaxies, whose SEDs can be

quite complicated. Galaxy observations have spatial extent, complicating their SEDs.

The combination of SED and spatial appearance modeling and computationally efficient

inference procedures is a promising route toward the automatic characterization of mil-

lions of sources from the enormous amounts of data available in massive photometric

surveys.

63

This next section describes a probabilistic modeling project in the area of healthcare.

In this project, our goal is to describe the factors of variation of electrocardiogram data.

This is expanded upon research that is based on previously published work [Miller et al.,

2017d].

3.2 Application: Electrocardiogram Tracings

An electrocardiogram (EKG) is a common non-invasive medical test that measures the

electrical activity of a patient’s heart by recording the time-varying potential difference

between electrodes placed on the surface of the skin. The resulting data is a multivariate

time-series that reflects the depolarization and repolarization of the heart muscle that

occurs during each heartbeat. These raw waveforms are then inspected by a physician

to detect irregular patterns that are evidence of an underlying physiological problem.

In this paper, we build a hierarchical generative model of electrocardiogram signals

that disentangles sources of variation. We are motivated to build a generative model

of EKGs for multiple reasons. First, we would like our inferences to properly cope

with nuisance variation present in EKG signals (e.g. variation in cardiac cycle with

breathing and inadvertent movement). Second, generative models can be used for semi-

supervised tasks — not all EKG observations are paired with test results or diagnoses.

Semi-supervised modeling allows us to leverage a large amount of unlabeled EKG data

to improve predictions when training with a smaller labeled dataset (under an appro-

priate model of censoring or missingness). Third, in medical diagnoses, correlating

model features with underlying physiological realities is important for several reasons,

including model checking and interpretability. A generative model provides an intuitive

mechanism to examine the inner workings of the model — one can always draw a sample

from the inferred generative distribution to reveal what the latent features themselves

represent in terms of observed data features. Finally, a statistical model can be much

more sensitive and robust to difficult-to-detect patterns.

64

3.2.1 Modeling Electrocardiograms

Looking at an EKG, a few features of the tracing stand out. First, there are individual

heartbeats—discrete periods of active contraction of the heart muscle, that are respon-

sible for pumping blood to the lungs and the rest of the body. These are the bursts of

activity in the tracing. Small parts of the signal in this area are carefully scrutinized by

physicians for signs of disturbance in the heart’s electrical conduction system, or heart

attack. Second, there are the periods between heartbeats, when the muscle is resting

as the heart fills with blood. Since there is little electrical activity during this period,

the electrodes record it as a flat line. The time between beats can vary as a function

of idiosyncratic aspects of the patient’s conduction system, or with variations in blood

flow to the heart driven by the respiratory cycle. Third, patient movement or artifacts

in the recording equipment (conductance of the electrodes, etc) can introduce arbitrary

changes in the signal.

Our generative model tackles these multiple sources of variation in electrocardiogram

data directly. We model: (i) the morphology of an individual beat; (ii) the variation

in that morphology from beat to beat; (iii) the variability in the periodicity of the

beat; and (iv) nuisance variability in the measurement process (e.g. overall drift due to

movement). The output of this model will be a set of features that explain these sources

of variability, which can be useful in exploratory and predictive tasks.

Our data are multi-dimensional temporal observations Y = y1, . . . ,yT where yt ∈ RD

are sampled on a regular time grid, t(obs) = t1, . . . , tT (given in seconds). Our model

separately parameterizes the morphology of the cardiac cycle, its duration, and the

length of time between cycles. We express these sources of variation as a hierarchical

65

(a) Patient 1

(b) Patient 2

(c) Generative model

Figure 3.7: Top: Example EKG tracings (single lead) from two patients. Bottom: The genera-
tive procedure — each beat is represented in a low-dimensional latent space (left). To generate a
beat, this vector is up-sampled through a multi-layer perceptron (center), resulting in a set of co-
efficients (depicted as grey dots above). These coefficients are used with an over-complete set of
fixed radial basis functions (top right) to describe the raw EKG signal, excluding the inferred pause
duration.

probabilistic model

z(m), z(p) ∼ p(z(m), z(p);θ)

yt | z(m), z(p) . . . = f(z(m), z(p);θ) + ϵt , ϵt ∼ N (mt, σ
2)

66

where the variables are

• z(m): the morphology of a patient’s beat in a low-dimensional (D) latent space.
• z(p): the pause between cardiac cycles and the length of cycle (in seconds).
• θ: global parameters, including the morphology basis parameters, and prior pa-

rameters.
• yt: observed voltage, conditionally Gaussian given parameters and link function

f(·).

The pause variable z(p) measures the amount of time on each side of the cardiac cycle

that can be explained by a constant offset. The morphology variable z(m) explains the

shape of the cardiac cycle measured by the EKG.

Generative model of beat morphology The cardiac cycle exhibits difficult-to-

prescribe variation from patient to patient and beat to beat. To address this, we repre-

sent a beat’s shape with a low-dimensional latent variable that is passed through a set of

non-linear basis functions (i.e. a deep neural network), parameterized by θ. The output

of the deep generative model is a set of regression coefficients, applied to a fixed, tem-

porally separated and over-complete basis. These two components model the de-noised

EKG tracing; the output basis is held fixed to maintain a degree of interpretability. For

inference, we use a variational autoencoder-style inference network within a variational

inference framework to maximize a lower bound to the marginal likelihood of the data

as a function of θ and recognition network parameters ϕ [Kingma and Welling, 2013].

The generative procedure is illustrated in Figure 3.7.

Our inference procedure is two step — we first maximize the data likelihood with

respect to latent variables z(p), which finds the per-beat pause and EKG cardiac cycle

length for each heartbeat. We do this by using the closed-form posterior mean solution

for the regression coefficients with respect to the fixed basis. We can think of this as a

sort of alignment procedure — the part of the waveform corresponding to the P-wave,

QRS complex, and T-waves can now be jointly modeled.

67

We then fix this alignment, and fit the deep generative network that produces re-

gression coefficients for the same fixed output basis. For this, we use a multi-layer

perceptron with two hidden layers, each with 50 units

β = MLP(z(m);θ) . (3.13)

Our model of beat morphology is essentially a deep generative regression model.

Given generative parameters θ, and a fixed observation basis, B1(·), . . . , BK(·), where

Bk(·) : [0, 2π] 7→ R are von Mise-like radial basis functions

Bk(ω;µk, κk) = exp (κkcos(ω − µk)− κk) . (3.14)

The data are then generated using β and the static basis B1, . . . , BK at the points

where the EKG tracings are observed. For instance, if we observe samples for a single

beat at time points t1 . . . , tT , and we have inferred the start time and duration of

the cardiac cycle, z(p) = (t(start), t(dur)), then the observation can be split into three

segments — the pause before the cycle, the cycle itself, and the pause observed after

the cycle. For observations within the cycle, we simply transform them to “canonical

time” to align with the von-Mise basis

τi = (ti − t(start))/t(dur) · 2π . (3.15)

If there are T (cycle) cardiac cycle samples, then the cycle portion of each beat thus

has a corresponding “design matrix” of size T (cycle) ×K

Xi,k = Bk(τi;µk, κk) . (3.16)

Conditioned on this design matrix, the observed data are normal with a small error

68

term

yi = N (β⊺Xi, σ
2) . (3.17)

The inferential task is to estimate the posterior distribution over z(m) given observa-

tions. For this, we use an inference network, which is another multi-layer perceptron

(that mirrors the generative network)

µz, σz = MLP(β(ols);ϕ) (3.18)

which outputs an estimate of the posterior mean and variance for the latent morphology

parameter. The variational objective is now defined with respect to θ and ϕ

L(θ,ϕ) = Ez∼q(·;ϕ,β(ols))

[
ln p(Y |z)p(z)− ln q(z;ϕ,β(ols)

]
(3.19)

The “data” we use for the inference network is not the observation vector Y , but the

posterior mean solution for β given the fixed basis, B1, . . . , BK . For our experiments,

we fix a basis of size K = 60, spatially spread over the interval [0, 2π].

Related Work [McSharry et al., 2003] describe a generative model of EKG records

defined ordinary differential equations. This model similarly includes a periodic basis,

and instantiates an angular velocity to model the quasi-periodicity of the signal. How-

ever, inference for datasets of EKG records is not discussed. [Oster et al., 2015] describe

a switching Kalman filter approach to EKG modeling, using discrete latent states to

cluster similar beat types, in contrast to our continuous latent-space description of EKG

beat morphology. This approach uses discrete clusters, while our approach is more sim-

ilar to a non-linear factor model. [Chia and Syed, 2014] align EKG beats using dynamic

time warping, while our approach directly models the biologically plausible sources of

temporal variation, the cycle length and pause duration.

69

(a) Model fit, with and without beat-specific warping

(b) Model residuals, with and without beat-specific warping

Figure 3.8: Top: comparison of model fit without pauses between beats (left) and with pause
latent variables (right). The model average beat is shown in grey. Bottom: comparison of model
residuals without (left) and with (right) pause latent variables. By modeling the pause duration,
the salient features of the cardiac cycle (e.g. the P wave, QRS complex, and T wave) are aligned.
Without this alignment, these features can be washed out by inappropriately averaging misaligned
features within the cycle.

3.2.2 Empirical Evaluation

We fit our model to the PhysioNet PTB Diagnostic EKG database [Bousseljot et al.,

1995, Kreiseler and Bousseliot, 1995]. This dataset contains 549 EKG records from 290

subjects with over 4,600 individual beats. We first look at consequence of inferring beat-

specific pauses, and see that it offers a sort of alignment that enables coherent modeling

of the morphology. We then examine the latent space inferred by the beat morphology

model.

Pause model checks Inferring pause parameters provides an effective way to align

the salient features (e.g. P wave, QRS complex, T wave) in a way that can be coherently

modeled. Without the pause latent variable, the temporal variability exhibited by the

patient washes out features of the beat. With it, the temporal variability is appropri-

ately separated from morphological features, which are modeled with a basis function

70

Figure 3.9: Nearest record examples. The source record is in the upper left (EKG 344). The fol-
lowing five are example beats from the nearest neighbors in latent z(m) space. The solid line is the
generative model reconstruction.

regression model. In Figure 3.8 we see that residuals around the QRS complex decrease

significantly when we incorporate a model of the pause between beats.

Nearest Neighbor Evaluation We examine the nearest neighbors (in different

EKG records) in the latent morphology space, z(mor). In Figure 3.9, we show a source

beat and depict the five nearest neighbors in the latent morphology space. We see that

the similarity in distance for this example corresponds in part to similarity in T-wave

direction, while the rest of the beat remains unchanged.

Interpolation To illustrate the generative capacity of our model, we visualize the

latent path between two beats. In Figure 3.10a, we start out at the z(m) value of

an observed beat, and linearly interpolate to the z(m) value of another observed beat.

Each transition beat is generated from our model — we see that following this direction

corresponds to inverting the T wave. To further explore this concept, we take a beat

with a different morphology (and standard T wave) and follow the direction “T wave

inversion” direction found in the previous example. Similar to neural word embeddings

[Mikolov et al., 2013], we find that following this direction inverts the T wave while

leaving other features of the morphology relatively unchanged, shown in Figure 3.10b.

71

(a) Interpolation in the latent space. We start at the embedding of EKG 344 (with an inverted T
wave), and linearly interpolate to EKG 422 (without an inverted T wave).

(b) Generated beats along the T wave inversion direction determined by EKG 422 to EKG 344
(above), starting from very different EKG 450. We see that this direction does correspond to T

wave inversion, leaving other features relatively unchanged.

Figure 3.10: Exploring the cardiac cycle morphology latent space.

Identifying Patients A subset of patients have multiple EKG records in the PTB

dataset. We expect a good representation of EKG beats to cluster together the same

patients across different records. To test this, we compare the average distance of z(m)

between the same patient across different EKG records (d(same)) to the average distance

of z(m) to some random EKG record (d(diff)). We compare this difference to the same

value measured using PCA, and find that our model measures the same patient to be

significantly closer.

We measure the average distance of z(m) between the same patient across different

EKG records (d(same)) to the average distance of z(m) to some random EKG record

(d(diff)). We compare this difference to the same value measured using PCA on the

72

least squares regression coefficients for the fixed final layer, with the same number of

latent dimensions. We find that our model measures the same patient to be significantly

closer on average.

For latent dimension D = 10, we measure the two averages as

E[d(same) − d(diff)] = −.037 ∈ [−0.049,−0.025] PCA (3.20)

E[d(same) − d(diff)] = −.100 ∈ [−0.118,−0.083] VAE (3.21)

indicating that the VAE significantly improves over PCA. We draw the conclusion that

a strictly linear model of EKG beats (given our fixed observation basis) may not be

expressive enough to carry patient-specific information, compared to a non-linear latent

factor model.

3.2.3 Discussion

We developed a latent variable model for large datasets of electrocardiogram records

using a flexible deep neural network component and an interpretable pause and beat

duration component. In preliminary model exploration, we show that the latent mor-

phology space encodes information about patient similarity and physiological features

that correlate to biological processes. We plan to further criticize our model and hope

to predict patient outcomes that are less easily observed.

This next probabilistic modeling project finds latent structure in the team play of

professional basketball players, given observations of their trajectories. This section is

based on previously published work [Miller and Bornn, 2017].

73

3.3 Application: Trajectory Modeling

Player-tracking data present a unique challenge for basketball analytics. It is widely

believed that a windfall of quantitative insight is hidden in these data, in spatiotempo-

ral patterns that coaches and analysts typically process with human intuition. While

there has been work toward quantifying player ability [Franks et al., 2015a], possession

value [Cervone et al., 2014a,b], and play classification based on small sets of labeled

plays [Wang and Zemel, 2016], methods for automatically organizing, summarizing, and

interpreting basketball possessions have yet to be fully developed.

As an example, consider the following use case for defensive scouting: an analyst

is tasked with finding all possessions in which James Harden drives to the basket and

passes the ball to a teammate for a right corner three-point attempt. Simple engineering

solutions for this scenario are easy to imagine: first sub-select Rockets possessions with

a right corner three-point attempt and then look for passes from Harden that originate

in the paint. However, adding search criteria quickly renders this ad hoc solution in-

tractable: find sequences where Harden uses a high screen before driving to the basket

and then passes to the corner for a three-point attempt; find sequences where Harden

uses a high screen, drives to the basket, passes to the corner and that teammate drives

to the basket; find sequences where any Rocket uses a high screen, drives to the basket,

etc. The landscape of relevant basketball scenarios is far too vast and complex for ad

hoc search solutions.

Furthermore, this type of sequential query is only one approach to gaining insight

from player-tracking data. We can imagine starting a research project by simply asking

— what leads to a corner three? What sort of patterns are employed by different offenses

in order to get an open three-point attempt? What sorts of actions do specific players

tend to do in order to generate an open three-point attempt? Existing methodology

falls short of supporting this kind of exploratory analysis with player-tracking data.

In this work, we bridge this gap by formulating a novel machine learning method

74

to describe an entire database of player-tracks. Our method uncovers characteristic

patterns of offense in a way that is searchable and interpretable. We first describe

individual player’s actions by building a data-driven dictionary of action templates de-

rived from a statistical model. We then construct a model of possessions that describes

patterns in these action templates—common co-occurrences that create a signature of

offensive strategy. For each play, this yields a possession sketch, a concise summary

of the offense’s actions in a basketball possession. We model this structure at multi-

ple levels—in dynamic actions taken by individual players, as well as collective actions

present in each possession.

Importantly, we construct our model out of interpretable pieces—each action tem-

plate can be interpreted as a type of on- or off-ball cut. Further, pairs of actions are

also interpretable — some correspond to on-and off-ball screens, others correspond to

drives and passes to various wings. Our use of probabilistic graphical models on an

interpretable representation of the data allows for easier-to-understand model output

and inferences than recent deep learning approaches [Wang and Zemel, 2016].

In the following section we describe the components of our method that generate

action templates and possession sketches. After describing our method, we explore the

structure it reveals by looking at three of the different organizational tools it makes

possible:

• team possession maps: low-dimensional visualization of all of the offensive posses-
sions of a team—exploring this map reveals different set calls used by a team.

• shot possession maps: low-dimensional visualization of possessions that led to a
particular type of shot—we examine the different types of actions that lead to
corner threes.

• possession basis: common and repeated actions discovered by the model — this
establishes the types of player interaction that make up the “vocabulary” of a
basketball possession.

By integrating scalable probabilistic modeling and visualization, this work shows that

75

we can organize and systematically explore NBA possessions, allowing us to derive useful

basketball intelligence from the NBA’s vast and growing store of player-tracking data.

3.3.1 Methods

This section details the machine learning model we construct to recognize patterns at two

resolutions: spatiotemporal patterns in individual player trajectories (action templates),

and co-occurrence of actions in each possession (possession sketches).

Before we go into further detail, the overall procedure behind our method can be

decomposed into the following steps:

• Segmentation: We cut possession-length (e.g. 5-24 second) player trajectories into
shorter, more manageable segments based on moments of sustained low-velocity.

• Learning action templates: We formulate a novel statistical clustering algorithm
to learn which action is represented by each short segment.

• Possession modeling: We represent each possession as a “bag” of pair-actions, and
fit a possession-level hierarchical model inspired by the document modeling and
natural language processing literature.

The following subsections describe the process of applying the above steps to a large

data set of basketball player-tracks.

3.3.2 Data and preprocessing

We analyze a database of player-tracks from the 2014-2015 season of the NBA. The

data are organized into over N = 190,000 possessions (and possessions into quarters

and games). For each possession (indexed by n), we model the trajectories of players

on offense. For each player (indexed by j) in possession n, we cut their trajectory

(denoted x
(n)
j) into short segments at locations of sustained low-velocity. To do this, we

first detect moments of low velocity by inspecting the smoothed first difference of the

trajectory. At sustained moments of low velocity (> .25 seconds below a threshold of

76

0 1
23

4

56
7

Harrison Barnes

start

0 2 4 6 8 10 12 14 16

time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

v
e
lo

ci
ty

Harrison Barnes

cut pts

(a)

0

Stephen Curry

start

0 1 2 3 4 5

time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v
e
lo

ci
ty

Stephen Curry

cut pts

(b)

0

1

Manu Ginobili

start

0 1 2 3 4 5 6

time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v
e
lo

ci
ty

Manu Ginobili

cut pts

(c)

0

1
Danny Green

start

0 1 2 3 4

time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v
e
lo

ci
ty

Danny Green

cut pts

(d)

Figure 3.11: Examples of trajectory segments resulting from the “sustained-low-velocity-moment”
finding algorithm. In each example, the left plot depicts the spatial trajectory with cut points
denoted by the red dots (with the order of the cuts labeled). The right plot depicts the approxi-
mate magnitude of the velocity at each moment during the possession, with the corresponding cut
points.

.1 feet per second), we cut the possession, resulting in a collection of shorter segments.

Figure 3.11 depicts four example trajectories, cut into various number of segments.

We refer to these shorter trajectory segments as x(n)
j1

, . . . ,x
(n)
jS

, where it is understood

that the number of segments, S, varies for each possession-player pair. The resulting

short segments are on average 2.25 seconds (the interior 95 percentiles range from 0.6

to 7.96 seconds). Applying this preprocessing step to the full 2014-2015 regular season

creates a data set of roughly 4.5 million segment observations.

3.3.3 Action Templates: Segment Clustering

Our method assumes that each short trajectory segment represents some discrete action,

and each player performs a series of actions throughout the course of a possession. For

instance, a player might (i) make a cut along the baseline and then (ii) camp out in the

corner. Alternatively, a player can (i) make a cut along the 3-point line, (ii) stand at

the break, then (iii) cut toward the basket. In order to decompose a player’s trajectory

77

start

0 2 4 6 8 10 12

seconds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Duration, action 126 (9194 examples, has ball freq =0.03)

(a) Action 126

start

0 5 10 15 20

seconds

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Duration, action 217 (11708 examples, has ball freq =0.23)

(b) Action 217

start

0 2 4 6 8 10 12 14

seconds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Duration, action 220 (12543 examples, has ball freq =0.06)

(c) Action 220

start

0 2 4 6 8 10 12

seconds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Duration, action 222 (9657 examples, has ball freq =0.05)

(d) Action 222

Figure 3.12: A sampling of action templates. Our method automatically builds a taxonomy
of commonly repeated movements shared among all players (i.e. actions). In each column, the
top plot depicts the spatial trajectory for a single action template. The light blue lines are real
segment trajectories that fall in that cluster. Below each action plot is a histogram of segment
lengths (in seconds) for all segments that fall into that cluster — some actions are shorter or
longer (on average) than others. For a more dynamic picture of an action template, please view
this animated figure: https://youtu.be/-a6_Ot6etmk

into a set of actions, we must first infer a meaningful set of actions that all players share.

We use a data-driven approach to infer this set of actions, each action’s structure, and

the action label for each trajectory segment.

To accomplish this, we construct a probabilistic clustering algorithm tailored for

functional data (i.e. continuous trajectories). Our model posits that each trajectory

segment represents one of V discrete actions, where each action is characterized by a

template. Each template can be thought of as a cluster center—each observed trajectory

segment is centered around a template with some deviation. We specify each template

as a Bezier curve—a tool commonly used to model movement in the computer graphics

community – which specifies a function B(t) that maps time to a two-dimensional point,

B : [0, 1] 7→ R2. This maps out a dynamic curve through space, which describes the

movement of each action.

