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Abstract

Novel machine learning methods are at the heart of a transformation underway in science and

engineering. Probabilistic models have served as the foundation learning models for knowledge

discovery. As surrogate models, they enable efficient black-box optimization or active learning of

the system behavior under limited budget to evaluate/query the complex system. Another important

use case is to use probabilistic models as generative models to generate de novo designs with desired

properties or samples from the equilibrium distribution of physical systems. However, to fully unleash

the potential of probabilistic models for knowledge discovery, it is imperative to develop models that

are scalable to growing data size and complexity while remaining interpretable to domain experts.

In this dissertation, I start with the development of a novel approach that addresses the sparse

solution identification problem in Bayesian optimization with probabilistic surrogate models. The

discovery of sparse solutions not only enhances the interpretability of the solutions to humans for un-

derstanding the system behavior but also facilitates easier streamlined deployment and maintenance

with a reduced number of parameters.

Next, I present a novel approach utilizing deep learning to enhance the scalability of Gaus-

sian process inference. Gaussian processes are extensively used as probabilistic surrogate models

in knowledge discovery, but their practical usage is hindered by the high cost associated with the

identification of kernel hyperparameters in GP regression, which involves costly marginal likelihoods.

I show how to side-step the need for expensive marginal likelihoods by employing “amortized” in-

ference over hyperparameters. This is achieved through training a single neural network, which

consumes a set of data and produces an estimate of the kernel function, useful across different tasks.

Finally, I introduce marginalization models, a new family of generative models for high-dimensional

discrete data which is ubiquitous in science discovery. Marginalization models offer scalable and flex-

ible generative modeling with tractable likelihoods through explicit modeling of all induced marginal

distributions with neural networks. Direct modeling of the marginals enables efficient marginal infer-

ence and scalable training of any-order generative models for sampling from a given (unnormalized)

probability function, which overcomes major limitations of previous methods with exact likelihoods.
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Chapter 1

Introduction

Probabilistic models, as a principled machine learning approach for modeling data distributions, have

recently started to play an instrumental role in fostering scientific exploration and discovery.

Surrogate models serve as valuable tools in diverse domains spanning science, engineering, robotics,

and many other fields, wherein they model intricate system behavior. Exploiting the uncertainty

quantification offered by probabilistic surrogate models, automatic algorithms can be designed to

efficiently accomplish the objectives of the given use case via actively interacting with the system.

One major use case is optimization, exemplified when determining the optimal material composi-

tion for battery cathodes via experimental testing. In such cases, Bayesian optimization (Shahriari

et al., 2015b) is employed, using a probabilistic model to understand and iteratively fine-tune the

relationship between composition and performance informed by experimental outcomes. Simultane-

ously, the subsequent experimental condition is chosen strategically, based on the surrogate model’s

uncertainty quantification, balancing the exploration of novel compositions with the exploitation of

well-performing known compositions, thus expediting the discovery of the optimum composition.

Active learning presents another primary use case, such as in training a surrogate model to

accurately simulate molecular dynamics (Vandermause et al., 2020). The process begins with an

initial probabilistic model based on limited data, which is then systematically enhanced through

actively querying the system for additional labeled data. The selection of the most informative

samples for labeling is guided by the surrogate model’s inherent uncertainty estimation, culminating

in an accurate model with minimal labeling effort.

In addition to surrogate models, probabilistic generative models have witnessed remarkable

advancements in modeling complex data distributions across various domains, including natural
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language modeling (Brown et al., 2020), image generation (Song and Ermon, 2019; Ho et al., 2020),

audio synthesis (Huang et al., 2018), and scientific discovery applications (Wang et al., 2022; Schneuing

et al., 2022). When it comes to training generative models for scientific discovery, there are two

primary settings. The first setting is maximum likelihood training, where the goal is to train a

generative model to maximize the likelihood of the training data. This setting is commonly employed

in tasks like image generation, natural language modeling, and drug design, where the objective is to

generate data that closely resembles the training data distribution. The second setting is distribution

matching, aiming to align the generative distribution with a target density. This setting is less

explored for images and language but is frequently employed in applications such as sampling lattice

models and estimating equilibrium properties of molecules or materials, where it is necessary to

generate samples from the thermodynamic equilibrium distribution of the physical system.