78

https://youtu.be/-a6_Ot6etmk

The clustering model specifies V Bezier curve components, Bv : [0, 1] 7→ R2, each pa-

rameterized by θv ∈ RP×2, where P is the number of control points used to characterize

the curve.1

Bv(t; θv) = θ⊺vDP (t) (3.22)

DP (t) =

(
P

p

)
tp(1− t)P−p for p = 0, . . . , P − 1. (3.23)

Importantly, each curve can be specified as a linear function with respect to parameters

θv, with a non-linear (but fixed) basis in time, DP (t). Bezier curves are a natural

choice for these data — they are flexible, concisely parameterized, and easy to fit. The

non-linear basis in time allows for a wide variety of template shapes.

The complete functional clustering model is specified as

z
(n)
js
∼ Pr(action|π) action type (3.24)

x
(n)
js,t
∼ N (Bv(t, θv),Σv) location at moment t (3.25)

We use maximum likelihood to learn parameters θv, π, and Σv (and therefore each action)

directly from the data set of 4.5 million trajectory segments. To do so efficiently, we

devise expectation maximization [Dempster et al., 1977] updates that exploit the linear

structure of Bezier curves—each maximization step can be computed using weighted

least squares. Furthermore, each expectation step can operate on each segment in

parallel, allowing us to scale our method up to the 4.5 million trajectory segments.

Figure 3.12 depicts a sampling of learned templates resulting from fitting a mixture

of V = 250 Bezier curves to the processed trajectory segments. The output of this

model allows us to succinctly represent each trajectory segment as a single integer,

v = 1, . . . , 250. We view these actions as a kind of vocabulary—each possession com-
1More control points allow for more flexibility in fitting shapes — we use 10 control points

in our experiments

79

bines words in the vocabulary to describe structured interactions that characterize the

possession. Following this thread, we turn to statistical methods originally devised for

modeling documents, and adapt them to basketball sequences.

3.3.4 Possession Model

Offensive possessions are highly structured. When James Harden drives toward the

basket, drawing defender attention, his teammates are not distributed randomly on the

floor — it is likely that at least one teammate is in the corner waiting for a pass; it

is likely that other teammates vacate the paint, and begin jockeying for rebounding

position. The structure of an offensive possession is created by the individual actions

that each player performs throughout the possession. Which actions tend to simultane-

ously co-occur? Which actions tend to precede or follow other actions? Our possession

model seeks to answer these questions by first observing that these actions are a lot

like words. Words are interwoven sequentially to express a coherent idea; player actions

are interwoven sequentially to implement a coherent strategy. We run with this anal-

ogy by adapting topic models [Blei, 2012] to describe sequences of actions in basketball

possessions.

We use Latent Dirichlet Allocation (LDA) [Blei et al., 2003], a topic model for unsu-

pervised structure discovery in a corpus of text documents. LDA is a latent factor model,

similar to factor analysis or principal components analysis. In document modeling, LDA

describes each document as a mixture of topics, where each topic is a distribution over

the entire vocabulary of words. As a concrete example, LDA applied to a corpus of

Science articles finds topics corresponding to cancer (e.g. probable words are “tumor”,

“cell”, “cancer”, etc.), and neuroscience (“synaptic”, “neurons”, “hippocampal”, etc.),

among many others (see [Griffiths and Steyvers, 2004, Blei, 2012]).

Conceptually, LDA defines K topics, ϕk, each a distribution over actions. Each

observed possession is characterized by some latent distribution over topics, π(n), which

80

describes the probability that a particular topic is expressed in possession n. These

two distributions — possession-specific proportions and global topics — determine the

probability of observing any particular action in possession n. LDA posits the following

data generating process to give rise to the matrix of counts

ϕk ∼ DirV (α0) for k = 1, . . . ,K (3.26)

π(n) ∼ DirK(α) for n = 1, . . . , N (3.27)

Yn,: ∼ Mult

(
Mn, p =

∑
k

π
(n)
k ϕk

)
(3.28)

where Mn is the total number of actions present in possession n (a fixed constant). We

use statistical inference techniques to infer both the global topics, Φ, and the possession-

specific proportions, π(n) for all possessions. Due to the size of the dataset, we use

stochastic variational inference [Hoffman et al., 2013], a scalable method for Bayesian

inference in hierarchical models.

In our application, rather than topics, we represent each possession as a mixture

of strategies, where each strategy is a distribution over co-occurring actions that are

frequently observed in the data. We then use LDA to infer the strategies employed

in each offensive possession (as well as the set of strategies themselves). LDA requires

that we represent each possession as a “bag of words” — a vector where each entry

corresponds to a unique word and represents the number of times that word occurs in

the possession. To do this, we need to first establish a vocabulary.2 Our first approach

was to simply count the number of each v = 1, . . . , V actions in each possession. This

approach is appealing in its simplicity, and does reveal interesting structure. However,

this representation ignores interactions between players and temporal structure.

In this work we use a vocabulary of pair-actions, where each “word” in the vocabulary
2In document modeling, the vocabulary is typically the vocabulary of the language itself,

with minimal preprocessing. Common sequences of two or three words (bi-grams and tri-grams)
are sometimes included in the vocabulary to improve the model.

81

is a unique pair of the V actions, (vi, vj) for vi, vj ∈ {1, . . . , V } and vi ̸= vj . We then

represent each possession as a “bag of simultaneous pair-actions”, mapping the “bag of

words” concept from topic models to basketball interactions. For each possession, we

simply count the number of times each unique pair of actions simultaneously occur. We

string these counts into a single vector, which represent possession n

Yn,d = # times action action pair d = (v1, v2) appears in possession n. (3.29)

Figure 3.13 illustrates the construction of our pair-action vocabulary that we use to

succinctly represent each possession. To incorporate ball possession information, we

define each action as “with” or “without” the ball3, resulting in 2 ·V total player actions.

We include pair-actions that appear in at least 100 possessions, resulting in about 25,000

unique pair-actions in our vocabulary. This representation allows us to apply LDA to

basketball possessions. To fit this model to the over 190,000 possessions in the season,

we use a recently developed scalable Bayesian inference technique [Hoffman et al., 2013].

This model yields a low-dimensional embedding of every NBA play that allows us to

quickly assess similarities between possessions and explore the space of team offensive

strategies. We can create interactive graphics (a dynamic version of Figure 3.15a), where

each point in space represents a full possession and nearby points indicate “similar”

possessions — possessions that share the same pattern of actions. The following section

dives deeper into this exploration tool, and what it can afford an analyst. The topics

themselves encode strategic co-occurrences of actions, and using these topics we can

shed light on the fundamental building blocks of collective action on the basketball

court. Inspecting these topics can help us quantify what exactly makes a unique offense

unique.
3An action is considered “with” ball if the player possesses the ball for the majority of the

segment.

82

Figure 3.13: The “bag of words” construction of each possession. Each “word” represents two ac-
tions that occur simultaneously throughout the course of the possession, where actions are inferred
with the action template model presented in Section 3.3.3. In the toy example depicted, we have
three players, each performing a sequence of actions (corresponding to the four colors). At each
moment in time, we enumerate all unique pairs of actions. We represent the entire possession as a
bag of these pair-action counts.

(a) Topic 0 (b) Topic 1 (c) Topic 2 (d) Topic 3

(e) Topic 4 (f) Topic 5 (g) Topic 6 (h) Topic 7

Figure 3.14: The result of fitting a K = 100 topic possession model. A “topic” in our framework
corresponds to a distribution over pairs of actions. Above, we show common pairs of actions from
8 of the 100 topics. We observe that topics tend to pick up on combinations of actions that in-
clude common actions. For instance, the top two pair-actions in topic 0 includes a cut along the
3-point line while a teammate cuts nearby (perhaps setting an off-ball screen).

83

3.3.5 Analysis

In this section we explore the output of the possession level model to see which patterns

are represented. We focus on the following aspects of model output

• basketball topics: we see which pair-actions are represented by each of the K = 100

topics. This tells us not only which pair-actions occur frequently, but which
pair-actions co-occur in possessions, revealing fundamental patterns of basketball
offenses.

• possession sketch: each possession is characterized as a distribution over topics
(or strategies), and “similarity” between possessions can be measured using this
distribution. We explore what our model describes as similar, and we empirically
test this notion of similarity by measuring distances between sets of plays we
previously inspected and labeled as similar.

In the following sections we explore the above concepts by visualizing and exploring

possessions in ways newly afforded by our framework.

Basketball Topics Figure 3.14 graphically depicts a small sampling of basketball

topics (i.e. strategies) discovered by the possession model. The topics reveal which

pair-actions are most common in our data set, and we do see patterns emerge. As a

concrete example, if a particular possession “loads” onto topic 34 then that possession

is more likely to include the pair-actions depicted in Figure 3.14d—a cut to the basket

while a teammate is standing in either of the two corners. Topic 5 prominently includes

possessions with a baseline cut from the right block to the left break. Note that there

are many more pair-actions with significant probability than the ones depicted, and

there are many more topics than we depict.

We also notice that each possession topic vector is quite sparse—on average only 8

of the 100 entries are non-zero. This is expected and desired behavior—each possession

can only include a small number of offensive patterns from the wide array of available

tactics.
4i.e. the possession sketch vector is large along the dimension corresponding to topic 3

84

(a) Warriors Possessions (t-SNE map)

0 20 40 60 80 100

KL-div

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

weave-to-other dists

weave-to-weave dists

(b) Weave-to-weave and
weave-to-other distances

Figure 3.15: Left: map of 2014-2015 Warriors possessions, with a small set of known “weave”
plays highlighted in red. The weave plays tend to cluster together in this visualization. We verify
this by computing the average distance between two weave possessions and between a weave and
a random Warriors possession of a similar length. This indicates that our topic-model-based rep-
resentation is picking up on patterns that are able to (mostly) distinguish between semantically
different plays.

Possession Map Exploration Each possession has an associated possession sketch—

a per-topic vector that describes how much of each of the basketball topics (a subset

illustrated in Figure 3.14) are featured in that possession. We can use these possession

sketches to reason about large sets of basketball possessions. In this section we select the

offensive possessions of the 2014-2015 Golden State Warriors (over 6,000 possessions).

With each possession succinctly described by a (sparse) 100-dimensional topic vector,

we use the dimensionality reduction technique t-SNE [?] to visualize these vectors in 2-

dimensions. This method finds a 2-dimensional representation of each 100-dimensional

vector such that the distance in 2-d is similar to the distance in 100-d (emphasizing

the preservation of local distances).5 Figure 3.15 visualizes all Warriors possessions in

2014-2015.

We test the notion of “similarity” in topic space by examining a group of hand-labeled
5For intuition, t-SNE tends to yield a visualization where locally clustered points are close in

distance in the full, 100-dimensional topic space; points that are farther away from each other
tend to be far, but could also be close.

85

set plays, a “weave play”. We animate two examples of the weave play in this animated

figure: https://youtu.be/KRDsTLMm7FY. We hand-label 40 weave plays in the 2014-

2015 season, and visualize them in the t-SNE Warriors map (Figure 3.15a, in red). We

can visually verify in Figure 3.15 that the possession sketch preserves this notion of

similarity—weave plays tend to cluster around other weave plays.

We can further measure this clustering by comparing two distributions of possession

sketch distances: (i) the distribution of distances between two weave plays, and (ii)

the distribution of distances between one weave, and one non-weave play. Figure 3.15b

illustrates these two distributions. The average distance between the known weave plays

is much smaller than the average distance between weave and non-weave plays. In fact,

the nearest neighbor of each weave play is most often itself a weave play, highlighting

the potential of our technique to quickly find a collection of plays similar to a chosen

play.

Between Team Nearest Neighbors Our method also identifies similar possession

structure between different teams. To highlight this we select a play at random, and

search through the entire database of 190,000 possession sketches to find the most similar

play. The resulting two possessions are compared in Figure 3.16. Chicago is on offense

in our first possession, and Brooklyn is on offense in the nearest-neighbor possession.

Examining these two possessions, we see a few salient similarities that shed light on

what patterns our method is detecting: (i) the point guard brings the ball up the left

side of the floor in each possession; (ii) a player sets a high screen on the left side, and

the point guard curls around the screen toward the middle with the ball; (iii) through

both possessions a player camps out in the weak-side corner three; (iv) the point guard

attacks through the middle of the paint. The possession sketch contains this information

— and we can further inspect the particular basketball topics for this possession to see

how this information is summarized in our model.

86

https://youtu.be/KRDsTLMm7FY

(a) frame 1: (left) Aaron Brooks brings the
ball along the left; (right) Deron Williams

brings the ball along the left

(b) frame 2: (left) Taj Gibson sets a high
screen in the left frame; (right) Deron
Williams waits for a screen in the right

frame.

(c) frame 3: (left) Aaron Brooks curls
around the screen and drives; (right) Brook
Lopez sets a high screen for Deron Williams

(d) frame 4: (left) Aaron Brooks attacks
the basket; (right) Deron Williams curls

around the screen and drives

Figure 3.16: An example of two very similar possessions: each sub-figure displays key frames from
two possessions — one where Chicago has the ball and one where Brooklyn has the ball. These
frames highlight similar features between the two possessions. For a clearer picture of “possession
similarity”, please navigate to https://youtu.be/0Jlj6xekxeI to see these plays animated.

Corner Threes In this section we explore possession sketch similarity in the context

of a particular type of shot—a corner three. We first sub-select the 2014-2015 data

to possessions that include corner three-point shots for three teams: the Warriors, the

Rockets, and the Spurs. We then apply t-SNE to visualize the sketch for each possession

in Figure 3.17a. We immediately notice that the possession sketches that lead to corner

threes overlap significantly between teams, however there are some regions of the space

in which the Rockets are more likely to inhabit than the Spurs.

We examine the structure of the possession-map clusters by zooming in on two groups

87

https://youtu.be/0Jlj6xekxeI

GS

Hou

SA

(a) Corner 3s

(b) Left cluster example: key frames (c) Right cluster example: key frames

Figure 3.17: Corner Three. The left pane cluster examples are similar in that they include
a drive to the basket, and a pass to a teammate camping out in the corner. The right pane
cluster examples are similar in that they include a baseline cut toward the corner in which the
shot is taken. Please see the animated figures at https://youtu.be/hUuPkE06rX4 (left), and
https://youtu.be/mMcWuqgrj1w (right).

on the opposite side of the map. Figure 3.17 compares two possessions in the cluster in

the left-pane to two possessions in the cluster in the right pane. An immediate difference

88

https://youtu.be/hUuPkE06rX4
https://youtu.be/mMcWuqgrj1w

between the two clusters is that the right pane includes a baseline cut toward the corner

in which the shot is taken, whereas the left pane includes a drive into the middle, and

a pass out to a player camping out in the corner.6 Indeed, these are two very different

ways of ending up with a corner three point attempt, and our method identifies this

and allows us to efficiently explore this structural variation.

3.3.6 Discussion

Related work This paper develops a framework for exploring interpretable patterns

in player-tracking data—applications of this framework can enhance player evaluation

and media consumption. A similar system for measuring play similarity was developed

in [Sha et al., 2016], based on point-wise similarities in trajectories. Ours is a more global

approach—we fit a probabilistic model to an entire season’s worth of player tracking

data, directly modeling player interactions. The result is a more interpretable, succinct,

and scalable decomposition of possessions.

In [Cervone et al., 2014a,b], the authors propose a stochastic process model to mea-

sure the moment-by-moment expected possession value (EPV) of a basketball sequence.

They handcraft a set of basketball states that are used in the model. Our approach

is more of a data-driven decomposition of basketball states that we use for exploration

(but could be used within an EPV model). Other examples that develop data-driven

representations from player-tracking data can be found in [Miller et al., 2014, Franks

et al., 2015b,a].

Future work and conclusion There are multiple avenues for future work. Firstly,

we can improve the action template model by also inferring the number of actions using

more sophisticated methods, such as Bayesian nonparametrics. The action templates

should also have more temporal structure—auto-correlation and dynamic variance. Fur-
6Please refer to animated figures https://youtu.be/hUuPkE06rX4 (left pane) and https:

//youtu.be/mMcWuqgrj1w (right pane).

89

https://youtu.be/hUuPkE06rX4
https://youtu.be/mMcWuqgrj1w
https://youtu.be/mMcWuqgrj1w

ther, our possession sketch ignores much of the temporal information in each possession

(a trade-off for statistical and computational efficiency). A future project could further

describe the time-varying nature of possession strategies, which, for example, would

allow us to identify which possessions may have started out in a “weave” set, but broke

down into a different sequence.

Insight derived from player-tracking data has been promised more than delivered.

We reduce this gap by devising a method that will have a profound impact on the

use of player-tracking data for analysis—from summarizing situational statistics (e.g.

how often did the “weave” play succeed?), to searching for similar plays (e.g. for post-

game analysis), to discovering and quantifying previously unknown habits of interaction

between players (e.g. for team-specific scouting).

3.4 Conclusion and Discussion

Despite the differences in application areas and motivation, the utility and challenges

of probabilistic models are universal. Having motivated on of expressive probabilis-

tic models, the computational problem of statistical inference becomes the practical

limiting factor. It is far easier to imagine a complicated probabilistic model than it

is to obtain accurate and computationally tractable estimates of the model structure

given observations. In the next few chapters, we develop new methods to address some

common shortcomings of approximate Bayesian inference methods.

90

4
Improving Posterior Approximations:

Variational Boosting

Variational inference algorithms typically fix a family of probability distributions

as the variational approximating family a priori. A particular family is often chosen

because it is tractable—we can simulate samples from this distribution and evaluate its

density point-wise.

In general, the true posterior distribution is not contained within the variational ap-

proximating family. This mismatch will lead to a gap between the optimal variational

approximation and the true posterior distribution. Consequently, this approximation

gap will induce bias in our estimates of posterior expectations of the form in Equa-

tion 2.65.

91

Figure 4.1: Example of under-estimated posterior variances induced by an insufficiently expres-
sive variational approximation, a Gaussian mean-field family. Depicted are four bivariate marginals
from the same 37-dimensional posterior distribution. The grey points depict samples simulated by
MCMC (and can be thought of as a surrogate for the true posterior). The green contours depict
the optimal mean field approximation to the posterior. We can see that the marginal variances
are under-estimated in each case because the approximating distribution is unable to capture the
correlations present in the posterior. This under-estimation of variance is typical of mean-field ap-
proximations.

Perhaps the most common approximating family is a diagonal multivariate normal,

or the Gaussian mean-field family. This family imposes strict limitations, including

the inability to capture posterior correlations and Gaussianity itself. When this ap-

proximating family is used, a common type of bias to see is the (sometimes severe)

under-estimation of the marginal posterior variance of each variable. In Figure 4.1

we depict a common example of the biased estimates of posterior variance induced by

the mean field assumption. When variables are highly correlated in the posterior, the

optimal Gaussian mean-field approximation tends to cover only a small region of the

mode (a consequence of the KL-divergence criterion typically used), and reports a much

smaller variance for each variable than is present in the true posterior.

In this chapter, we develop a general method for iteratively building more expres-

sive posterior approximations that enables a tradeoff between approximation accuracy

and computational cost—similar to the tradeoff that implicitly exists for Markov chain

Monte Carlo methods as more correlated samples are simulated. The material in this

chapter was published in Miller et al. [2017c].

92

4.1 Introduction

Variational inference (VI) is a family of methods to approximate an intractable target

distribution (typically known only up to a constant) with a tractable surrogate dis-

tribution [Blei et al., 2017a, Jordan et al., 1999, Wainwright and Jordan, 2008]. VI

procedures typically minimize the Kullback-Leibler (KL) divergence between the ap-

proximation and target distributions by maximizing a tractable lower bound on the

marginal likelihood. The approximating family is often fixed, and typically excludes

the neighborhood surrounding the target distribution, which prevents the approxima-

tion from becoming arbitrarily close to the true posterior. In the context of Bayesian

inference, this mismatch between the variational family and the true posterior often

manifests as underestimating the posterior variances of the model parameters and the

inability to capture posterior correlations [Wainwright and Jordan, 2008].

An alternative approach to posterior inference uses Markov chain Monte Carlo (MCMC)

methods that approximate a target distribution with samples drawn from a Markov

chain constructed to admit the target distribution as the stationary distribution. MCMC

enables a trade-off between computation and accuracy: drawing more samples makes

the approximation closer to the target distribution. However, MCMC algorithms typ-

ically must be run iteratively and it can be difficult to assess convergence to the true

target. Furthermore, correctly specifying MCMC moves can be more algorithmically

restrictive than optimization-based approaches.

To alleviate the mismatch between tractable variational approximations and compli-

cated posterior distributions, we propose a variational inference method that iteratively

allows the approximating family of distributions to become more complex. Under cer-

tain conditions, the proposed approximations are eventually expressive enough to rep-

resent the true target arbitrarily well (though we do not prove our algorithm attains

such a universal approximation here). Thus, the practitioner can trade time fitting a

posterior approximation for increased accuracy of posterior estimates. Our algorithm

93

grows the complexity of the approximating class in two ways: 1) incorporating rich co-

variance structure, and 2) sequentially adding new components to the approximating

distribution. Our method builds on black-box variational inference methods using the

re-parameterization trick by adapting it to be used with mixture distributions. This

allows our method to be applied to a variety of target distributions including those

arising from non-conjugate model specifications [Kingma and Welling, 2013, Ranganath

et al., 2014, Salimans et al., 2013]. We demonstrate empirically that our algorithm im-

proves posterior estimates over other variational methods for several practical Bayesian

models.

4.2 Variational Inference

Given a target distribution with density1 π(x) for a continuous random variable x ∈ X ⊆ RD,

variational inference approximates π(x) with a tractable distribution, q(x;λ), from

which we can efficiently draw samples and form sample-based estimates of functions

of x. Variational methods minimize the KL-divergence, KL(q||π), between q(·;λ) and

the true π as a function of variational parameter λ [Bishop, 2006]. Although direct

minimization of KL(q||π) is often intractable, we can derive a tractable objective based

on properties of the KL-divergence. This objective is known as the evidence lower bound

(ELBO):

L(λ) = Eqλ [lnπ(x)− ln q(x;λ)] + ln C

= ln C −KL(qλ||π) ≤ ln C = ln

∫
π̃(x)dx

which, due to the positivity of KL(q||π), is a lower bound on C = log π(x), i.e., the

marginal likelihood.

Variational methods typically fix a family of distributions Q = {q(·;λ) : λ ∈ Λ} pa-
1We assume π(x) is known up to a constant, π̃(x) = Cπ(x).

94

rameterized by λ, and maximize the ELBO with respect to λ ∈ Λ. Often there exists

some (possibly non-unique) λ∗ ∈ Λ for which KL(q||π) is minimized. However, when the

family Q does not include π then KL(qλ∗ ||π) > 0 which will result in biased estimates

of functions f(x), Ex∼qλ∗ [f(x)] ̸= Ex∼π[f(x)]. An example of this bias, in the form of

underestimated marginal variances, is depicted in Figure 4.1.

The primary alternative to variational methods for approximate inference is Markov

chain Monte Carlo (MCMC), which constructs a Markov chain such that the target

distribution remains invariant. Expectations with respect to the target distribution can

be calculated as an average with respect to these correlated samples. MCMC typically

enjoys nice asymptotic properties; as the number of samples grows, MCMC samplers

represent the true target distribution with increasing fidelity. However, rules for con-

structing correct Markov steps are restrictive. With a few exceptions, most MCMC

algorithms require evaluating a log-likelihood that touches all data at each step in the

chain [Maclaurin and Adams, 2014, Welling and Teh, 2011]. This becomes problematic

during statistical analyses of large amounts of data — MCMC is often considered unus-

able because of this computational bottleneck. Notably, variational methods can avoid

this bottleneck by sub-sampling the data [Hoffman et al., 2013], as unbiased estimates

of the log-likelihood can often be straight-forwardly used with optimization methods. As

variational methods recast inference as optimization, data sub-sampling can often make

already efficient approximation algorithms even more efficient.

In the next section, we propose an algorithm that iteratively grows the approximating

class Q and reframes the VI procedure as a series of optimization problems, resulting in

a practical inference method that can both represent arbitrarily complex distributions

and scale to large data sets.

95

4.3 Variational Boosting

We define our class of approximating distributions to be mixtures of C simpler compo-

nent distributions:

q(C)(x;λ, ρ) =
C∑
c=1

ρcqc(x;λc) , s.t. ρc ≥ 0,
∑
c

ρc = 1,

where we denote the full mixture as q(C), mixing proportions ρ = (ρ1, . . . , ρC), and

component distributions qc(·;λc) parameterized by λ = (λ1, . . . , λC). The component

qc(·;λc) can be any distribution over X ⊆ RD from which we can efficiently draw samples

using a continuous mapping parameterized by λc (e.g., multivariate normal [Jaakkola

and Jordan, 1998], or a composition of invertible maps [Rezende and Mohamed, 2015]).

When posterior expectations and variances are of interest, mixture distributions pro-

vide tractable summaries. Expectations are easily expressed in terms of component

expectations:

Eq(C) [f(x)] =

∫
q(C)(x)f(x)dx =

∑
c

ρcEqc [f(x)].

In the case of multivariate normal components, the mean and covariance of a mixture

are easy to compute, as are marginal distributions along any set of dimensions.

Variational boosting (vboost) begins with a single mixture component, q(1)(x;λ) =

q1(x;λ1) with C = 1. We fix ρ1 = 1 and use existing black-box variational inference

methods to fit the first component parameter, λ1. At the next iteration C = 2, we fix

λ1 and introduce a new component into the mixture, q2(x;λ2). We define a new ELBO

objective as a function of new component parameters, λ2, and a new mixture weight, ρ2.

We then optimize this objective with respect to λ2 and ρ2 until convergence. At each

subsequent round, c, we introduce new component parameters and a mixing weight,

(λc, ρc), which are then optimized according to a new ELBO objective. The name

variational boosting is inspired by methods that iteratively construct strong learners

96

from ensembles of weak learners. We apply vboost to target distributions via black-

box variational inference with the re-parameterization trick to fit each component and

mixture weights [Kingma and Welling, 2013, Ranganath et al., 2014, Salimans et al.,

2013]. However, using mixtures as the variational approximation complicates the use of

the re-parameterization trick.

4.3.1 The re-parameterization trick and mixtures

The re-parameterization trick is used to compute an unbiased estimate of the gradient of

an objective that is expressed as an intractable expectation with respect to a continuous-

valued random variable. This situation arises in variational inference when the ELBO

cannot be evaluated analytically. We form an unbiased estimate as:

L(λ) = Eq [lnπ(x)− ln q(x;λ)] (4.1)

≈ 1

L

L∑
ℓ=1

[
lnπ(x(ℓ))− ln q(x(ℓ);λ)

]
(4.2)

where x(ℓ) ∼ q(x;λ). To obtain a Monte Carlo estimate of the gradient of L(λ) using

the re-parameterization trick, we first separate the randomness needed to generate x(ℓ)

from the parameters λ, by defining a deterministic map x(ℓ) ≜ fq(ϵ;λ) such that ϵ ∼ p(ϵ)

implies x(ℓ) ∼ q(x;λ). Note that p(ϵ) does not depend on λ. We then differentiate

Eq. (4.2) with respect to λ through the map fq to obtain an estimate of ∇λL(λ).

When q(·;λ) is a mixture, applying the re-parameterization trick is not straightfor-

ward. The typical sampling procedure for a mixture model includes a discrete random

variable that indicates a mixture component, which complicates differentiation. We

circumvent this by re-writing the variational objective as a weighted combination of

97

expectations with respect to individual mixture components:

L(λ, ρ) =
∫ (C∑

c=1

ρcqc(x;λc)

)
[lnπ(x)− ln q(x;λ)] dx

=
C∑
c=1

ρc

∫
qc(x;λc) [lnπ(x)− ln q(x;λ)] dx

=

C∑
c=1

ρcEqc [lnπ(x)− ln q(x;λ)]

which is a weighted sum of component-specific ELBOs. If the qc are continuous and

there exists some function fc(ϵ;λ) such that x = fc(ϵ;λ) and x ∼ qc(·;λ) when ϵ ∼ p(ϵ),

then we can apply the re-parameterization trick to each component to obtain gradients

of the ELBO:

∇λcL(λ, ρ) = ∇λc

C∑
c=1

ρcEx∼q(x;λ) [lnπ(x)− ln q(x;λ)]

=
C∑
c=1

ρcEϵ∼p(ϵ)
[
∇λc lnπ(fc(ϵ;λc))−∇λc ln q(fc(ϵ;λc);λ)

]
.

This reformulation of ∇λcL(λ, ρ) enables the use of the re-parameterization trick in a

component-by-component manner. The overall gradient is then a weighted combination

of these component-specific gradients.

4.3.2 Incorporating New Components

In this section we present practical details of vboost. We first describe how to fit a single

component and then the process for incorporating a new component into an existing

mixture distribution.

98

existing approx
target

existing approx
initial new comp
target

existing approx
optimized new comp
target

Figure 4.2: One-dimensional illustration of the vboost procedure. Top: Initial single-component
approximation (solid blue). Middle: A new component (dotted red) is initialized. Bottom: New
component parameters and mixing weights are optimized using Monte Carlo gradients of the
ELBO. Note that the mass of the existing components can rise and fall, but not shift in space.

The first component vboostfirst fits an approximation to π(x) consisting of a

single component, q1. We do this by maximizing the first ELBO objective

L(1)(λ1) = Eq1 [lnπ(x)− ln q1(x;λ1)] (4.3)

λ∗1 = argmax
λ1

L(1)(λ1) . (4.4)

Depending on the forms of π and q1, optimizing L(1) can be accomplished by various

methods—an obvious choice being black-box VI with the re-parameterization trick. Af-

ter convergence we fix λ1 to be λ∗1.

99

Component C + 1 After iteration C, our current approximation to π(x) is a mixture

distribution with C components:

q(C)(x;λ, ρ) =
C∑
c=1

ρcqc(x;λc). (4.5)

Adding a component to Eq. (4.5) introduces a new component parameter, λC+1, and

a new mixing weight, ρC+1. In this section, the mixing parameter ρC+1 ∈ [0, 1] mixes

between the new component, qC+1(·;λC+1) and the existing approximation, q(C). The

new approximate distribution is

q(C+1)(x;λ, ρ)

= (1− ρC+1)q
(C)(x) + ρC+1qC+1(x;λC+1) .

The new ELBO, as a function of ρC+1 and λC+1, is:

L(C+1)(ρC+1, λC+1)

= Ex∼q(C+1)

[
lnπ(x)− ln q(C+1)(x;λC+1, ρC+1)

]
= (1− ρC+1)Eq(C)

[
lnπ(x)− ln q(C+1)(x;λC+1, ρC+1)

]
+ ρC+1EqC+1

[
lnπ(x)− ln q(C+1)(x;λC+1, ρC+1)

]
.

Crucially, we have separated out two expectations: one with respect to the existing

approximation, q(C) (which is fixed), and the other with respect to the new component

distribution, qC+1. Because we have fixed q(C), we only need to optimize the new

component parameters, λC+1 and ρC+1, allowing us to use the re-parameterization

trick to obtain gradients of L(C+1). Note that evaluating the gradient requires sampling

from the existing components which may result in larger variance than typical black-box

variational methods. To mitigate the extra variance we use many samples to estimate

100

the gradient and leave variance reduction to future work.

Figure 4.2 illustrates the algorithm on a simple one-dimensional example — the ini-

tialization of a new component and the resulting mixture after optimizing the second

objective, L(2)(ρ2, λ2). Figure 4.3 depicts the result of vboost on a two-dimensional,

multi-modal target distribution. In both cases, the component distributions are Gaus-

sians with diagonal covariance.

4.3.3 Structured Multivariate Normal Components

Though our method can use any component distribution that can be sampled using

a continuous mapping, a sensible choice of component distribution is a multivariate

normal

q(x;λ) = N (x;µλ,Σλ)

= |2πΣλ|−1/2 exp
(
−1

2(x− µλ)
⊺Σ−1λ (x− µλ)

)
where the variational parameter λ is transformed into a mean vector µλ and covariance

matrix Σλ.

Specifying the structure of the covariance matrix is a choice that largely depends on

the dimensionality of X ⊆ RD and the correlation structure of the target distribution.

A common choice of covariance is a diagonal matrix, Σλ = diag(σ2
1, . . . , σ

2
D), which im-

plies that x is independent across dimensions. When the approximation only consists of

one component, this structure is commonly referred to as the mean field family. While

computationally efficient, mean field approximations cannot model posterior correla-

tions, which often leads to underestimation of marginal variances. Additionally, when

diagonal covariances are used as the component distributions in Eq. (4.5) the resulting

mixture may require a large number of components to represent the strong correla-

tions (see Fig. 4.3). Furthermore, independence constraints can actually introduce local

101

optima in the variational objective [Wainwright and Jordan, 2008].

On the other end of the spectrum, we can parameterize the entire covariance matrix

using the Cholesky decomposition, L, such that LL⊺ = Σ. This allows Σ to be any

positive semi-definite matrix, enabling q to have the full flexibility of a D-dimensional

multivariate normal distribution. However, this introduces D(D + 1)/2 parameters,

which can be computationally cumbersome when D is even moderately large. Further-

more, only a few pairs of variables may exhibit posterior correlations, particularly in

multi-level models or neural networks where different parameter types may be nearly

independent in the posterior.

As such, we would like to incorporate some capacity to capture correlations between

dimensions of x without overparameterizing the approximation. The next subsection

discusses a covariance specification that provides this tradeoff, while remaining compu-

tationally tractable.

Low-rank plus diagonal covariance Black-box variational inference methods

with the re-parameterization trick require sampling from the variational distribution

and efficiently computing (or approximating) the entropy of the variational distribution.

For multivariate normal distributions, the entropy is a function of the determinant of

the covariance matrix, Σ, while computing the log likelihood requires computing Σ−1.

When the dimensionality of the target, D, is large, computing determinants and in-

verses will have O(D3) time complexity and therefore may be prohibitively expensive

to compute at every iteration.

However, it may be unnecessary to represent all D(D − 1)/2 possible correlations in

the target distribution, particularly if certain dimensions are close to independent. One

way to increase the capacity of q(x;λ) is to model the covariance as a low-rank plus

102

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 4.3: Sequence of increasingly complex approximate posteriors, with C = 1, 2, 3, 4 isotropic
Gaussian components. The background (grey/black) contours depict the target distribution, and
the foreground (red) contours depict the approximations.

diagonal (LR+D) matrix

Σ = FF ⊺ + diag(exp(v)) (4.6)

where F ∈ RD×r is a matrix of off diagonal factors, and v ∈ RD is the log-diagonal

component. This is effectively approximating the target via a factor analysis model.

The choice of the rank r presents a tradeoff: with a larger rank, the variational

approximation can be more flexible; with a lower rank, the computations necessary

for fitting the variational approximation are more efficient. As a concrete example, in

Section 5.4 we present a D = 37 dimensional posterior resulting from a non-conjugate

hierarchical model, and we show that a “rank r = 2 plus diagonal” covariance does an

103

excellent job capturing all D(D − 1)/2 = 780 pairwise correlations and D marginal vari-

ances. Incorporating more components using the vboost framework further improves

the approximation of the distribution.

To use the re-parameterization trick with this low rank covariance, we can simulate

from q in two steps

z(lo) ∼ N (0, Ir) z(hi) ∼ N (0, ID)

x = Fz(lo) + µ+ I(v/2)z(hi)

where z(lo) generates the randomness due to the low-rank structure, and z(hi) gener-

ates the randomness due to the diagonal structure. We define the function I(a) =

diag(exp(a)) for notational simplicity. This sampling procedure is differentiable, en-

abling Monte Carlo estimation of the gradient with respect to F and v suitable for

stochastic optimization.

In order to use LR+D covariance structure within vboost, we will need to efficiently

compute the determinant and inverse of Σ. The matrix determinant lemma expresses

the determinant of Σ as the product of two determinants

|FF ⊺ + I(v))| = |I(v))||Ir + F ⊺I(−v)F |

= exp

(∑
d

vd

)
|Ir + F ⊺I(−v)F |

where the left term is simply the product of the diagonal component, and the right term

is the determinant of an r × r matrix, computable in O(r3) time [Harville, 1997].

To compute Σ−1, the Woodbury matrix identity states that

(FF ⊺ + I(v))−1

= I(−v)− I(−v)F (Ir + F ⊺I(−v)F)−1F ⊺I(−v)

104

which involves the inversion of a smaller, r × r matrix and can be done in O(r3)

time [Golub and Van Loan, 2013]. Importantly, for r ≪ D the above operations are

efficiently differentiable and amenable for use in the BBVI framework.

Fitting the rank To specify the ELBO objective, we need to choose a rank r for the

component covariance. There are many ways to decide on the rank of the variational

approximation, some more appropriate for certain settings given dimensionality and

computational constraints. For instance, we can greedily incorporate new rank compo-

nents. Alternatively, we can fit a sequence of ranks r = 1, 2, . . . , rmax, and choose the

best result (in terms of KL). In the Bayesian neural network model, we report results for

a fixed schedule of ranks. In the hierarchical Poisson model, we monitor the change in

marginal variances to decide the appropriate rank. See Section 4.A2 of the supplement

for further discussion.

Initializing new component parameters When we add a new component, we

must first initialize the component parameters. We find that the vboost optimization

procedure can be sensitive to initialization, so we devise a cheap importance sampling-

based algorithm to generate a good starting point. This initialization procedure is

detailed in Section 4.A1 and Algorithm 1 in this chapter’s Appendix.

4.3.4 Related Work

Mixtures of mean field approximations were introduced in Jaakkola and Jordan [1998]

where mean field-like updates were developed using a bound on the entropy term and

model-specific parameter updates. Nonparametric variational inference is a black-box

variational inference algorithm that approximates a target distribution with a mixture

of equally-weighted isotropic normals [Gershman et al., 2012]. This is accomplished

by using a lower-bound on the entropy term in the ELBO to make the optimization

procedure tractable. Similarly, Salimans et al. [2013] present a method for fitting mix-

105

(a) (b)

2.0 1.5 1.0 0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
logit_phi marginal

VBoost (C = 26)
MFVI
NF

(c)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2
log_kappa marginal

VBoost (C = 26)
MFVI
NF

(d)

Figure 4.4: baseball marginals. Comparison of bivariate (top) and univariate (bottom)
marginals for the baseball model. Histograms/scatterplots depict 20,000 NUTS samples. The
top left depicts (lnκ, θ0) marginal samples and a mean field approximation (MFVI). The Top
Right shows the same bivariate marginal, and the vboost approximation with isotropic compo-
nents. The bottom panels compare NUTS, MFVI, and vboost on univariate marginals (ϕ and
lnκ).

ture distributions as an approximation. However, their method is restricted to mixture

component distributions within the exponential family, and a joint optimization pro-

cedure. Mixture distributions are a type of hierarchical variational model [Ranganath

et al., 2016], where the component identity can be thought of as latent variables in

the variational distribution. While in Ranganath et al. [2016], the authors optimize a

lower bound on the ELBO to fit general hierarchical variational models, our approach

integrates out the discrete latent variables, allowing us to directly optimize the ELBO.

Sequential maximum-likelihood estimation of mixture models has been studied pre-

106

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08 0.10

VBoost

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

M
C

M
C

vboost, 2 comps

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08 0.10

VBoost

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

M
C

M
C

vboost, 6 comps

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08 0.10

VBoost

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

M
C

M
C

vboost, 10 comps

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08 0.10

VBoost

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

M
C

M
C

vboost, 14 comps

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08 0.10

VBoost

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

M
C

M
C

vboost, 18 comps

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08 0.10

VBoost

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

M
C

M
C

vboost, 22 comps

VBoost

Figure 4.5: Comparison of posterior covariances for the D = 20-dimensional baseball model.
Each plot compares covariance estimates of vboost (x-axis) with increasing numbers of compo-
nents and MCMC samples (y-axis). As more components are added, the vboost estimates more
closely match the MCMC covariance estimates.

viously where the error between the sequentially learned model and the optimal model

where all components and weights are jointly learned is bounded by O(1/C) where C

is the number of mixture components [Li and Barron, 1999, Li, 1999, Rakhlin et al.,

2006]. A similar bound was proven in Zhang [2003] using arguments from convex anal-

ysis. More recently, sequentially constructing a mixture of deep generative models has

been shown to achieve the same O(1/C) error bound when trained using an adversarial

approach [Tolstikhin et al., 2016]. Though these ideas show promise for deriving error

bounds for variational boosting, there are difficulties in applying them.

In concurrent work, Guo et al. [2016] developed a boosting procedure to construct flex-

ible approximations to posterior distributions. In particular, they use gradient-boosting

to determine candidate component distributions and then optimize the mixture weight

for the new component [Friedman, 2000]. However, Guo et al. [2016] assume that the

gradient-boosting procedure is able to find the optimal new component so that the ar-

guments in Zhang [2003] apply, which is not true in general. We note that if we make

the similar assumption that at each step of vboost the component parameters λ∗C are

107

found exactly, then the optimization of ρC is convex and can be optimized exactly. We

can then appeal to the same arguments in Zhang [2003] and obtain an O(1/C) error

bound. The work in Guo et al. [2016] provides important first steps in the theoretical

development of boosting methods applied to variational inference, however, we note

that developing a comprehensive theory that deals with the difficulties of multimodal-

ity and the non-joint-convexity of KL divergence in λ and ρ is still needed. Recently,

Moore [2016] began to address issues of multimodality from model symmetry in varia-

tional inference. However, the question remains whether the entire distribution is being

explored.

Seeger [2010] explored the use of low-rank covariance Gaussians as variational ap-

proximations using a PCA-like algorithm. Additionally, concurrent work has proposed

the use a LR+D matrices as the covariances of Gaussian posterior approximations [Ong

et al., 2017]. We have also found that though the LR+D covariance approximation

is useful for capturing posterior correlations, combining the idea with boosting new

components to capture non-Gaussian posteriors yields superior posterior inferences.

4.4 Experiments and Analysis

To supplement the previous synthetic examples, we use vboost to approximate various

challenging posterior distributions arising from real statistical models of interest.2

Binomial Regression We first apply vboost to a non-conjugate hierarchical bino-

mial regression model.3 The model describes the binomial rates of success (batting

averages) of baseball players using a hierarchical model [Efron and Morris, 1975], pa-
2Code available at https://github.com/andymiller/vboost.
3Model and data from the mc-stan case studies

108

https://github.com/andymiller/vboost
http://mc-stan.org/documentation/case-studies/pool-binary-trials.html

(a) Rank 0 (MFVI)

(b) Rank 1

(c) Rank 2

(d) Rank 3, 2-component

(e) Rank 3, 4-component

(f) Rank 3, 8-component

Figure 4.6: Left: A sampling of bivariate marginals for a single Gaussian component approxima-
tion for the D = 37-dimensional frisk model. Each row incorporates more covariance structure.
Though there are a total of 666 covariances to be approximated, only a few directions in the D-
dimensional parameter space exhibit non-trivial correlations. Right: The same marginals with a
mixture approximation using rank-3 Gaussians at various stages of the vboost algorithm. Introduc-
ing new mixture components allows the posterior to take a non-Gaussian shape, most exhibited in
the third column.

rameterizing the “skill” of each player:

θj ∼ Beta(ϕ · κ, (1− ϕ) · κ) player j prior

yj ∼ Binomial(Kj , θj) player j hits ,

where yj is the number of successes (hits) player j has attempted in Kj attempts (at

bats). Each player has a latent success rate θj , which is governed by two global vari-

ables κ and ϕ. We specify the priors ϕ ∼ Unif(0, 1) and κ ∼ Pareto(1, 1.5). There are

18 players in this example, creating a posterior distribution with D = 20 parameters.

For each round of vboost, we estimate ∇λ,ρL(C+1) using 400 samples each for qC+1

and qC . We use 1,000 iterations of adam with default parameters to update ρC+1 and

λC+1 [Kingma and Ba, 2014].

109

dataset pbp rank 5 vboost 2 vboost 6 vboost 10
wine -0.990 (± 0.08) -0.972 (± 0.05) -0.971 (± 0.05) -0.978 (± 0.06) -0.994 (± 0.06)
boston -2.902 (± 0.64) -2.670 (± 0.16) -2.651 (± 0.16) -2.599 (± 0.16) -2.628 (± 0.16)
concrete -3.162 (± 0.15) -3.247 (± 0.06) -3.228 (± 0.06) -3.169 (± 0.07) -3.134 (± 0.08)
power-plant -2.798 (± 0.04) -2.814 (± 0.03) -2.811 (± 0.03) -2.800 (± 0.03) -2.793 (± 0.03)
yacht -0.990 (± 0.08) -0.972 (± 0.05) -0.971 (± 0.05) -0.978 (± 0.06) -0.994 (± 0.06)
energy-eff. -1.971 (± 0.11) -2.452 (± 0.12) -2.422 (± 0.11) -2.345 (± 0.11) -2.299 (± 0.12)

Table 4.1: Test log probability for PBP and vboost with varying number of components (fixed
rank of 5). Each entry shows the average predictive performance of the model and the standard
deviation across the 20 trials — bold indicates the best average (though not necessarily “statistical
significance”).

In all experiments, we use autograd to obtain gradients with respect to new compo-

nent parameters [Maclaurin et al., 2015b,a]. To highlight the fidelity of our method, we

compare vboost with rank-1 components to mean field VI (MFVI) and the No-U-Turn

Sampler (NUTS) [Hoffman and Gelman, 2014]. The empirical distribution resulting

from 20k NUTS samples is considered the “ground truth” posterior in this example.

Figure 4.4 compares a selection of univariate and bivariate posterior marginals. We see

that vboost is able to closely match the NUTS posteriors, improving upon the MFVI

approximation. Figure 4.5 compares the vboost covariance estimates to the “ground

truth” estimates of MCMC at various stages of the algorithm. We see that vboost is

able to capture pairwise covariances with increasing accuracy as the number of compo-

nents increases.

Multi-level Poisson GLM We use vboost to approximate the posterior of a hier-

archical Poisson GLM, a common non-conjugate Bayesian model. Here, we focus on a

specific model that was formulated to measure the relative rates of stop-and-frisk events

for different ethnicities and in different precincts [Gelman et al., 2007], and has been

used as an illustrative example of multi-level modeling [Gelman and Hill, 2006]. The

model uses a precinct and ethnicity effect to describe the relative rate of stop-and-frisk

110

events

αe ∼ N (0, σ2
α) ethnicity effect

βp ∼ N (0, σ2
β) precinct effect

lnλep = µ+ αe + βp + lnNep log rate

Yep ∼ P(λep) stop-and-frisk events

where Yep are the number of stop-and-frisk events within ethnicity group e and precinct p

over some fixed period of time; Nep is the total number of arrests of ethnicity group e in

precinct p over the same period of time; αe and βp are the ethnicity and precinct effects.

The prior over the mean offset and group variances is given by µ, lnσ2
α, lnσ

2
β ∼ N (0, 102).

As before, we simulate 20k NUTS samples, and compare various variational approxi-

mations. Because of the high posterior correlations present in this example, vboost with

diagonal covariance components is inefficient in its representation of this structure. As

such, this example relies on the low-rank approximation to shape the posterior. Fig-

ure 4.6 shows how posterior accuracy is affected by incorporating covariance structure

(left) and adding more components (right).

Figures 4.A3.1 and 4.A3.2 compare vboost covariances to MCMC samples, showing

that increased posterior rank capacity and number of components yield more accurate

marginal variance and covariance estimates. These results indicate that while incorpo-

rating covariance structure increases the accuracy of estimating marginal variances, the

non-Gaussianity afforded by the use of mixture components allows for a better posterior

approximation translating into more accurate moment estimates.

Bayesian Neural Network We apply our method to a Bayesian neural network

(BNN) regression model, which admits a high-dimensional, non-Gaussian posterior. We

compare predictive performance of vboost to Probabilistic Backpropagation (PBP) [Hernández-

111

Lobato and Adams, 2015]. Mimicking the experimental setup of Hernández-Lobato and

Adams [2015], we use a single 50-unit hidden layer, with ReLU activation functions.

We place a normal prior over each weight in the neural network, governed by the same

variance and an inverse Gamma prior over the observation variance yielding the model:

wi ∼ N (0, 1/α) weights

y|x,w, τ ∼ N (ϕ(x,w), 1/τ) output distribution

where w = {wi} is the set of weights, and ϕ(x,w) is a multi-layer perceptron that maps

input x to output y as a function of parameters w. Both α and τ are given Gamma(1, .1)

priors. We denote the set of parameters as θ ≜ (w,α, τ). We approximate the posterior

p(w,α, τ |D), where D is the training set of {xn, yn}Nn=1 input-output pairs. We then

use the posterior predictive distribution to compute the distribution for a new input x∗

p(y|x∗,D) =
∫

p(y|x∗, θ)p(θ|D)dθ (4.7)

≈ 1

L

L∑
ℓ=1

p(y|x∗, θ(ℓ)) , θ(ℓ) ∼ p(θ|D) (4.8)

and report average predictive log probabilities for held out data, p(Y = y∗|x∗,D). For

a dataset with input dimension P , the posterior has dimension D = (P + 2) · 50 + 3

(between D = 303 and D = 753 for the data sets considered).

We report held-out predictive performance for different approximate posteriors for six

datasets. For each dataset, we perform the following training procedure 20 times. First,

we create a random partition into a 90% training set and 10% testing set. We then

apply vboost, adding rank 5 components. We allow each additional component only

200 iterations. To save time on initialization, we draw 100 samples from the existing

approximation, and initialize the new component with the sample with maximum weight.

For comparison, Probabilistic back-propagation is given 1000 passes over the training

112

data — empirically, sufficient for the algorithm to converge.

Table 4.A3.1 in the supplement presents out-of-sample log probability for single-

component multivariate Gaussian approximations with varying rank structure. Ta-

ble 4.1 presents out-of-sample log probability for additional rank 5 components added

using vboost. We note that though we do not see much improvement as rank structure

is added, we do see predictive improvement as components are added. Our results sug-

gest that incorporating and adapting new mixture components is a recipe for a more

expressive posterior approximation, translating into better predictive results. In fact,

for all datasets we see that incorporating a new component improves test log prob-

ability, and we see further improvement with additional components for most of the

datasets. Furthermore, in five of the datasets we see predictive performance surpass

probabilistic back-propagation as new components are added. This highlights vboost’s

ability to trade computation for improved accuracy. These empirical results suggest

that augmenting a Gaussian approximation to include additional capacity can improve

predictive performance in a BNN while retaining computational tractability.

4.4.1 Comparison to NPVI

We also compare vboost to nonparametric variational inference (NPVI) [Gershman

et al., 2012], a similar mixture based black-box variational method. NPVI derives a

tractable lower bound to the ELBO which is then approximately maximized. NPVI

requires computing the Hessian of the model for the ELBO approximation, so we limit

our comparison to the lower dimensional hierarchical models.

We also note that the NPVI ELBO approximation does not fully integrate the lnπ(x)

term against the variational approximation, q(x;λ) when optimizing the mean parame-

ters of the approximation components. When we applied NPVI to the baseball model,

we discovered an instability in the optimization of these mean parameters (which we

verified by finding that maximum a posteriori optimization diverges). Black box VI,

113

num comps 1 2 5 10 20
VBoost -702.97 -700.92 -699.69 -699.07 -698.88
NPVI -718.47 -717.86 -717.09 -716.36 -715.86

Table 4.2: ELBO values for vboost and NPVI (higher is better). Note that vboost with 1 com-
ponent is MFVI. All ELBO values are computed using a Monte Carlo estimate with L = 100k
samples from the variational distribution. In NPVI, each component is a spherical gaussian with
a single σ2 shared across all dimensions — this limits the capacity of the approximation, requiring
more components. Note, vboost greedily incorporates components, while NPVI is re-run using a
different number of components.

vboost, and MCMC were not susceptible to this pathology. Consequently, we only

compare NPVI to vboost on the frisk model. Because NPVI uses diagonal compo-

nents, we restrict vboost to use purely diagonal components (r = 0). In Table 4.2

we show marginal likelihood lower bounds, comparing NPVI to vboost with a varying

number of components. Even with a single component, the NPVI objective tends to

underperform. The NPVI component variance is spherical, limiting its capacity to rep-

resent posterior correlations. Further, NPVI is approximately optimizing a looser lower

bound to the marginal likelihood. These two factors explain why NPVI fails to match

MFVI and vboost.

4.5 Discussion and Conclusion

We proposed vboost, a practical variational inference method that constructs an in-

creasingly expressive posterior approximation and is applicable to a variety of Bayesian

models. We demonstrated the ability of vboost to learn rich representations of com-

plex, high-dimensional posteriors on a variety of real world statistical models. One

avenue for future work is incorporating flexible component distributions such as compo-

sitions of invertible maps [Rezende and Mohamed, 2015] or auxiliary variable variational

models [Maaløe et al., 2016]. We also plan to study approximation guarantees of the

vboost method and variance reduction techniques for our reparameterization gradient

114

approach. Also, when optimizing parameters of a variational family, recent work has

shown that the natural gradient can be more robust and lead to better optima [Hoffman

et al., 2013, Johnson et al., 2016]. Deriving and applying natural gradient updates for

mixture approximations could make vboost more efficient.

115

Appendix

4.A1 Initializing Components

Introducing a new component requires initialization of component parameters. When

our component distributions are mixtures of Gaussians, we found that the optimization

procedure is sensitive to initialization. This section describes an importance-weighting

scheme for initialization that produces (empirically) good initial values of component

and mixing parameters.

Conceptually, a good initial component is located in a region of the target π(x)

that is underrepresented by the existing approximation q(C). A good initial weight is

close to the proportion of mass in the unexplained region. Following this principle,

we construct this component by first drawing importance-weighted samples from our

existing approximation

x(ℓ) ∼ q(C) , w(ℓ) =
π(x(ℓ))

q(C)(x(ℓ))
for ℓ = 1, . . . , L. (4.9)

The samples with the largest weights w(ℓ) tell us where regions of the target are poorly

represented by our approximation. In fact, as L grows, and if q(C) is “close” enough to

π, we can interpret {x(ℓ), w(ℓ)} as a weighted sample from π. Based on this interpreta-

tion, we can fit a mixture distribution (or some components of a mixture distribution)

to this weighted sample using maximum likelihood, and recover a type of target ap-

proximation. For mixture distributions, an efficient inference procedure is Expectation-

Maximization (EM) Dempster et al. [1977].

116

This approach, however, presents a few complications. First, we must adapt EM

to fit a weighted sample. Second, importance weights can suffer from extremely high

variance — one or two w(ℓ) values may be extremely large compared to all other weights.

This destabilizes our new component parameters and mixing weight, particularly the

variance of the component. Intuitively, if a single weight w(ℓ) is extremely large, this

would correspond to many samples being located in a single location, and maximum

likelihood with EM would want to shrink the variance of the new component to zero

right on that location. To combat this behavior, we use a simple method to break up

the big weights using a resampling and re-weighting step before applying weighted EM.

Empirically, this improves our new component initializations and subsequent ELBO

convergence.

Weighted EM Expectation-maximization is typically used to perform maximum like-

lihood in latent variable models. Mixture distributions are easily represented with la-

tent variables — a sample’s latent variable corresponds to the mixture component that

produced it. EM starts with some initialization of model parameters (e.g.,component

means, variances and mixing weights). The algorithm then iterates between two steps:

1) the E-step, which computes the distribution over the latent variables given the cur-

rent setting of parameters, and 2) the M-step, which maximizes the expected complete

data log-likelihood with respect to the distributions computed in the E-step.

We suppress details of the general treatment of EM, and focus on EM for mixture

models as presented in Bishop [2006]. For mixture distributions, the E-step computes

“responsibilities”, or the probability that a datapoint came from one of the components.

The M-step then computes a weighted maximum likelihood, where the log-likelihood of

a datapoint for a particular component is weighted by the associated “responsibility”.

This weighted maximum likelihood is an easy entry-point for an additional set of weights

— weights associated with each datapoint from the importance-weighting.

More concretely, for a sample of data, x(ℓ), C mixture components, and current

117

mixture component parameters and weights λ = {ρc, λc}Cc=1, the E-step computes the

following quantities

γ(ℓ)c = p(z(ℓ) = c|x(ℓ), λ) (4.10)

∝ p(x(ℓ)|z(ℓ),λc = c)p(z(ℓ) = c) (4.11)

where γ
(ℓ)
c is the “responsibility” of cluster c for datapoint ℓ. The M-step then computes

component parameters by a weighted maximum likelihood

λ∗c = argmax
λ

L∑
ℓ=1

γ(ℓ)c · ln p(x(ℓ)|z(ℓ) = c, λc) . (4.12)

To incorporate importance weights w(ℓ), we only need to slightly change the M-step:

λ∗c = argmax
λ

L∑
ℓ=1

w(ℓ) · γ(ℓ)c · ln p(x(ℓ)|z(ℓ) = c, λc) . (4.13)

Because we are adding a new component, we would like our weighted EM routine

to leave the remaining components unchanged. For instance, we want λ1, . . . , λC−1 to

be fixed, while λC is free to explain the weighted sample. This can be accomplished

in a straightforward manner by simply clamping the first C − 1 parameters during the

M-step.

Resampling importance weights If our current approximation q(C) is sufficiently

different in certain regions of the posterior, then some weights w(ℓ) will end up being

large compared to other weights. For instance, the objective KL(q||p) tends to under-

cover regions of the posterior, allowing π(x) to be much larger than q(c)(x), meaning

the weight associated with x will be large. This will create instability in the weighted

EM approximation — likelihood maximization will want to put a zero-variance compo-

nent on the single highest-weighted sample, which does not accurately reflect the local

118

Algorithm 1 Importance-weighted initialization of new components. This algo-
rithm takes in the target distribution, π(x), the current approximate distribution
q(C)(x), and a number of samples L. This returns an initial value of new compo-
nent parameters, λC+1 and a new mixing weight ρC+1.

1: procedure InitComp(π, q(C), L)
2: x(ℓ) ∼ q(C) for ℓ = 1, . . . , L ▷ sample from existing approx
3: w(ℓ) ← π(x(ℓ))

q(C)(x(ℓ))
▷ set importance weights

4: O ← outlier-weights({w(ℓ)})
5: q(IW) ← make-mixture(O, {w(ℓ), x(ℓ)}, q(C)) ▷ break up big weights
6: x

(ℓ)
r ∼ q(IW) for ℓ = 1, . . . , L ▷ sample from new mixture

7: w
(ℓ)
r ← π(x

(ℓ)
r)

q(IW)(x(ℓ))
▷ re-sampled importance weights

8: λC+1, ρC+1 ← weighted-em({x(ℓ)
r , w

(ℓ)
r }) ▷ fit new component

9: return λC+1, ρC+1

curvature of π(x). To combat this, we construct a slightly more complicated proposal

distribution. Conceptually, we first create this naïve importance-weighted sample, and

then find samples with outlier weights, and break those samples up. We do this by

constructing a new proposal distribution that mixes the existing proposal, q(C), and

component means located at the outlier samples. We define this proposal to be

q(IW)(x) ∝ p0q
(C)(x) +

∑
ℓ∈O

w(ℓ)N (x|x(ℓ),Σ(ℓ)) (4.14)

where ℓ ∈ O denote the set of outlier samples from our original sample, and p0 = 1−
∑

ℓ∈O w(ℓ)

is the mass not placed on outlier samples. The variance of each outlier component, Σ(ℓ)

is set to some heuristic value — we typically use the diagonal of the covariance of q(C)

as a good-enough guess.

We then create a new importance-weighted sample, using q(IW) and π(x) just as we

did before. By placing new components (with some non-zero variance) on the outlier

samples, which are known to be in a region of high target probability and low approx-

imate probability, we assume that there is more local probability around that region

119

that needs to be explored. This allows us to inflate the local variance of the samples in

this region — the region that weighted EM will place a component. Algorithm 1 unites

the components from above sections into our final initialization procedure.

4.A2 Fitting the Rank

To specify the ELBO objective, we need to choose a rank r for the component covariance.

There are a many ways to decide on the rank of the variational approximation, some

more appropriate for certain settings given dimensionality and computation constraints.

For instance, we can greedily incorporate new rank components. Alternatively, we can

fit a sequence of components r = 1, 2, . . . , rmax, and choose the best result (in terms of

KL). In the Bayesian neural network model, we report results for a fixed schedule of

ranks. In the hierarchical Poisson model, we monitor the change in marginal variances

to decide the appropriate rank. In both cases, we require a stopping criterion. For a

single Gaussian, one such criterion is the average change in marginal variances — if the

marginal variation along each dimension remains the same from rank r to r + 1, then

the new covariance component is not incorporating explanatory power, particularly if

marginal variances are of interest. As the KL(q||π) objective tends to underestimate

variances when restricted to a particular model class, we observe that the marginal

variances grow as new covariance rank components are added. When fitting rank r+1,

we can monitor the average absolute change in marginal variance (or standard deviation)

as more covariance structure is incorporated. Figure 4.A2.1 in this supplement depicts

this measurement for the D = 37-dimensional ‘frisk‘ posterior.

To justify sequentially adding ranks to mixture components we consider the KL-

divergence between a rank-r Gaussian approximation to a full covariance Gaussian,

KL(qr||p), where qr(θ) = N (0, I(v) +
∑r

l=1 fkf
⊺
k) and p(θ) = N (0,Σ). For simplicity,

we assume both distributions have zero mean. If the true posterior is non-Gaussian we

will attempt to approximate the best full-rank Gaussian with a low-rank Gaussian thus

120

suffering an unrepresentable KL-divergence between the family of Gaussians and the

true posterior. We also assume that the diagonal component, I(v), and the first r − 1

columns of F = [f1, . . . , fr] are held fixed. Then we have

KL(qr||p)

=
1

2

(
tr

(
Σ−1

(
I(v) +

r∑
l=1

flf
⊺
l

))

− k + log detΣ

− log det

(
I(v) +

r∑
l=1

flf
⊺
l

))

which we differentiate with respect to vr, remove terms that do not depend on vr, and

set to zero, yielding

∂

∂vr
KL(qr||p)

=
1

2

Σ−1vr −(I(v) + r∑
l=1

flf
⊺
l

)−1
vr

 = 0

→ Σ−1vr =

I(v) +
r−1∑
l=1

flf
⊺
l︸ ︷︷ ︸

C

+frf
⊺
r

−1

vr

=

(
C−1 − C−1frf

⊺
rC−1

1 + f⊺
rC−1fr

)
fr.

We can thus determine the optimal fr from the following equation

(
Σ−1 − C−1

)
fr =

(
−C−1frf

⊺
rC−1

1 + ||fr||2C

)
fr (4.15)

where we have defined f⊺
rC−1fr = ||fr||2C . Eq. (4.15) is reminiscent of an eigenvalue

121

1 2 3 4 5 6 7 8 9
rank

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

av
e

%
 d

iff
 in

 m
ar

gi
na

l s
ds

Figure 4.A2.1: Mean percent change in marginal variances for the Poisson GLM. After rank 5,
the average percent change is less than 5%—this estimate is slightly noisy due to the stochastic
optimization procedure.

problem indicating that the optimal solution for fr should maximally explain Σ−1−C−1,

i.e. the parameter space not already explained by C = I(v)+
∑r−1

l=1 flf
⊺
l . This provides

justification for the previously proposed stopping criterion that monitors the increase

in marginal variances since incorporating a new vector into the low-rank approximation

should grow the marginal variances if extra correlations are captured. This is due to

minimizing KL(qr||p) which underestimates the variances when dependencies between

parameters are broken.

4.A3 Experiment Figures

4.A3.1 Frisk Model

Figures 4.A3.1 and 4.A3.2 depict vboost approximations of the ‘frisk‘ model.

4.A3.2 Bayes Neural Network Results

Table 4.A3.1 depict out of sample log probability results for the Bayesian neural network

as ranks vary.

122

alpha_0

rank 0
mcmc

alpha_1

rank 0
mcmc

beta_0

rank 0
mcmc

beta_1

rank 0
mcmc

lnsigma_a_0

rank 0
mcmc

lnsigma_b_0

rank 0
mcmc

(a) Rank 0 (MFVI)

alpha_0

rank 1
mcmc

alpha_1

rank 1
mcmc

beta_0

rank 1
mcmc

beta_1

rank 1
mcmc

lnsigma_a_0

rank 1
mcmc

lnsigma_b_0

rank 1
mcmc

(b) Rank 1
alpha_0

rank 2
mcmc

alpha_1

rank 2
mcmc

beta_0

rank 2
mcmc

beta_1

rank 2
mcmc

lnsigma_a_0

rank 2
mcmc

lnsigma_b_0

rank 2
mcmc

(c) Rank 2

alpha_0

rank 3
mcmc

alpha_1

rank 3
mcmc

beta_0

rank 3
mcmc

beta_1

rank 3
mcmc

lnsigma_a_0

rank 3
mcmc

lnsigma_b_0

rank 3
mcmc

(d) Rank 3

Figure 4.A3.1: Comparison of single Gaussian component marginals by rank for a 37-dimensional
Poisson GLM posterior. The top left plot is a diagonal Gaussian approximation. The next plots
show the how the marginal variances inflate as the covariance is allotted more capacity.

pbp mfvi rank 5 rank 10 rank 15
wine -0.990 (± 0.08) -0.973 (± 0.05) -0.972 (± 0.05) -0.972 (± 0.05) -0.973 (± 0.05)
boston -2.902 (± 0.64) -2.658 (± 0.18) -2.670 (± 0.16) -2.696 (± 0.14) -2.743 (± 0.12)
concrete -3.162 (± 0.15) -3.248 (± 0.07) -3.247 (± 0.06) -3.261 (± 0.06) -3.286 (± 0.05)
power-plant -2.798 (± 0.04) -2.812 (± 0.03) -2.814 (± 0.03) -2.838 (± 0.03) -2.867 (± 0.02)
yacht -0.990 (± 0.08) -0.973 (± 0.05) -0.972 (± 0.05) -0.972 (± 0.05) -0.973 (± 0.05)
energy-efficiency -1.971 (± 0.11) -2.451 (± 0.12) -2.452 (± 0.12) -2.469 (± 0.11) -2.502 (± 0.09)

Table 4.A3.1: Comparison of test log probability for PBP Hernández-Lobato and Adams [2015]
to Variational Inference with various ranks. Each entry shows the average predictive performance
of the model on a specific dataset and the standard deviation across the 20 trials — bold indicates
the best average (though not necessarily statistical significance).

123

0.0 0.1 0.2 0.3 0.4 0.5 0.6
MCMC Std Devs (~20k samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
I S

td
 D

ev
s

1-component

0.0 0.1 0.2 0.3 0.4 0.5 0.6
MCMC Std Devs (~20k samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
I S

td
 D

ev
s

2-component

0.0 0.1 0.2 0.3 0.4 0.5 0.6
MCMC Std Devs (~20k samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
I S

td
 D

ev
s

3-component

0.0 0.1 0.2 0.3 0.4 0.5 0.6
MCMC Std Devs (~20k samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
I S

td
 D

ev
s

4-component

0.0 0.1 0.2 0.3 0.4 0.5 0.6
MCMC Std Devs (~20k samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
I S

td
 D

ev
s

8-component

0.0 0.1 0.2 0.3 0.4 0.5 0.6
MCMC Std Devs (~20k samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
I S

td
 D

ev
s

12-component

(a) Marginal standard deviations

0.010 0.005 0.000 0.005 0.010
MCMC Covs (~20k samples)

0.010

0.005

0.000

0.005

0.010

V
I C

ov
s

1-component

0.010 0.005 0.000 0.005 0.010
MCMC Covs (~20k samples)

0.010

0.005

0.000

0.005

0.010

V
I C

ov
s

2-component

0.010 0.005 0.000 0.005 0.010
MCMC Covs (~20k samples)

0.010

0.005

0.000

0.005

0.010

V
I C

ov
s

3-component

0.010 0.005 0.000 0.005 0.010
MCMC Covs (~20k samples)

0.010

0.005

0.000

0.005

0.010

V
I C

ov
s

4-component

0.010 0.005 0.000 0.005 0.010
MCMC Covs (~20k samples)

0.010

0.005

0.000

0.005

0.010

V
I C

ov
s

8-component

0.010 0.005 0.000 0.005 0.010
MCMC Covs (~20k samples)

0.010

0.005

0.000

0.005

0.010

V
I C

ov
s

12-component

(b) Pairwise covariances

Figure 4.A3.2: A comparison of standard deviations and covariances for the frisk model. The
MCMC-inferred values are along the horizontal axis, with the variational boosting values along the
vertical axis. While the rank 3 plus diagonal covariance structure is able to account for most of the
marginal variances, the largest one is still underestimated. Incorporating more rank 3 components
allows the approximation to account for this variance. Similarly, the non-zero covariance measure-
ments improve as more components are added.

124

5
Reducing Reparameterization

Gradient Variance

Variational inference optimization objectives tend to be expectations—the ob-

jective we use in this thesis is the ELBO defined in 5.1, an expectation with respect to the

variational approximation. The eventual goal of variational inference is to approximate

expectations agains the true posterior distribution. These approximations are typically

computed with samples from a surrogate distribution, the optimal variational approx-

imation. This optimal approximation is the result of optimizing the ELBO, itself an

expectation (albeit a more tractable one). In this way, a variational inference algorithm

approximates a difficult expectation by computing a series of easy expectations—i.e. the

ELBO and its gradient—throughout the optimization procedure.

125

However, for many interesting models, the ELBO itself is an intractable expectation.

To do variational inference in this setting, we can either optimize a surrogate objective

as in Gershman et al. [2012], or we can use a noisy estimate of the ELBO and its

gradient within an optimization setting [Paisley et al., 2012, Ranganath et al., 2014].

Two commonly used estimators are defined in Section 2.7: the score function estimator

(Equation 2.79) and the reparameterization gradient estimator (Equation 2.85). In

this chapter, we focus on improving the efficiency of the reparameterization gradient

estimator.

Ideally our gradient-based optimization algorithms would have access to the true

gradient of the ELBO objective—this would eliminate noise in the optimization path

and result in more efficient optimization. However, when this true gradient is intractable

to compute, a low-variance Monte Carlo estimate can be used; the lower variance the

better. We can always incorporate more independent samples to reduce the variance

of the estimator, but this comes at a computational cost. Can we do better than the

standard Monte Carlo estimator?

In this chapter, we present a method that exploits the structure of both the variational

distribution and the smoothness of the log-posterior density. We show that we can

compute gradient estimates that are orders of magnitude lower-variance at a modest

computational cost. We empirically show that these gradient estimators can lead to

faster, more robust optimization of variational parameters. The material from this

chapter was previously published as Miller et al. [2017a].

5.1 Introduction

Representing massive datasets with flexible probabilistic models has been central to the

success of many statistics and machine learning applications, but the computational

burden of fitting these models is a major hurdle. For optimization-based fitting meth-

ods, a central approach to this problem has been replacing expensive evaluations of

126

the gradient of the objective function with cheap, unbiased, stochastic estimates of the

gradient. For example, stochastic gradient descent using small mini-batches of (con-

ditionally) i.i.d. data to estimate the gradient at each iteration is a popular approach

with massive data sets. Alternatively, some learning methods sample directly from a

generative model or approximating distribution to estimate the gradients of interest, for

example, in learning algorithms for implicit models [Mohamed and Lakshminarayanan,

2016, Tran et al., 2017] and generative adversarial networks [Arjovsky et al., 2017, Good-

fellow et al., 2014].

Approximate Bayesian inference using variational techniques (variational inference,

or VI) has also motivated the development of new stochastic gradient estimators, as

the variational approach reframes the integration problem of inference as an optimiza-

tion problem [Blei et al., 2017a]. VI approaches seek out the distribution from a well-

understood variational family of distributions that best approximates an intractable

posterior distribution. The VI objective function itself is often intractable, but recent

work has shown that it can be optimized with stochastic gradient methods that use

Monte Carlo estimates of the gradient [Paisley et al., 2012, Kingma and Welling, 2013,

Ranganath et al., 2014, Rezende et al., 2014], which we call Monte Carlo variational

inference (MCVI). In MCVI, generating samples from an approximate posterior dis-

tribution is the source of gradient stochasticity. Alternatively, stochastic variational

inference (SVI) [Hoffman et al., 2013] and other stochastic optimization procedures in-

duce stochasticity through data subsampling; MCVI can also be augmented with data

subsampling to accelerate computation for large data sets.

The two commonly used MCVI gradient estimators are the score function gradi-

ent [Paisley et al., 2012, Ranganath et al., 2014] and the reparameterization gradi-

ent [Kingma and Welling, 2013, Rezende et al., 2014, Titsias and Lázaro-Gredilla, 2014,

Glasserman, 2013]. Broadly speaking, score function estimates can be applied to both

discrete and continuous variables, but often have high variance and thus are frequently

127

used in conjunction with variance reduction techniques. On the other hand, the repa-

rameterization gradient often has lower variance, but is restricted to continuous random

variables. See Ruiz et al. [2016] for a unifying perspective on these two estimators. Like

other stochastic gradient methods, the success of MCVI depends on controlling the

variance of the stochastic gradient estimator.

In this work, we present a novel approach to controlling the variance of the reparam-

eterization gradient estimator in MCVI. Existing MCVI methods control this variance

naïvely by averaging several gradient estimates, which becomes expensive for large data

sets and complex models, with error that only diminishes as O(1/
√
N). Our approach

exploits the fact that, in MCVI, the randomness in the gradient estimator is completely

determined by a known Monte Carlo generating process; this allows us to leverage knowl-

edge about this generative procedure to de-noise the gradient estimator. In particular,

we construct a computationally cheap control variate based on an analytical linear ap-

proximation to the gradient estimator. Taking a linear combination of a naïve gradient

estimate with this control variate yields a new estimator for the gradient that remains

unbiased but has lower variance. Applying the idea to Gaussian approximating fami-

lies, we observe a 20-2,000× reduction in variance of the gradient norm under various

conditions, and faster convergence and more stable behavior of optimization traces.

5.2 Background

Variational Inference Recapitulating some of Section 2.7, we consider models of

the form p(z,D) = p(D|z)p(z) for data D with parameters and latent variables z. VI ap-

proximates the posterior distribution p(z|D) with one from a simpler family,Q = {q(z;λ),λ ∈ Λ},

parameterized by variational parameters λ. The task is to find a setting of λ that makes

q(z;λ) close to the posterior p(z|D) in KL divergence. Directly computing the KL diver-

gence requires evaluating the posterior itself; therefore, VI procedures use the evidence

128

lower bound (ELBO) as the optimization objective

L(λ) = Ez∼qλ [ln p(z,D)− ln q(z;λ)] , (5.1)

which, when maximized, minimizes the KL divergence between q(z;λ) and p(z|D). In

special cases, parts of the ELBO can be expressed analytically (e.g. the entropy form

or KL-to-prior form [Hoffman and Johnson, 2016]) — we focus on the general form in

Equation 5.1.

To maximize the ELBO with gradient methods, we need to compute the gradient

of Eq. (5.1), ∂L/∂λ ≜ gλ. The gradient inherits the ELBO’s form as an expectation,

which is in general an intractable quantity to compute. In this work, we focus on repa-

rameterization gradient estimators (RGEs) computed using the reparameterization trick.

The reparameterization trick exploits the structure of the variational data generating

procedure — the mechanism by which z is simulated from qλ(z). To compute the RGE,

we first express the sampling procedure from qλ(z) as a differentiable map applied to

exogenous randomness

ϵ ∼ q0(ϵ) independent of λ (5.2)

z = T (ϵ;λ) differentiable map, (5.3)

where the initial distribution q0 and T are jointly defined such that z ∼ q(z;λ) has the

desired distribution. As a simple concrete example, if we set q(z;λ) to be a diagonal

Gaussian, N (mλ,diag(s2λ)), with λ = [mλ, sλ], mλ ∈ RD, and sλ ∈ RD
+ the mean and

variance. The sampling procedure could then be defined as

ϵ ∼ N (0, ID) , z = T (ϵ;λ) = mλ + sλ ⊙ ϵ, (5.4)

129

0 20 40 60 80 100

wall clock (seconds)

260

240

220

200

180

160
E

LB
O

2sample MC
10sample MC
50sample MC

(a) step size = .01

0 20 40 60 80 100

wall clock (seconds)

300

280

260

240

220

200

180

160

E
LB

O

2sample MC
10sample MC
50sample MC

(b) step size = .1

Figure 5.1: Optimization traces for MCVI applied to a Bayesian neural network with various hy-
perparameter settings. Each trace is running adam [Kingma and Ba, 2014]. The three lines in
each plot correspond to three different numbers of samples, L, used to estimate the gradient at
each step. (Left) small stepsize; (Right) stepsize 10 times larger. Large step sizes allow for quicker
progress, however noisier (i.e., small L) gradients combined with large step sizes result in chaotic
optimization dynamics. The converging traces reach different ELBOs due to the illustrative con-
stant learning rates; in practice, one decreases the step size over time to satisfy the convergence
criteria in Robbins and Monro [1951].

where s⊙ ϵ denotes an element-wise product.1 Given this map, the reparameterization

gradient estimator is simply the gradient of a Monte Carlo ELBO estimate with respect

to λ. For a single sample, this is

ϵ ∼ q0(ϵ) , ĝλ ≜ ∇λ [ln p(T (ϵ;λ),D)− ln q(T (ϵ;λ);λ)]

and similarly the L-sample approximation can be computed by averaging the single-

sample estimator over the individual samples

ĝ
(L)
λ =

1

L

L∑
ℓ=1

ĝλ(ϵ
ℓ). (5.5)

Crucially, the reparameterization gradient is unbiased, E[ĝλ] = ∇λL(λ), guaranteeing

the convergence of stochastic gradient optimization procedures that use it [Robbins and

Monro, 1951].
1We will also use x/y and x2 to denote pointwise division and squaring, respectively.

130

Gradient Variance and Convergence The efficiency of Monte Carlo variational

inference hinges on the magnitude of gradient noise and the step size chosen for the

optimization procedure. When the gradient noise is large, smaller gradient steps must

be taken to avoid unstable dynamics of the iterates. However, a smaller step size

increases the number of iterations that must be performed to reach convergence.

We illustrate this trade-off in Figure 5.1, which shows realizations of an optimization

procedure applied to a Bayesian neural network using reparameterization gradients. The

posterior is over D = 653 parameters that we approximate with a diagonal Gaussian

(see Appendix 5.A3.2). We compare the progress of the adam algorithm using various

numbers of samples [Kingma and Ba, 2014], fixing the learning rate. The noise present

in the single-sample estimator causes extremely slow convergence, whereas the lower

noise 50-sample estimator quickly converges, albeit at 50 times the cost.

The upshot is that with low noise gradients we are able to safely take larger steps, en-

abling faster convergence to a local optimum. A natural question is, how can we reduce

the variance of gradient estimates without introducing too much extra computation?

Our approach is to use information about the variational model, q(·;λ), and carefully

construct a control variate to the gradient.

Control Variates Control variates are random quantities that are used to reduce

the variance of a statistical estimator without introducing any bias by incorporating

additional information into the estimator [Glasserman, 2004]. Given an unbiased esti-

mator ĝ such that E[ĝ] = g (the quantity of interest), our goal is to construct another

unbiased estimator with lower variance. We can do this by defining a control variate g̃

with known expectation m̃ and can write the new estimator as

g(cv) = ĝ −C(g̃ − m̃) . (5.6)

131

where C ∈ RD×D for D-dimensional ĝ. Clearly the new estimator has the same expec-

tation as the original estimator, but has a different variance. We can attain optimal

variance reduction by appropriately setting C. Intuitively, the optimal C is very similar

to a regression coefficient — it is related to the covariance between the control variate

and the original estimator. See Appendix 5.A1 for further details on optimally setting

C.

5.3 Method: Modeling Reparameterization Gradients

In this section we develop our main contribution, a new gradient estimator that can

dramatically reduce reparameterization gradient variance. In MCVI, the reparameter-

ization gradient estimator (RGE) is a Monte Carlo estimator of the true gradient —

the estimator itself is a random variable. This random variable is generated using the

“reparameterization trick” — we first generate some randomness ϵ and then compute

the gradient of the ELBO with respect to λ holding ϵ fixed. This results in a complex

distribution from which we can generate samples, but in general cannot characterize

due to the complexity of the term arising from the gradient of the model term.

However, we do have a lot of information about the sampling procedure — we know

the variational distribution ln q(z;λ), the transformation T , and we can evaluate the

model joint density ln p(z,D) pointwise. Furthermore, with automatic differentiation,

it is often straightforward to obtain gradients and Hessian-vector products of our model

ln p(z,D). We propose a scheme that uses the structure of qλ and curvature of ln p(z,D)

to construct a tractable approximation of the distribution of the RGE.2 This approxi-

mation has a known mean and is correlated with the RGE distribution, allowing us to

use it as a control variate to reduce the RGE variance.

Given a variational family parameterized by λ, we can decompose the ELBO gradient
2We require the model ln p(z,D) to be twice differentiable.

132

into a few terms that reveal its “data generating procedure”

ϵ ∼ q0 , z = T (ϵ;λ) (5.7)

ĝλ ≜ ĝ(z;λ) =
∂ ln p(z,D)

∂z︸ ︷︷ ︸
data term

∂z

∂λ
− ∂ ln qλ(z)

∂z︸ ︷︷ ︸
pathwise score

∂z

∂λ
− ∂ ln qλ(z)

∂λ︸ ︷︷ ︸
parameter score

. (5.8)

Certain terms in Eq. (5.8) have tractable distributions. The Jacobian of T (·;λ), given by

∂z/∂λ, is defined by our choice of q(z;λ). For some transformations T we can exactly

compute the distribution of the Jacobian given the distribution of ϵ. The pathwise and

parameter score terms are gradients of our approximate distribution with respect to λ

(via z or directly). If our approximation is tractable (e.g., a multivariate Gaussian), we

can exactly characterize the distribution for these components.3

However, the data term in Eq. (5.8) involves a potentially complicated function of the

latent variable z (and therefore a complicated function of ϵ), resulting in a difficult-to-

characterize distribution. Our goal is to construct an approximation to the distribution

of ∂ ln p(z,D)/∂z and its interaction with ∂z/∂λ given a fixed distribution over ϵ. If

the approximation yields random variables that are highly correlated with ĝλ, then we

can use it to reduce the variance of that RGE sample.

Linearizing the data term To simplify notation, we write the data term of the

gradient as

f(z′) ≜ ∂ ln p(z,D)
∂z

∣∣∣
z=z′

, (5.9)

3In fact, we know that the expectation of the parameter score term is zero, and removing
that term altogether can sometimes be a source of variance reduction that we do not explore
here [Roeder et al., 2017].

133

where f : RD 7→ RD since z ∈ RD. We then linearize f about some value z0

f̃(z) = f(z0) +

[
∂f

∂z
(z0)

]
(z − z0) = f(z0) +H(z0)(z − z0), (5.10)

where H(z0) is the Hessian of the model, ln p(z,D), with respect to z evaluated at z0,

H(z0) =
∂f

∂z
(z0) =

∂2 ln p(z,D)
∂z2

(z0) (5.11)

Note that even though this uses second-order information about the model, it is a first-

order approximation of the gradient. We also view this as a transformation of the

random ϵ for a fixed λ

f̃λ(ϵ) = f(z0) +H(z0)(T (ϵ,λ)− z0) , (5.12)

which is linear in z = T (ϵ,λ). For some forms of T we can analytically derive the

distribution of the random variable f̃λ(ϵ). In Eq. (5.8), the data term interacts with

the Jacobian of T , given by

Jλ′(ϵ) ≜ ∂z

∂λ
=

∂T (ϵ,λ)
∂λ

∣∣∣
λ=λ′

, (5.13)

which importantly is a function of the same ϵ as in Eq. (5.12). We form our approxima-

tion of the first term in Eq. (5.8) by multiplying Eqs. (5.12) and (5.13) yielding

g̃
(data)
λ (ϵ) ≜ f̃λ(ϵ)Jλ(ϵ) . (5.14)

The tractability of this approximation hinges on how Eq. (5.14) depends on ϵ. When

q(z;λ) is multivariate normal, we show that this approximation has a computable mean

and can be used to reduce variance in MCVI settings. In the following sections we de-

scribe and empirically test this variance reduction technique applied to diagonal Gaus-

134

sian posterior approximations.

5.3.1 Gaussian Variational Families

Perhaps the most common choice of approximating distribution for MCVI is a diagonal

Gaussian, parameterized by a mean mλ ∈ RD and scales sλ ∈ RD
+ . 4 The log probability

density function is

ln q(z;mλ, s
2
λ) = −

1

2
(z −mλ)

⊺ [diag(s2λ)
]−1

(z −mλ)−
1

2

∑
d

ln s2λ,d −
D

2
ln(2π) .

(5.15)

To generate a random variate z from this distribution, we use the sampling procedure

in Eq. (5.4). We denote the Monte Carlo RGE as ĝλ ≜ [ĝmλ
, ĝsλ

]. From Eq. (5.15),

it is straightforward to derive the distributions of the pathwise score, parameter score,

and Jacobian terms in Eq. (5.8).

The Jacobian term of the sampling procedure has two straightforward components

∂z

∂mλ
= ID ,

∂z

∂sλ
= diag(ϵ) . (5.16)

The pathwise score term is the partial derivative of Eq. (5.15) with respect to z, ignor-

ing variation due to the variational distribution parameters and noting that z = mλ + sλ ⊙ ϵ:

∂ ln q

∂z
= −diag(s2λ)−1(z −mλ) = −ϵ/sλ . (5.17)

The parameter score term is the partial derivative of Eq. (5.15) with respect to varia-

tional parameters λ, ignoring variation due to z. The mλ and sλ components are given
4For diagonal Gaussian q, we define λ = [mλ, sλ].

135

by

∂ ln q

∂mλ
= (z −mλ)/s

2
λ = ϵ/sλ (5.18)

∂ ln q

∂sλ
= −1/sλ − (z −mλ)

2/s2λ =
ϵ2 − 1

sλ
. (5.19)

The data term, f(z), multiplied by the Jacobian of T is all that remains to be

approximated in Eq. (5.8). We linearize f around z0 = mλ where the approximation

is expected to be accurate

f̃λ(ϵ) = f(mλ) +H(mλ) ((mλ + sλ ⊙ ϵ)−mλ) (5.20)

∼ N
(
f(mλ),H(mλ)diag(s2λ)H(mλ)

⊺) . (5.21)

Putting It Together: Full RGE Approximation We write the complete ap-

proximation of the RGE in Eq. (5.8) by combining Eqs. (5.16), (5.17), (5.18), (5.19),

and (5.21) which results in two components that are concatenated, g̃λ = [g̃mλ
, g̃sλ

].

Each component is defined as

g̃mλ
= f̃λ(ϵ) + ϵ/sλ − ϵ/sλ (5.22)

= f(mλ) +H(mλ)(sλ ⊙ ϵ) (5.23)

g̃sλ
= f̃λ(ϵ)⊙ ϵ+ (ϵ/sλ)⊙ ϵ− ϵ2 − 1

sλ
(5.24)

= (f(mλ) +H(mλ)(sλ ⊙ ϵ))⊙ ϵ+
1

sλ
. (5.25)

To summarize, we have constructed an approximation, g̃λ, of the reparameterization

gradient, ĝλ, as a function of ϵ. Because both g̃λ and ĝλ are functions of the same ran-

dom variable ϵ, and because we have mimicked the random process that generates true

gradient samples, the two gradient estimators will be correlated. This approximation

yields two tractable distributions — a Gaussian for the mean parameter gradient, gmλ
,

136

ϵ

ĝλ g̃λ

L

Figure 5.1: Relationship
between the base random-
ness ϵ, RGE ĝ, and approx-
imation g̃. Arrows indicate
deterministic functions.
Sharing ϵ correlates the
random variables. We know
the distribution of g̃, which
allows us to use it as a
control variate for ĝ.

Algorithm 2 Gradient descent with RV-RGE with a
diagonal Gaussian variational family
1: procedure RV-RGE-Optimize(λ1, ln p(z,D), L)
2: f(z)← ∇z ln p(z,D)
3: H(za,zb)←

[
∇2

z ln p(za,D)
]
zb ▷ Define Hessian-vector product

function
4: for t = 1, . . . , T do
5: ϵ(ℓ) ∼ N (0, ID) for ℓ = 1, . . . , L ▷ Base randomness q0

6: ĝ
(ℓ)
λt
← ∇λ ln p(z(ϵ(ℓ),λt),D) ▷ Reparameterization gradients

7: g̃
(ℓ)
mλt

← f(mλt) +H(mλt , sλt ⊙ ϵ(ℓ)) ▷ Mean approx
8: g̃

(ℓ)
sλt
←

(
f(mλt) +H(mλt , sλt ⊙ ϵ(ℓ))

)
⊙ ϵ+ 1

sλt
▷ Scale

approx
9: E[g̃mλt

]← f(mλt) ▷ Mean approx expectation
10: E[g̃sλt

]← diag(H(mλt))⊙ sλt + 1/sλt ▷ Scale approx
expectation

11: ĝ
(RV)
λt

= 1
L

∑
ℓ ĝ

ℓ
λt
− (g̃ℓ

λt
− E[g̃λt

]) ▷ Subtract control variate
12: λt+1 ← grad-update(λt, ĝ

(RV)
λt

) ▷ Gradient step (sgd, adam,
etc.)

13: return λT

and a location shifted, scaled non-central χ2 for the scale parameter gradient gsλ
. Im-

portantly, we can compute the mean of each component

E[g̃mλ
] = f(mλ) , E[g̃sλ] = diag(H(mλ))⊙ sλ + 1/sλ . (5.26)

We use g̃λ (along with its expectation) as a control variate to reduce the variance of

the RGE ĝλ.

5.3.2 Reduced Variance Reparameterization Gradient Estimators

Now that we have constructed a tractable gradient approximation, g̃λ, with high cor-

relation to the original reparameterization gradient estimator, ĝλ, we can use it as a

control variate as in Eq. (5.6)

ĝ
(RV)
λ = ĝλ −C(g̃λ − E[g̃λ]). (5.27)

137

The optimal value for C is related to the covariance between g̃λ and ĝλ (see Ap-

pendix 5.A1). We can try to estimate the value of C (or a diagonal approximation

to C) on the fly, or we can simply fix this value. In our case, because we are using

an accurate linear approximation to the transformation of a spherical Gaussian, the

optimal value of C will be close to the identity (see Appendix 5.A1.1).

High Dimensional Models For models with high dimensional posteriors, direct ma-

nipulation of the Hessian is computationally intractable. However, our approximations

in Eqs. (5.23) and (5.25) only require a Hessian-vector product, which can be computed

nearly as efficiently as the gradient [Pearlmutter, 1994]. Modern automatic differentia-

tion packages enable easy and efficient implementation of Hessian-vector products for

nearly any differentiable model [Abadi et al., 2016, Paszke et al., 2017, Maclaurin et al.,

2015b]. We note that the mean of the control variate g̃sλ
(Eq. (5.26)), depends on the

diagonal of the Hessian matrix. While computing the Hessian diagonal may be tractable

in some cases, in general it may cost the time equivalent of D function evaluations to

compute [Martens et al., 2012]. Given a high dimensional problem, we can avoid this

bottleneck in multiple ways. The first is simply to ignore the random variation in the

Jacobian term due to ϵ — if we fix z to be mλ (as we do with the data term), the

portion of the Jacobian that corresponds to sλ will be zero (in Eq. (5.16)). This will

result in the same Hessian-vector-product-based estimator for g̃mλ
but will set g̃sλ

= 0,

yielding variance reduction for the mean parameter but not the scale.

Alternatively, we can estimate the Hessian diagonal on the fly. If we use L > 1 samples

at each iteration, we can create a per-sample estimate of the sλ-scaled diagonal of the

Hessian using the other samples [Bekas et al., 2007]. As the scaled diagonal estimator

is unbiased, we can construct an unbiased estimate of the control variate mean to use

in lieu of the actual mean. We will see that the resulting variance is not much higher

than when using full Hessian information, and is computationally tractable to deploy on

high-dimensional models. A similar local baseline strategy is used for variance reduction

138

in Mnih and Rezende [2016].

RV-RGE Estimators We introduce three different estimators based on variations of

the gradient approximation defined in Eqs. (5.23), (5.25), and (5.26), each adressing the

Hessian operations differently:

• The Full Hessian estimator implements the three equations as written and can
be used when it is computationally feasible to use the full Hessian.

• The Hessian Diagonal estimator replaces the Hessian in (5.23) with a diagonal
approximation, useful for models with a cheap Hessian diagonal.

• The Hessian-vector product + local approximation (HVP+Local) uses an efficient
Hessian-vector product in Eqs. (5.23) and (5.25), while approximating the diago-
nal term in Eq. (5.26) using a local baseline. The HVP+Local approximation is
geared toward models where Hessian-vector products can be computed, but the
exact diagonal of the Hessian cannot.

We detail the RV-RGE procedure in Algorithm 2 and compare properties of these

three estimators to the pure Monte Carlo estimator in the following section.

5.3.3 Related Work

Recently, Roeder et al. [2017] introduced a variance reduction technique for reparam-

eterization gradients that ignores the parameter score component of the gradient and

can be viewed as a type of control variate for the gradient throughout the optimization

procedure. This approach is complementary to our method — our approximation is

typically more accurate near the beginning of the optimization procedure, whereas the

estimator in Roeder et al. [2017] is low-variance near convergence. We hope to incor-

porate information from both control variates in future work. Per-sample estimators in

a multi-sample setting for variational inference were used in Mnih and Rezende [2016].

We employ this technique in a different way; we use it to estimate computationally

intractable quantities needed to keep the gradient estimator unbiased. Black box vari-

ational inference used control variates and Rao-Blackwellization to reduce the variance

139

of score-function estimators [Ranganath et al., 2014]. Our development of variance

reduction for reparameterization gradients complements their work. Other variance re-

duction techniques for stochastic gradient descent have focused on stochasticity due to

data subsampling [Johnson and Zhang, 2013, Wang et al., 2013]. Johnson and Zhang

[2013] cache statistics about the entire dataset at each epoch to use as a control variate

for noisy mini-batch gradients.

The variance reduction method described in Paisley et al. [2012] is conceptually sim-

ilar to ours. This method uses first or second order derivative information to reduce

the variance of the score function estimator. The score function estimator (and their

reduced variance version) often has much higher variance than the reparameterization

gradient estimator that we improve upon in this work. Our variance measurement ex-

periments in Table 5.1 includes a comparison to the estimator featured in [Paisley et al.,

2012], which we found to be much higher variance than the baseline RGE.

5.4 Experiments and Analysis

In this section we empirically examine the variance properties of RV-RGEs and stochas-

tic optimization for two real-data examples — a hierarchical Poisson GLM and a

Bayesian neural network.5

• Hierarchical Poisson GLM : The frisk model is a hierarchical Poisson GLM, de-
scribed in Appendix 5.A3.1. This non-conjugate model has a D = 37 dimensional
posterior.

• Bayesian Neural Network: The non-conjugate bnn model is a Bayesian neural
network applied to the wine dataset, (see Appendix 5.A3.2) and has a D = 653

dimensional posterior.

5Code available at https://github.com/andymiller/ReducedVarianceReparamGradients.

140

https://github.com/andymiller/ReducedVarianceReparamGradients

Quantifying Gradient Variance Reduction We measure the variance reduction

of the RGE observed at various iterates, λt, during execution of gradient descent. Both

the gradient magnitude, and the marginal variance of the gradient elements — using a

sample of 1000 gradients — are reported. Further, we inspect both the mean, mλ, and

log-scale, ln sλ, parameters separately. Table 5.1 compares gradient variances for the

frisk model for our four estimators: i) pure Monte Carlo (MC), ii) Full Hessian, iii)

Hessian Diagonal, and iv) Hessian-vector product + local approximation (HVP+Local).

Additionally, we compare our methods to the estimator described in [Paisley et al.,

2012], based on the score function estimator and a control variate method. We use a

first order delta method approximation of the model term, which admits a closed form

control variate term.

Each entry in the table measures the percent of the variance of the pure Monte

Carlo estimator. We show the average variance over each component AveV(·), and

the variance of the norm V(|| · ||). We separate out variance in mean parameters, gm,

log scale parameters, ln gs, and the entire vector gλ. The reduction in variance is

dramatic. Using HVP+Local, in the norm of the mean parameters we see between a

80× and 3,000× reduction in variance depending on the progress of the optimizer. The

importance of the full Hessian-vector product for reducing mean parameter variance is

also demonstrated as the Hessian diagonal only reduces mean parameter variance by a

factor of 2-5×.

For the variational scale parameters, ln gs, we see that early on the HVP+Local

approximation is able to reduce parameter variance by a large factor (≈ 2,000×). How-

ever, at later iterates the HVP+Local scale parameter variance is on par with the Monte

Carlo estimator, while the full Hessian estimator still enjoys huge variance reduction.

This indicates that, by this point, most of the noise is the local Hessian diagonal estima-

tor. We also note that in this problem, most of the estimator variance is in the mean

parameters. Because of this, the norm of the entire parameter gradient, gλ is reduced

141

Table 5.1: Comparison of variances for RV-RGEs with L = 10-sample estimators. Variance mea-
surements were taken for λ values at three points during the optimization algorithm (early, mid,
late). The parenthetical rows labeled “MC abs” denote the absolute value of the standard Monte
Carlo reparameterization gradient estimator. The other rows compare estimators relative to the
pure MC RGE variance — a value of 100 indicates equal variation L = 10 samples, a value of 1
indicates a 100-fold decrease in variance (lower is better). Our new estimators (Full Hessian, Hes-
sian Diag, HVP+Local) are described in Section 5.3.2. The Score Delta method is the gradient
estimator described in [Paisley et al., 2012]. Additional variance measurement results are in Ap-
pendix 5.A4.

gmλ
ln gsλ

gλ

Iteration Estimator Ave V(·) V(|| · ||) Ave V(·) V(|| · ||) Ave V(·) V(|| · ||)

early

(MC abs.) (1.7e+02) (5.4e+03) (3e+04) (2e+05) (1.5e+04) (5.9e+03)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 1.279 1.139 0.001 0.002 0.008 1.039
Hessian Diag 34.691 23.764 0.003 0.012 0.194 21.684
HVP + Local 1.279 1.139 0.013 0.039 0.020 1.037
Score Delta Paisley et al. [2012] 6069.668 718.430 1.395 0.931 34.703 655.105

mid

(MC abs.) (3.8e+03) (1.3e+05) (18) (3.3e+02) (1.9e+03) (1.3e+05)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.075 0.068 0.113 0.143 0.076 0.068
Hessian Diag 38.891 21.283 6.295 7.480 38.740 21.260
HVP + Local 0.075 0.068 30.754 39.156 0.218 0.071
Score Delta Paisley et al. [2012] 4763.246 523.175 2716.038 700.100 4753.752 523.532

late

(MC abs.) (1.7e+03) (1.3e+04) (1.1) (19) (8.3e+02) (1.3e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.042 0.030 1.686 0.431 0.043 0.030
Hessian Diag 40.292 53.922 23.644 28.024 40.281 53.777
HVP + Local 0.042 0.030 98.523 99.811 0.110 0.022
Score Delta Paisley et al. [2012] 5183.885 1757.209 17355.120 3084.940 5192.270 1761.317

by 100 − 5,000×. We found that the score function estimator (with the delta method

control variate) is typically much higher variance than the baseline reparameterization

gradient estimator (often by a factor of 10-50×). In Appendix 5.A4 we report results

for other values of L.

Optimizer Convergence and Stability We compare the optimization traces for

the frisk and bnn model for the MC and the HVP+Local estimators under various

conditions. At each iteration we estimate the true ELBO value using 2000 Monte Carlo

samples. We optimize the ELBO objective using adam [Kingma and Ba, 2014] for two

step sizes, each trace starting at the same value of λ0.

Figure 5.1 compares ELBO optimization traces for L = 2 and L = 10 samples and

142

0 5 10 15 20 25 30

wall clock (seconds)

860

855

850

845
E

LB
O

2sample MC
2sample HVP+Local
10sample MC
10sample HVP+Local
50sample MC

(a) adam with step size = 0.05

0 5 10 15 20 25 30

wall clock (seconds)

860

855

850

845

E
LB

O

2sample MC
2sample HVP+Local
10sample MC
10sample HVP+Local
50sample MC

(b) adam with step size = .10

Figure 5.1: MCVI optimization trace applied to the frisk model for two values of L and step
size. We run the standard MC gradient estimator (solid line) and the RV-RGE with L = 2 and 10
samples.

0 20 40 60 80

wall clock (seconds)

220

200

180

160

E
LB

O

2sample MC
2sample HVP+Local
10sample MC
10sample HVP+Local
50sample MC

(a) adam with step size = 0.05

0 20 40 60 80

wall clock (seconds)

240

220

200

180

160

E
LB

O
2sample MC
2sample HVP+Local
10sample MC
10sample HVP+Local
50sample MC

(b) adam with step size = 0.10

Figure 5.2: MCVI optimization for the bnn model applied to the wine data for various L and
step sizes. The standard MC gradient estimator (dotted) was run with 2, 10, and 50 samples; RV-
RGE (solid) was run with 2 and 10 samples. In 5.2b the 2-sample MC estimator falls below the
frame.

step sizes .05 and .1 for the frisk model. We see that the HVP+Local estimators make

early progress and converge quickly. We also see that the L = 2 pure MC estimator

results in noisy optimization paths. Figure 5.2 shows objective value as a function of

wall clock time under various settings for the bnn model. The HVP+Local estimator

does more work per iteration, however it tends to converge faster. We observe the

L = 10 HVP+Local outperforming the L = 50 MC estimator.

143

5.5 Conclusion

Variational inference reframes an integration problem as an optimization problem with

the caveat that each step of the optimization procedure solves an easier integration

problem. For general models, each sub-integration problem is itself intractable, and

must be estimated, typically with Monte Carlo samples. Our work has shown that we

can use more information about the variational family to create tighter estimators of

the ELBO gradient, which leads to faster and more stable optimization. The efficacy

of our approach relies on the complexity of the RGE distribution to be well-captured

by linear structure which may not be true for all models. However, we found the idea

effective for non-conjugate hierarchical Bayesian models and a neural network.

Our presentation is a specific instantiation of a more general idea — using cheap

linear structure to remove variation from stochastic gradient estimates. This method

described in this work is tailored to Gaussian approximating families for Monte Carlo

variational inference, but could be easily extended to location-scale families. We plan to

extend this idea to more flexible variational distributions, including flow distributions

[Rezende and Mohamed, 2015] and hierarchical distributions [Ranganath et al., 2016],

which would require approximating different functional forms within the variational

objective. We also plan to adapt our technique to model and inference schemes with

recognition networks [Kingma and Welling, 2013], which would require back-propagating

de-noised gradients into the parameters of an inference network.

144

Appendix

5.A1 Control Variates

Control variates are random quantities that are used to reduce the variance of a sta-

tistical estimator without trading any bias. Concretely, given an unbiased estimator ĝ

such that E[ĝ] = g (the quantity of interest), our goal is to construct another unbiased

estimator with lower variance. We can do this by defining a control variate g̃ with

known expectation m̃. We can write our new estimator as

g(cv) = ĝ − c · (g̃ − m̃) . (5.28)

Clearly the new estimator has the same expectation as the original estimator, but a

different variance. We can reduce the variance of g(cv) by setting c optimally.

Consider a univariate ĝ and g̃, and without loss of generality, take m̃ = 0. The

variance of g(cv) can be written

V(g(cv)) = E[(ĝ − c · g̃)2]− E[ĝ]2 (5.29)

= E[ĝ2 + c2 · g̃2 − 2cĝg̃]− E[ĝ]2 (5.30)

= E[ĝ2] + c2E[g̃2]− 2cE[ĝg̃]− E[ĝ]2 (5.31)

We minimize the variance with respect to c by taking the derivative and setting equal

145

to zero, which implies

c∗ =
E[ĝg̃]
E[g̃2]

=
C(ĝ, g̃)
V(g̃)

(5.32)

The covariance C(ĝ, g̃) is typically not known a priori and must be estimated. It can

be shown, under the optimal c∗, that the variance of g(cv) is

V(g(cv)) = (1− ρ2)V(ĝ) (5.33)

where ρ is the correlation coefficient between g̃ and ĝ.

When ĝ and g̃ are length D vectors, we can construct an estimator that depends on

a matrix-valued free parameter, C ∈ RD×D

g(cv) = ĝ −C(g̃ − m̃) . (5.34)

We can show that the C that minimizes the Tr(C(g(cv))) — the sum of the marginal

variances — is given by

C∗ = Σ−1g̃ Σĝ,g̃ (5.35)

where Σg̃ is the covariance matrix of the control variate vector, and Σĝ,g̃ is the cross

covariance between ĝ and g̃.

Intuitively, a control variate is injecting information into the estimator in the form of

linear structure. If the two quantities, g̃ and ĝ are perfectly correlated, then we already

know the mean and estimation is not necessary. As the two become uncorrelated, the

linear estimator becomes less and less informative, and reverts to the original quantity.

146

5.A1.1 Control Variates and Approximate Functions

In our setting, we approximate the distribution of some function f(ϵ) where ϵ ∼ N (0, I)

by a first order Taylor expansion about 0 — for now we examine the univariate case

f1(ϵ) = f(0) + f ′(0)ϵ ϵ ∈ R (5.36)

If we wish to use f1(ϵ) as a control variate for f(ϵ), we need to characterize the

covariance between the two random variables. Because the form of f(ϵ) is general, it

is difficult to analyze. We instead derive the covariance between f1(ϵ) and the second-

order expansion

f2(ϵ) = f(0) + f ′(0)ϵ+ f ′′(0)/2ϵ2 (5.37)

as a surrogate.

C(f1(ϵ),f2(ϵ)) = E [(f1(ϵ)− E[f1(ϵ)])(f2(ϵ)− E[f2(ϵ)])] (5.38)

= E
[
(f ′(0)ϵ)

(
f ′(0)ϵ+ f ′′(0)/2ϵ2 − f ′′(0)/2

)]
(5.39)

= E
[
f ′(0)2ϵ2 + (f ′(0)f ′′(0)/2)ϵ3 − (f ′(0)f ′′(0)/2)ϵ

]
(5.40)

= E
[
f ′(0)2ϵ2

]
(5.41)

= V[f1(ϵ)] (5.42)

where note that E[ϵ3] = 0. Recall that the optimal control variate can be written

c∗ = C(f1(ϵ),f2(ϵ))/V[f1(ϵ)] (5.43)

= V[f1(ϵ)]/V[f1(ϵ)] = 1 . (5.44)

147

5.A2 Algorithm Details

We summarize an optimization routine using RV-RGE in Algorithm 2. The different

variants rely on the different forms of H(·, ·) and diag(H). The full Hessian estima-

tor calculates these terms exactly. The diagonal Hessian estimates the Hessian-vector

product with the diagonal of the Hessian. The HVP+Local estimator computes the

Hessian-vector product exactly, but estimates the scale approximation mean using other

samples.

We also note that there are ways to optimize the additional Hessian-vector product

computation. Because each Hessian is evaluated at the same mλ, we can cache the

computation in the forward pass, and only repeat the backwards pass for each sample,

as implemented in Maclaurin et al. [2015b].

5.A3 Model Definitions

5.A3.1 Multi-level Poisson GLM

Our second test model is a 37-dimensional posterior resulting from a hierarchical Poisson

GLM. This model measures the relative rates of stop-and-frisk events for different eth-

nicities and in different precincts Gelman et al. [2007], and has been used as illustrative

example of multi-level modeling [Gelman and Hill, 2006, Chapter 15, Section 1].

148

µ ∼ N (0, 102) mean offset

lnσ2
α, lnσ

2
β ∼ N (0, 102) group variances

αe ∼ N (0, σ2
α) ethnicity effect

βp ∼ N (0, σ2
β) precinct effect

lnλep = µ+ αe + βp + lnNep log rate

Yep ∼ P(λep) stop-and-frisk events

where Yep are the number of stop-and-frisk events within ethnicity group e and precinct p

over some fixed period of time; Nep is the total number of arrests of ethnicity group e

in precinct p over the same period of time; αe and βp are the ethnicity and precinct

effects.

5.A3.2 Bayesian Neural Network

We implement a 50-unit hidden layer neural network with ReLU activation functions.

We place a normal prior over each weight in the neural network, governed by the same

variance (with an inverse Gamma prior). We also place an inverse Gamma prior over

the observation variance The model can be written as

α ∼ Gamma(1, .1) weight prior hyper (5.45)

τ ∼ Gamma(1, .1) noise prior hyper (5.46)

wi ∼ N (0, 1/α) weights (5.47)

y|x,w, τ ∼ N (ϕ(x,w), 1/τ) output distribution (5.48)

where w = {w} is the set of weights, and ϕ(x,w) is a multi-layer perceptron that maps

input x to approximate output y as a function of parameters w. We denote the set of

149

parameters as θ ≜ (w,α, τ). We approximate the posterior p(w,α, τ |D), where D is the

training set of {xn, yn}Nn=1 input-output pairs.

We use a 100-row subsample of the wine dataset from the UCI repository https:

//archive.ics.uci.edu/ml/datasets/Wine+Quality.

5.A4 Variance Reduction

Below are additional variance reduction measurements for the frisk model for different

values of L, samples drawn per iteration. We measure the variance of the variational

parameter gradient at three points during the optimization procedure: (i) early, near

initialization, (ii) mid, before convergence, (iii) late, near convergence. We compare

four methods

• MC: Monte Carlo estimator using the reparameterization trick

• Full Hessian: Our reduced variance gradient using the full hessian calculation

• Hessian Diag: Our reduced variance gradient using only diagonal Hessian infor-
mation

• HVP + Local: Our fast reduced variance gradient estimator, using only Hessian-
vector products and a local baseline

• Score Delta: Method described in Paisley et al. [2012] using a control variate with
the score function estimator of the gradient.

150

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Table 5.A4.1: frisk model variance comparison: L = 3-sample estimators

gmλ
ln gsλ

gλ

Iteration Estimator Ave V(·) V(|| · ||) Ave V(·) V(|| · ||) Ave V(·) V(|| · ||)

early

(MC abs.) (5.4e+02) (1.7e+04) (9.6e+04) (5.9e+05) (4.8e+04) (1.9e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 1.184 1.022 0.001 0.002 0.007 0.902
Hessian Diag 35.541 25.012 0.003 0.011 0.201 22.090
HVP + Local 1.184 1.022 0.012 0.039 0.019 0.900
Score Delta Paisley et al. [2012] 6054.168 651.784 1.429 1.783 35.134 574.536

mid

(MC abs.) (1.4e+04) (4.5e+05) (63) (1.1e+03) (6.9e+03) (4.5e+05)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.080 0.075 0.122 0.169 0.081 0.075
Hessian Diag 39.016 22.832 6.617 8.097 38.868 22.804
HVP + Local 0.080 0.075 31.992 46.160 0.227 0.078
Score Delta Paisley et al. [2012] 4787.771 1031.561 2833.663 1619.190 4778.818 1033.613

late

(MC abs.) (5.6e+03) (5.4e+04) (4.1) (74) (2.8e+03) (5.4e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.044 0.024 1.782 0.879 0.045 0.023
Hessian Diag 39.280 38.799 22.915 21.913 39.268 38.725
HVP + Local 0.044 0.024 98.290 99.679 0.116 0.014
Score Delta Paisley et al. [2012] 5019.294 2804.652 15681.050 5650.339 5027.114 2810.160

Table 5.A4.2: frisk model variance comparison: L = 50-sample estimators

gmλ
ln gsλ

gλ

Iteration Estimator Ave V(·) V(|| · ||) Ave V(·) V(|| · ||) Ave V(·) V(|| · ||)

early

(MC abs.) (34) (1.1e+03) (6.1e+03) (4e+04) (3.1e+03) (1.1e+03)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 1.276 1.127 0.001 0.002 0.008 1.080
Hessian Diag 35.146 24.018 0.003 0.012 0.197 23.028
HVP + Local 1.276 1.127 0.013 0.039 0.020 1.079
Score Delta Paisley et al. [2012] 6084.473 765.666 1.384 0.535 34.957 734.007

mid

(MC abs.) (7.4e+02) (2.4e+04) (3.4) (81) (3.7e+02) (2.4e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.081 0.074 0.125 0.121 0.081 0.074
Hessian Diag 37.534 21.773 7.204 7.035 37.394 21.752
HVP + Local 0.081 0.074 31.278 32.275 0.225 0.076
Score Delta Paisley et al. [2012] 5115.048 557.946 3047.996 354.204 5105.546 557.329

late

(MC abs.) (3.3e+02) (1.8e+03) (0.23) (4.4) (1.7e+02) (1.8e+03)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.042 0.043 1.894 0.296 0.044 0.043
Hessian Diag 39.972 101.263 24.450 27.174 39.961 101.019
HVP + Local 0.042 0.043 98.588 99.539 0.112 0.033
Score Delta Paisley et al. [2012] 5192.542 1422.083 16907.603 1376.037 5200.855 1424.831

151

6
Taylor Residual Estimators

Monte Carlo estimation is a foundational statistical technique. Using samples

from a probability distribution to estimate expectations is effective, efficient, and well-

motivated by the law of large numbers. Further, Monte Carlo estimators are incredibly

general—convergence of the estimator to the expectation Ex∼π[f(x)] applies to a very

general class of functions f and distributions π.

However, reducing the variance of Monte Carlo estimators typically requires the in-

corporation of additional samples. These additional samples will come at a cost—it

may be expensive or practically difficult to collect additional data; new samples may

come at an prohibitive computational cost. However, there may exist other sources of

structure we can exploit to reduce the variance of our sample-based estimator—e.g. if

f is smooth, or if we can efficiently compute the moments of π.

152

In this work, we develop a variant of Monte Carlo estimators termed Taylor residual

estimators that we show can have better variance properties than general Monte Carlo

estimators under certain conditions. Although this technique is generally applicable,

we apply this to a variational inference algorithm where Monte Carlo estimation is a

subroutine. The material in this chapter builds on the work in Miller et al. [2017b].

6.1 Introduction

Many fundamental problems in machine learning and statistics can be framed as the

expectation of a function of a random variable. For example, modern variational infer-

ence algorithms for complex probabilistic models hinge on well-behaved Monte Carlo

estimates of gradients. If the variance of the estimated gradient is large then gradient-

based optimization can exhibit chaotic behavior or require such small step-sizes that

the algorithm does not converge in a reasonable amount of time. A common approach

is a Monte Carlo estimator, where the random variable is sampled (perhaps multiple

times), the function is computed, and the values are averaged. The variance of the

Monte Carlo estimate is a crucial property when applying Monte Carlo methods since

a large variance can make the estimate unreliable. There has been a large body of

literature on controlling the variance of Monte Carlo estimates such as control variates

that reduce variance using a correlated estimate with the same mean as the original

estimate. However, obtaining variance reduction is still a challenging problem.

In this work we develop a family of Monte Carlo estimators based on the Taylor ex-

pansion of the function being integrated. These estimators can be efficient to compute

and easy to implement with modern automatic differentiation tools. We can interpret

the resulting estimator as a control variate and we study the conditions under which

the variance of the estimator is reduced. We apply the estimator to a Monte Carlo vari-

ational inference problem and show that the method achieves lower variance estimates

of gradients.

153

(a) Test function and distribution (b) Typical Monte Carlo integration

(c) Residual function (d) Integrating the residual function

Figure 6.1: Illustration of Taylor residual estimators. (a) The function f(x) (orange) and the
probability distribution π(x) (grey). (b) a typical Monte Carlo estimator simply draws values from
π(x) and computes f(·) at each value. (c) a first order approximation of f(x) and the residual
highlighted in green. (d) the Taylor residual estimator computes a Monte Carlo estimate of the
expectation of the residual, analytically integrating out the expectation against the linear function.
This can, under certain conditions, achieve lower variance than the naive Monte Carlo estimator in
(b).

6.2 Taylor Residual Monte Carlo Estimator

Let X ∈ RD be a random variable with distribution π. Consider a function f : RD 7→ R

whose expectation we would like to take with respect to π which we write Eπ [f] =∫
f(x)π(dx). In this work we assume the we can easily draw i.i.d. samples from π. The

standard Monte Carlo estimator of Eπ[f] is constructed by sampling from π and then

computing the sample mean of f :

x(n) ∼ π, f̂ =
1

N

N∑
n=1

f(x(n)). (6.1)

While Eq. (6.1) is an extremely general way to estimate an expectation, it can be

inefficient to ignore known structure in f and π which can manifest as a large amount

154

of variance in the f̂ . We will assume that all moments of π are known and computable

and we denote the mth moment of π about the point x0 as

M(m)
x0

=

∫
(x− x0)

mπ(dx) . (6.2)

Now, consider decomposing f into (i) its first order Taylor expansion around x0 and (ii)

the residual:

f(x) = f(x0) + (x− x0)
⊺
[
∂f

∂x
(x0)

]
︸ ︷︷ ︸

≜f
(1)
x0

(x)

+R(1)
x0

(x), (6.3)

where the Taylor remainder R(1)
x0 (x) can be determined from the second-order derivatives

of f . We can re-write the target expectation as

Eπ[f] = Eπ

[
f (1)
x0

(x) +R(1)
x0

(x)
]

(6.4)

= f(x0) + Eπ[(x− x0)]
⊺
[
∂f

∂x
(x0)

]
+ Eπ

[
R(1)

x0
(x)
]

(6.5)

= f(x0) +M(1)⊺
x0

[
∂f

∂x
(x0)

]
+ Eπ

[
R(1)

x0
(x)
]
, (6.6)

In general, we can use an M th-order Taylor expansion about x0 and write the expectation

as

Eπ[f] = f(x0) +
∑
m

M(m)
x0

[
∂mf

∂xm
(x0)

]
+ Eπ

[
R(M)

x0
(x)
]
. (6.7)

In this case the Taylor remainder R
(M)
x0 (x) can be found from the (M + 1)st order

derivatives of f .

Because we assume all moments M(m)
x0 are known we see that all of the randomness

in the estimators given in Eqs. (6.3) and (6.7) comes from the expectation of the re-

155

mainder term. We call estimators of this form Taylor residual Monte Carlo estimators

(TREs). Note that we have simply shifted the variance of the Monte Carlo estimate

into the higher-order derivatives of the function. As such, we can expect the resid-

ual to have low variance when the low order derivatives well-approximate f around x0.

Taylor residual Monte Carlo estimates can be viewed as performing approximate Rao-

Blackwellization in that the aspects of f captured in the low-order derivatives is being

integrated out and replaced with non-random quantities. Furthermore, using modern

automatic differentiation tools [Maclaurin et al., 2015b, Abadi et al., 2016, Paszke et al.,

2017] we can easily compute higher order derivatives of scalar functions and the requisite

tensor contractions.

We can interpret the first-order Taylor residual estimate in Eq. (6.3) as a control-

variate estimator, implying that TREs may achieve smaller variance than that of pure

Monte Carlo estimators. To see the connection to control variates, consider a single

sample first order TRE:

Eπ[f] = f(x0) +M(1)⊺
x0

[
∂f

∂x
(x0)

]
+R(1)

x0
(x) (6.8)

= f(x0) +M(1)⊺
x0

[
∂f

∂x
(x0)

]
+

[
f(x)−

(
f(x0) + (x− x0)

⊺
[
∂f

∂x
(x0)

])]
(6.9)

= f(x)−
(
M(1)

x0
− (x− x0)

)⊺ [∂f
∂x

(x0)

]
(6.10)

where we recognize Eq. (6.10) as the equation for a control variate with scale coefficient

1. In fact, first-order Taylor residual estimators generalize the reduced variance gradient

estimators presented in [Miller et al., 2017a] and provide a framework to study when

such gradient estimators will be effective. In the next section we study the variance

properties of TREs to determine conditions under which we attain variance reduction.

156

(a) Variance reduced (b) Variance increased

Figure 6.1: Illustration of the conditions for TRE variance reduction. In each example, the gray
area indicates the set of linear approximations to f(x) that result in decreased variance, as indi-
cated by Equation (6.20). (a) When the first-order Taylor approximation of f at x0 (orange line)
is in the gray region then the corresponding TRE will have smaller variance than the Monte Carlo
estimator. Functions that are close to linear in the range of π will have a larger region where vari-
ance reduction occurs while highly nonlinear functions will have smaller regions. (b) The TRE
estimator can have larger variance than the MC estimator when the gradient at x0 falls outside of
the gray region.

6.3 Variance Analysis

The Taylor residual estimator is useful if its variance is lower than that of the standard

Monte Carlo estimator. In this section we will show that the variance properties of the

TRE depend on the relationship between the locally linear Taylor approximation and

the global linear structure captured by linear least squares regression.

Consider the Monte Carlo estimator given in Eq. (6.12) and the first order Taylor

residual estimator in Eq. (6.13) using a single sample from π. For notational simplicity,

we take x0 = 0 and define f0 = f(0), as well as f ′0 = ∂f
∂x (0) as shorthand. We write the

estimators as

x ∼ π sample from distribution (6.11)

f̂ = f(x) Monte Carlo estimator (6.12)

f̂1 = f(x)− (f1(x)− E[f (1)]) First order Taylor residual estimator (6.13)

= f(x)− xf ′0 + µf ′0, (6.14)

157

where µ = E(x) is the known first moment of π(x). The variances of the two estimators

are then

V(f̂) = E
[
f̂2
]
− E[f]2 (6.15)

V(f̂1) = V(f(x)− xf ′0 + µf ′0) = E
[
(f(x)− xf ′0)

2
]
−
(
E[f]− µf ′0

)2
. (6.16)

We want to find sufficient conditions such that the variance of the new estimator is

smaller than the original, V(f̂) ≥ V(f̂1). We first substitute the variances with their

definitions into the inequality

E[f(x)2]− E[f]2 ≥ E
[
(f(x)− xf ′0)

2
]
−
(
E[f]− µf ′0

)2
. (6.17)

Expanding the two quadratics, and canceling terms, we get

0 ≥ E[x2](f ′0)2 − 2f ′0E[xf(x)]− µ2(f ′0)
2 + 2f ′0µE[f] (6.18)

= (f ′0)
2V(x)− 2f ′0E[xf(x)] + 2f ′0µE[f] (6.19)

=⇒ 1 ≤ 2

f ′0

C(x, f(x))
V(x)

=⇒ |f ′0| ≤ 2

∣∣∣∣C(x, f(x))V(x)

∣∣∣∣ . (6.20)

Eq. (6.20) indicates a relationship between linear control-variate methods and linear

least-squares regression. Since V(x)−1C(x, f(x)) is the population least squares solution

for f regressed on x, we see that variance reduction depends on whether the first order

Taylor expansion of f is within a cone around the linear least squares approximation. We

visually depict both successful and unsuccessful variance reduction for a one-dimensional

example in Fig. 6.1.

Now the question is, under what conditions of f(x) and π(x) is this condition true?

158

We can start by re-writing the covariance using a taylor-expanded f(x)

C(x, f(x)) = E[xf(x)]− E[x]E[f(x)] (6.21)

= E

[
x(f0 +

∞∑
n=1

1

n!
f
(n)
0 xn)

]
− µE

[
f0 +

∞∑
n=1

1

n!
f
(n)
0 xn

]
(6.22)

=
∑
n=1

1

n!
f
(n)
0

(
E[xn+1]− µE[xn]

)
(6.23)

=
∑
n=1

1

n!
f
(n)
0

(
M(n+1)

π − µM(n)
π

)
moments of π

(6.24)

The first term of this series is a simple function of the variance of π

∑
n=1

1

n!
f
(n)
0

(
M(n+1)

π − µM(n)
π

)
(6.25)

= f
(1)
0 (M(2)

π − µM(1)
π) +

∑
n=2

1

n!
f
(n)
0

(
M(n+1)

π − µM(n)
π

)
(6.26)

= f
(1)
0 V(x) +

∑
n=2

1

n!
f
(n)
0

(
M(n+1)

π − µM(n)
π

)
(6.27)

So we can express the inequality above as a bound on the variance of x ∼ π as a

function of the higher moments of π and derivatives of f

∑
n=2

1

n!

f
(n)
0

f
(1)
0

(
M(n+1)

π − µM(n)
π

)
≤ 1

2
V(x) (6.28)

For the first order estimator to have reduced variance, a scaled sum of the difference

of higher order moments needs to be smaller than the variance of x ∼ π.

For example, if π(x) = N (0, σ2), then the n’th even moment is σn(n − 1)!! (note

that (n − 1)!! is the double factorial, which is the product of a decreasing sequence of

numbers with the same parity, e.g. (n− 1)(n− 3)(n− 5)...), and the odd moments are

159

(a) Target distribution (b) Gaussian Approximation (c) Normalizing Flows
Approximation (4 layers)

Figure 6.1: Comparison of Taylor residual and Monte Carlo estimators on Monte Carlo variational
inference optimization using both a Gaussian variational distribution and a normalizing flow. In
both cases, TREs provide lower variance gradient estimates and attain higher lower-bounds.

zero. We can write the inequality as

∑
n=2

1

n!

f
(n)
0

f
(1)
0

σ(n+1)(n)!! =
∑
n=2

f
(n)
0

f
(1)
0

σ(n+1)

(n− 1)!!
≤ 1

2
V(x) (6.29)

So in this case we can see that the inequality is easily achieved when the variance of

π, σ2, is small, and when the ratio of higher order derivatives to the first derivative f
(n)
0

f
(1)
0

is small.

6.4 Experiments

We demonstrate the variance reduction capabilities of TREs in the context of Monte

Carlo variational inference. Specifically, we compare a TRE to the pure Monte Carlo

estimator on the variational evidence lower bound (ELBO). We target a 20-dimensional

“funnel” distribution that exhibits features typical of posteriors from hierarchical mod-

els [Neal, 2003]. A bivariate marginal of the “funnel” is depicted in Fig. 6.1a. We con-

sider two variational approximations, a Gaussian and a normalizing flow distribution

and show that TREs attain lower variance estimates and yield more robust optimization.

Gaussian Approximation For variational approximation q(x;λ) = N (λµ,λσ), with

variational parameters λ, the Monte Carlo ELBO estimator can be computed by first

160

drawing a sample x ∼ q(x;λ), and then computing

f(x) = lnπ(x,D)− ln q(x;λ). (6.30)

We optimize the ELBO by using estimators of the gradient of Eq (6.30) with respect to λ.

We compute the pathwise gradient estimator (reparameterization gradient) [Glasserman,

2004] for both the MC and TRE estimators, and use these noisy gradient estimates in

gradient ascent.

At a random initialization of λ, we measure the variance of the first order Taylor

residual estimator to be about 320 times lower than the Monte Carlo estimator (for 2

samples). We show the results of ELBO optimization in Figure 6.1 using a 2-sample

Monte Carlo estimator and a 2-sample Taylor residual estimator. The TRE estimator

has a smaller variance for more iterations than the MC estimator allowing it to attain

larger ELBO values. After convergence, we measure the TR estimator to have .8 the

variance of the MC estimator.

Normalizing Flows We also apply the Taylor residual estimator to a more flexi-

ble posterior approximation, a planar normalizing flow distribution [Rezende and Mo-

hamed, 2015]. A normalizing flow distributed random variable is constructed by apply-

ing a sequence of parameterized invertible maps to a simple random variable (e.g. x0 ∼

N (0, ID)). Here, we broke the ELBO into two pieces

L(λ) = Eq[lnπ(x,D)]︸ ︷︷ ︸
model term

−E[ln q(x;λ)]︸ ︷︷ ︸
entropy term

. (6.31)

Unlike for the Gaussian variational family where the entropy term can be computed

exactly and the model term is the only random component, for normalizing flows, we

must estimate the entropy term using Monte Carlo. Here, we apply a TRE to the

model term and use the simple Monte Carlo estimator for the entropy term. We found

161

this resulted in consistent variance reduction compared to the Monte Carlo estimator.

At initialization we measure a 40× variance reduction over the standard Monte Carlo

estimator, and a 2× reduction at convergence. Fig. 6.1c shows the results of optimization

using the TRE where it is clear that the optimization is more stable.

6.5 Conclusion

We presented Taylor residual estimators to efficiently compute lower variance Monte

Carlo estimators by using a Taylor expansion. We showed that when a selected locally

linear Taylor approximation aligns with the global least squares linear approximation the

proposed estimator will have lower variance than the standard Monte Carlo estimator.

The advantages of the TRE method were demonstrated on performing Monte Carlo

variational inference where we obtained more robust optimization results under two

variational approximations. We plan to extend the method to estimate highly nonlinear

functions using a hierarchical approach that combines locally linear approximations.

162

7
Conclusions and Future Directions

We have developed new statistical models and methods to help scientists answer

quantitative questions and more efficiently explore their data. The first part of this

thesis focused on the development of applied probabilistic models in three domains: as-

tronomy, healthcare, and sports analytics. Throughout this presentation, we highlighted

application-driven decisions as well as some common statistical and computational chal-

lenges. Our applied goal in each instance was to model some difficult-to-prescribe

structure—spectral energy distribution function shape, electrocardiogram traces, and

basketball player trajectories—in service of some interpretable estimand (e.g. redshift,

cardiac cycle morphology, offense structure). Through the lens of these projects, we dis-

cuss the common challenges of specifying interpretable-yet-flexible probabilistic models

in applied settings.

163

Motivated by the applied probabilistic models for massive data, the second part

of this thesis described new scalable inference algorithms for approximate Bayesian

inference. We focused on improving approaches to variational inference, a widely used

class of approximation algorithms. We developed two techniques to address two common

shortcomings of variational inference algorithms, the expressivity of the approximating

family and the variance in stochastic estimators used when optimizing the variational

lower bound. This work led to further generalization of a class of computationally

efficient Monte Carlo estimators.

7.1 Directions of future research

While models for specific phenomena often require problem-specific structure, under-

standing more general properties of probabilistic models for high-dimensional data is

an open area of research. Deep generative models [Kingma and Welling, 2013, Rezende

et al., 2014] are a promising avenue for specifying accurate high-dimensional distribu-

tions for data that exist on a low-dimensional manifold. However, controlling the infor-

mation contained in (and how it is represented) the latent space is still an open and

active area of research. Recent approaches incorporate weak supervision [Kingma et al.,

2014], and information theoretic concepts to better understand and control the prop-

erties of the latent representation of a high-dimensional signal [Tishby and Zaslavsky,

2015, Achille and Soatto, 2018, Chen et al., 2018]. Shaping these latent variables into

an interpretable representation will provide a window into the subtle patterns learned

by these generative models. This will highlight dimensions of variation within the data

that we expect, and, importantly, dimensions of variation that we have yet to explain

with scientific theories.

When analyzing passively collected data (e.g. electronic medical records), we often

have to deal with problematic patterns of non-random missing data. Similarly, when

inferring causal effects from observational data, we often have to cope with non-random

164

treatment assignments and selection bias [Little and Rubin, 2014]. Coping with this

requires modeling the patterns of missing-ness, often by making structural assumptions

about the underlying data generating procedure. However, it is often difficult (and

sometimes impossible) to validate such assumptions—and when a model is providing

answers to high-leverage decisions (e.g. a medical diagnosis) this lack of validation is

untenable. How to efficiently validate modeling assumptions by the design of a new

experiment or an efficient, targeted collection of new data is an avenue of research that

can help bring new models and methods from theory to practice.

When datasets become massive and particularly when the amount of data collected

per individual grows, our expectations of the data analysis also tends to grow—we want

more personalized predictions and more nuanced measurements that may have been

inestimable with less information. However, naively applying predictions from a prob-

abilistic models can lead to problematic decision-making. For example, systems that

predict criminal risk used for bail decisions Angwin et al. or systems that serve advertise-

ments for employment opportunities Garcia can be fraught with unfairness and insidious

bias—models trained on observed data that reflects exist discriminatory practices can

exacerbate them when algorithmic decision-making is naive applied. Defining and under-

standing precise notions of fairness in machine learning and algorithmic decision-making

is an active and important area of research [Kleinberg et al., 2016, Hardt et al., 2016].

Massive datasets and per-individual inference expectations also lead to an increas-

ingly complex computational problem. For example, hierarchical models that may en-

able more personalized statistical characterizations can introduce a cumbersome num-

ber of parameters, requiring us to approximate posterior interactions between units.

While Markov chain Monte Carlo remains the gold standard for approximate Bayesian

inference in terms of asymptotic correctness, it can be difficult to scale as data size

increases. An active area of research is devising algorithms with correctness guarantees

that scale favorably with data size. Furthermore, models that fully characterize uncer-

165

tainty may need to represent and infer multi-modal posterior distributions, which may

be intractable in theory and difficult to approximate in practice.

166

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal repre-
sentations through noisy computation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018.

Shadab Alam, Franco D Albareti, Carlos Allende Prieto, F Anders, Scott F Anderson,
Brett H Andrews, Eric Armengaud, Éric Aubourg, Stephen Bailey, Julian E Bautista,
et al. The eleventh and twelfth data releases of the Sloan digital sky survey: Final
data from SDSS-III. arXiv preprint arXiv:1501.00963, 2015.

Julia Angwin, Jeff Larson, Surya Mattu, Lauren Kirchner, and ProP-
ublica. Machine Bias. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing. Accessed: 2017-
11-04.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv
preprint arXiv:1701.07875, 2017.

Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal
of a matrix. Applied numerical mathematics, 57(11):1214–1229, 2007.

C Bishop. Pattern recognition and machine learning, 2006.

David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84,
2012.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review
for statisticians. Journal of the American Statistical Association, 2017a.

167

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review
for statisticians. Journal of the American Statistical Association, 112(518):859–877,
2017b.

Matt Hoffman Daniel Lee Ben Goodrich Michael Betancourt Michael A. Brubaker
Jiqiang Guo Peter Li Bob Carpenter, Andrew Gelman and Allen Riddell. Stan: A
probabilistic programming language. Journal of Statistical Software, 2015.

R Bousseljot, D Kreiseler, and A Schnabel. Nutzung der ekg-signaldatenbank cardiodat
der ptb über das internet. Biomedizinische Technik/Biomedical Engineering, 40(s1):
317–318, 1995.

Jo Bovy, Adam D Myers, Joseph F Hennawi, David W Hogg, Richard G McMa-
hon, David Schiminovich, Erin S Sheldon, Jon Brinkmann, Donald P Schneider, and
Benjamin A Weaver. Photometric redshifts and quasar probabilities from a single,
data-driven generative model. The Astrophysical Journal, 749(1):41, 2012.

M Brescia, S Cavuoti, R D’Abrusco, G Longo, and A Mercurio. Photometric redshifts
for quasars in multi-band surveys. The Astrophysical Journal, 772(2):140, 2013.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of markov
chain monte carlo. CRC press, 2011.

Tamas Budavari, Istvan Csabai, Alexander S Szalay, Andrew J Connolly, Gyula P
Szokoly, Daniel E Vanden Berk, Gordon T Richards, Michael A Weinstein, Donald P
Schneider, Narciso Benitez, et al. Photometric redshifts from reconstructed quasar
templates. The Astronomical Journal, 122(3):1163, 2001.

George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific
Grove, CA.

Daniel Cervone, Alexander D’Amour, Luke Bornn, and Kirk Goldsberry. A multires-
olution stochastic process model for predicting basketball possession outcomes. arXiv
preprint arXiv:1408.0777, 2014a.

Daniel Cervone, Alexander D’Amour, Luke Bornn, and Kirk Goldsberry. Pointwise:
predicting points and valuing decisions in real time with NBA optical tracking data.
2014b.

Gal Chechik, Amir Globerson, Naftali Tishby, and Yair Weiss. Information bottleneck
for gaussian variables. Journal of machine learning research, 6(Jan):165–188, 2005.

168

Tian Qi Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of
disentanglement in variational autoencoders. arXiv preprint arXiv:1802.04942, 2018.

Chih-Chun Chia and Zeeshan Syed. Scalable noise mining in long-term electrocar-
diographic time-series to predict death following heart attacks. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 125–134. ACM, 2014.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012.

Harald Cramér. Mathematical methods of statistics. Princeton university press, 1946.

Kyle S Dawson, David J Schlegel, Christopher P Ahn, Scott F Anderson, Éric Aubourg,
Stephen Bailey, Robert H Barkhouser, Julian E Bautista, Alessandra Beifiori, An-
dreas A Berlind, et al. The baryon oscillation spectroscopic survey of SDSS-III. The
Astronomical Journal, 145(1):10, 2013.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38, 1977.

David Duvenaud. Automatic Model Construction with Gaussian Processes. PhD thesis,
Computational and Biological Learning Laboratory, University of Cambridge, 2014.

Bradley Efron and Carl Morris. Data analysis using stein’s estimator and its general-
izations. Journal of the American Statistical Association, 70(350):311–319, 1975.

Alexander Franks, Andrew Miller, Luke Bornn, and Kirk Goldsberry. Counterpoints:
Advanced defensive metrics for nba basketball. In 2015 MIT Sloan Sports Analytics
Conference, 2015a.

Alexander Franks, Andrew Miller, Luke Bornn, Kirk Goldsberry, et al. Characterizing
the spatial structure of defensive skill in professional basketball. The Annals of Applied
Statistics, 9(1):94–121, 2015b.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29:1189–1232, 2000.

Megan Garcia. How To Keep Your AI From Turning Into A Racist Monster. https://
www.wired.com/2017/02/keep-ai-turning-racist-monster/. Accessed: 2017-11-
04.

169

https://www.wired.com/2017/02/keep-ai-turning-racist-monster/
https://www.wired.com/2017/02/keep-ai-turning-racist-monster/

Andrew Gelman and Jennifer Hill. Data analysis using regression and multi-
level/hierarchical models. Cambridge University Press, 2006.

Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From impor-
tance sampling to bridge sampling to path sampling. Statistical science, pages 163–185,
1998.

Andrew Gelman and Cosma Rohilla Shalizi. Philosophy and the practice of bayesian
statistics. British Journal of Mathematical and Statistical Psychology, 66(1):8–38, 2013.

Andrew Gelman, Jeffrey Fagan, Alex Kiss, et al. An analysis of the nypd’s stop-and-
frisk policy in the context of claims of racial bias. Journal of the American Statistical
Association, 102:813–823, 2007.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data
analysis, volume 2. Taylor & Francis, 2014.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. In Readings in Computer Vision, pages 564–584.
Elsevier, 1987.

Samuel Gershman, Matt Hoffman, and David M Blei. Nonparametric variational in-
ference. In Proceedings of the 29th International Conference on Machine Learning
(ICML-12), pages 663–670, 2012.

Zoubin Ghahramani and Geoffrey E Hinton. The em algorithm for mixtures of factor
analyzers. Technical report, 1996.

Paul Glasserman. Monte Carlo Methods in Financial Engineering, volume 53. Springer
Science & Business Media, 2004.

Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer
Science & Business Media, 2013.

G. H. Golub and C. F. Van Loan. Matrix Computations. JHU Press, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

RO Gray, PW Graham, and SR Hoyt. The physical basis of luminosity classification
in the late a-, f-, and early g-type stars. ii. basic parameters of program stars and the
role of microturbulence. The Astronomical Journal, 121(4):2159, 2001.

170

Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences, 101(suppl 1):5228–5235, 2004.

Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David B. Dunson.
Boosting variational inference. arXiv:1611.05559 [stat.ML], 2016.

Moritz Hardt, Eric Price, Nati Srebro, et al. Equality of opportunity in supervised
learning. In Advances in neural information processing systems, pages 3315–3323, 2016.

Edward Harrison. The redshift-distance and velocity-distance laws. The Astrophysical
Journal, 403:28–31, 1993.

D. A. Harville. Matrix Algebra from a Statistician’s Perspective. Springer-Verlag, 1997.

W Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

José Miguel Hernández-Lobato and Ryan P Adams. Probabilistic backpropagation for
scalable learning of bayesian neural networks. 2015.

Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15
(1):1593–1623, 2014.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve
up the variational evidence lower bound. 2016.

Matthew D Hoffman, David M Blei, Chong Wang, and John William Paisley. Stochas-
tic variational inference. Journal of Machine Learning Research, 14(1):1303–1347,
2013.

David W Hogg. Distance measures in cosmology. arXiv preprint astro-ph/9905116,
1999.

Tommi S Jaakkola and Michael I Jordan. Improving the mean field approximation
via the use of mixture distributions. In Learning in graphical models, pages 163–173.
Springer, 1998.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106
(4):620, 1957.

Edwin T Jaynes. Prior probabilities. IEEE Transactions on systems science and
cybernetics, 4(3):227–241, 1968.

171

Matthew J. Johnson, David K. Duvenaud, Alex B. Wiltschko, Sandeep R. Datta, and
Ryan P. Adams. Composing graphical models with neural networks for structured
representations and fast inference. Arxiv preprint arXiv:1603.06277, 2016.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315–
323, 2013.

Michael I Jordan. Are you a bayesian or a frequentist?, 2009.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):
183–233, 1999.

Stephen M Kent, Chris Stoughton, Heidi Newberg, Jonathan Loveday, Don Petravick,
Vijay Gurbani, Eileen Berman, and Gary Sergey. Sloan digital sky survey. Astronomical
Data Analysis Software and Systems III, 61.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. In Advances in Neural Infor-
mation Processing Systems, pages 3581–3589, 2014.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in
the fair determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual
information. Physical review E, 69(6):066138, 2004.

D Kreiseler and R Bousseliot. Automatisierte ekg-auswertung mit hilfe der ekg-
signaldatenbank cardiodat der ptb. Biomedizinische Technik/Biomedical Engineering,
40(s1):319–320, 1995.

Q. Li. Estimation of Mixture Models. PhD thesis, Yale University, May 1999.

Q. J. Li and A. R. Barron. Mixture density estimation. In Advances in Neural Infor-
mation Processing Systems, 1999.

172

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume
333. John Wiley & Sons, 2014.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary
deep generative models. arXiv preprint arXiv:1602.05473, 2016.

Dougal Maclaurin and Ryan P Adams. Firefly monte carlo: Exact mcmc with subsets
of data. arXiv preprint arXiv:1403.5693, 2014.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Autograd: Reverse-mode
differentiation of native python. ICML workshop on Automatic Machine Learning,
2015a.

Dougal Maclaurin, David Duvenaud, Matthew Johnson, and Ryan P. Adams. Auto-
grad: Reverse-mode differentiation of native Python, 2015b. URL http://github.
com/HIPS/autograd.

James Martens, Ilya Sutskever, and Kevin Swersky. Estimating the Hessian by back-
propagating curvature. In Proceedings of the International Conference on Machine
Learning, 2012.

D Christopher Martin, James Fanson, David Schiminovich, Patrick Morrissey, Peter G
Friedman, Tom A Barlow, Tim Conrow, Robert Grange, Patrick N Jelinksy, Bruno
Millard, et al. The galaxy evolution explorer: A space ultraviolet survey mission. The
Astrophysical Journal Letters, 619(1), 2005.

Bertil Matérn. Spatial Variation. Springer, 1986.

Patrick E McSharry, Gari D Clifford, Lionel Tarassenko, and Leonard A Smith. A
dynamical model for generating synthetic electrocardiogram signals. IEEE transactions
on biomedical engineering, 50(3):289–294, 2003.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

Andrew Miller, Luke Bornn, Ryan Adams, and Kirk Goldsberry. Factorized point
process intensities: A spatial analysis of professional basketball. In International Con-
ference on Machine Learning, pages 235–243, 2014.

Andrew Miller, Albert Wu, Jeff Regier, Jon McAuliffe, Dustin Lang, Mr Prabhat,
David Schlegel, and Ryan P Adams. A gaussian process model of quasar spectral

173

http://github.com/HIPS/autograd
http://github.com/HIPS/autograd

energy distributions. In Advances in Neural Information Processing Systems, pages
2494–2502, 2015.

Andrew Miller, Nick Foti, Alexander D’Amour, and Ryan P Adams. Reducing reparam-
eterization gradient variance. In Advances in Neural Information Processing Systems,
pages 3711–3721, 2017a.

Andrew C Miller and Luke Bornn. Possession sketches: Mapping nba strategies. In
Sloan Sports Analytics Conference, 2017.

Andrew C Miller, Nicholas J Foti, and Ryan P Adams. Taylor residual estimators
via automatic differentiation. In Advances in Approximate Bayesian Inference, NIPS
Workshop, 2017b.

Andrew C Miller, Nicholas J Foti, and Ryan P Adams. Variational boosting: Iteratively
refining posterior approximations. In International Conference on Machine Learning,
pages 2420–2429, 2017c.

Andrew C Miller, Sendhil Mullainathan, and Ziads Obermeyer. A hierarchical gen-
erative model of electrocardiogram records. In Machine Learning for Health (NIPS
Workshop), 2017d.

Andriy Mnih and Danilo Rezende. Variational inference for Monte Carlo objectives. In
Proceedings of The 33rd International Conference on Machine Learning, pages 2188–
2196, 2016.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative mod-
els. arXiv preprint arXiv:1610.03483, 2016.

D. A. Moore. Symmetrized variational inference. In NIPS Workshop on Advances in
Approximate Bayesian Inferece, 2016.

Kevin P Murphy. Machine learning: a probabilistic perspective. 2012.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):
125–139, 2001.

Radford M Neal. Slice sampling. Annals of statistics, pages 705–741, 2003.

Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2, 2011.

174

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
computation, 35(151):773–782, 1980.

V. M.-H. Ong, D. J. Nott, and M. S. Smith. Gaussian variational approximation with
factor covariance structure. arXiv preprint arXiv:1701.03208, 2017.

Julien Oster, Joachim Behar, Omid Sayadi, Shamim Nemati, Alistair EW Johnson,
and Gari D Clifford. Semisupervised ecg ventricular beat classification with novelty
detection based on switching kalman filters. IEEE Transactions on Biomedical Engi-
neering, 62(9):2125–2134, 2015.

John Paisley, David M Blei, and Michael I Jordan. Variational bayesian inference with
stochastic search. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, pages 1363–1370. Omnipress, 2012.

Isabelle Pâris, Patrick Petitjean, Éric Aubourg, Nicholas P Ross, Adam D Myers, Alina
Streblyanska, Stephen Bailey, Patrick B Hall, Michael A Strauss, Scott F Anderson,
et al. The Sloan digital sky survey quasar catalog: tenth data release. Astronomy &
Astrophysics, 563:A54, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Pytorch. https:
//github.com/pytorch/pytorch, 2017.

Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural computation,
6(1):147–160, 1994.

A. Rakhlin, Panchenko D., and Mukherjee S. Risk bounds for mixture density estima-
tion. ESAIM: Probability and Statistics, 9:220–229, 2006.

Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference.
In AISTATS, pages 814–822, 2014.

Rajesh Ranganath, Dustin Tran, and David M Blei. Hierarchical variational models.
In International Conference on Machine Learning, 2016.

Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian Processes for Ma-
chine Learning. The MIT Press, Cambridge, Massachusetts, 2006.

Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan Adams, Matt Hoffman, Dustin
Lang, David Schlegel, and Prabhat. Celeste: Variational inference for a generative
model of astronomical images. In Proceedings of The 32nd International Conference
on Machine Learning, 2015.

175

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 1530–1538, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, pages 400–407, 1951.

Geoffrey Roeder, Yuhuai Wu Wu, and David Duvenaud. Sticking the landing:
An asymptotically zero-variance gradient estimator for variational inference. arXiv
preprint arXiv:1703.09194, 2017.

Francisco R Ruiz, Michalis Titsias RC AUEB, and David Blei. The generalized repa-
rameterization gradient. In Advances in Neural Information Processing Systems, pages
460–468, 2016.

Ruslan Salakhutdinov, Sam T Roweis, and Zoubin Ghahramani. Optimization with
em and expectation-conjugate-gradient. In Proceedings of the 20th International Con-
ference on Machine Learning (ICML-03), pages 672–679, 2003.

Tim Salimans, David A Knowles, et al. Fixed-form variational posterior approximation
through stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.

SDSSIII. Measures of flux and magnitude. 2013. https://www.sdss3.org/dr8/
algorithms/magnitudes.php.

M. W. Seeger. Gaussian covariance and scalable variational inference. In Proceedings
of the 27th International Conference on Machine Learning, 2010.

Long Sha, Patrick Lucey, Yisong Yue, Peter Carr, Charlie Rohlf, and Iain Matthews.
Chalkboarding: A new spatiotemporal query paradigm for sports play retrieval. In
Proceedings of the 21st International Conference on Intelligent User Interfaces, pages
336–347. ACM, 2016.

Joseph Silk and Martin J Rees. Quasars and galaxy formation. Astronomy and Astro-
physics, 1998.

John Skilling et al. Nested sampling for general bayesian computation. Bayesian
analysis, 1(4):833–859, 2006.

176

https://www.sdss3.org/dr8/algorithms/magnitudes.php
https://www.sdss3.org/dr8/algorithms/magnitudes.php

Chris Stoughton, Robert H Lupton, Mariangela Bernardi, Michael R Blanton, Scott
Burles, Francisco J Castander, AJ Connolly, Daniel J Eisenstein, Joshua A Frieman,
GS Hennessy, et al. Sloan digital sky survey: early data release. The Astronomical
Journal, 123(1):485, 2002.

Nao Suzuki. Quasar spectrum classification with principal component analysis (PCA):
Emission lines in the Lyα forest. The Astrophysical Journal Supplement Series, 163
(1):110, 2006.

Robert H Swendsen and Jian-Sheng Wang. Replica monte carlo simulation of spin-
glasses. Physical review letters, 57(21):2607, 1986.

Michael E Tipping and Christopher M Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3):611–622, 1999.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck
principle. In Information Theory Workshop (ITW), 2015 IEEE, pages 1–5. IEEE,
2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck
method. arXiv preprint physics/0004057, 2000.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for
non-conjugate inference. In Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1971–1979, 2014.

I. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and B. Schoelkopf. Adagan:
Boosting generative models. arXiv preprint arXiv:1701.02386, 2016.

Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo, Kevin Murphy, and
David M Blei. Deep probabilistic programming. In Proceedings of the International
Conference on Learning Representations, 2017.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press,
1998.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305,
2008.

177

Jakob Walcher, Brent Groves, Tamás Budavári, and Daniel Dale. Fitting the integrated
spectral energy distributions of galaxies. Astrophysics and Space Science, 331(1):1–51,
2011.

Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction
for stochastic gradient optimization. In Advances in Neural Information Processing
Systems, pages 181–189, 2013.

Kuan-Chieh Wang and Richard Zemel. Classifying nba offensive plays using neural
networks. 2016.

David H Weinberg, Romeel Dav’e, Neal Katz, and Juna A Kollmeier. The Lyman-alpha
forest as a cosmological tool. Proceedings of the 13th Annual Astrophysica Conference
in Maryland, 666, 2003.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 681–688, 2011.

David Williams. Probability with martingales. Cambridge university press, 1991.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative
analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273, 2016.

T. Zhang. Sequential greedy approximation for certain convex optimization problems.
IEEE Transactions on Information Theory, 49:682–691, 2003.

178