In this dissertation, I present novel approaches to address the interpretability and scalability

challenges of probabilistic models in the context of knowledge discovery. Before delving into the

details of the proposed approaches, I provide a brief overview of the existing literature for both

surrogate and generative models.

The rest of this chapter is organized as follows: Section 1.1.1 first gives a brief overview of the

Gaussian process, which is a popular probabilistic surrogate model used in scientific discovery. Then

I review the basic methodological aspects of Bayesian optimization in Section 1.1.2. Section 1.2

provides a brief overview of the existing literature on generative models with a particular focus on

the applications in scientific discovery. Finally, I conclude this chapter with an outline of the overall

dissertation in Section 1.3.

1.1 Probabilistic Surrogate Models

1.1.1 Gaussian Processes

The Gaussian process defines a nonparametric distribution over functions of the forms f(·) : X → R.

X is the domain of the function f , which is usually a subset of RD for some D. The output space

is assumed to be single output with the range being R, although an extension to m-dimensional

multiple output Rm is straightforward.

The Gaussian process model specifies a joint Gaussian distribution over the outputs of the

function at any finite set of points in the domain. More precisely, for any finite set of points

in X , X := {x1, . . . ,xN}, the corresponding function values f := (f(x1), · · · , f(xN ))T follow a multi-
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variate Gaussian distribution: f ∼ N (µ,KXX), where µ is an N -dimensional mean vector and KXX

is an N×N positive-definite covariance matrix. The parameters of the mean and covariance are deter-

mined by a mean function µ(·) : X → R and a positive-definite covariance function k(·, ·) : X×X → R:

[µ]n = µ(xn), (1.1)

[KXX]n,n′ = k (xn,xn′) (1.2)

Hence a Gaussian process is usually denoted by f(·) ∼ GP (µ(·), k (·, ·)). The mean function µ(·)

is usually set to zero, and the covariance function k(·, ·) is often parameterized by the choice of

the function and its associated hyperparameters θ. In this case, we write kθ(·, ·) to indicate the

dependence of the covariance function on the hyperparameters.

For a training dataset D = {(xn, yn)}Nn=1, each yn is commonly assumed to be generated by adding

an i.i.d. zero-mean Gaussian noise to f(xn), i.e., yn = f(xn) + ϵn, where ϵn ∼ N (0, σ2
ϵ ). Denote

y := [y1, · · · , yN ]⊤ ∈ RN×1. For new data input X̃ := {x̃1, . . . , x̃N ′} of size N ′, the Gaussianity of

the prior and likelihoods make it possible to compute the predictive distribution in closed form:

f̃ |X̃,D ∼ N
(
µ̃,Kf̃

)
,

µ̃ = KX̃X

(
KXX + σ2

ϵ I
)−1

y, Kf̃ = KX̃X̃ −KX̃X

(
KXX + σ2

ϵ I
)−1

KXX̃,

where KXX̃ ∈ RN×N ′
with [KXX̃]

n,n′ = k(xn, x̃n′).

Choice of kernel function

The choice of kernel function is crucial to Gaussian process generalization, as different kernel functions

impose various model assumptions, e.g., smoothness, periodicity, etc. (See Chapter 4 of Rasmussen

and Williams (2006) for an extensive discussion.) If the problem has a known structure, one can

sometimes choose a kernel to capture it. Otherwise, kernel learning must be performed by defining

an expressive space of kernel functions and selecting the best one through optimization (Wilson and

Adams, 2013; Wilson et al., 2016; Sun et al., 2018) or search (Duvenaud et al., 2013; Lloyd et al.,

2014).

Here we give a few examples of popular kernel functions. The Radial Basis Function (RBF)

kernel, also known as the “squared exponential” kernel, is given by

kRBF(x,x
′) = σ2

f exp

(
−∥x− x′∥2

2l2

)
,
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where σ2
f is the signal variance and l is the lengthscale.

The Matérn kernel is given by

kMatérn(x,x
′) = σ2

f

21−ν

Γ(ν)

(√
2ν
∥x− x′∥

l

)ν

Kν

(√
2ν
∥x− x′∥

l

)
,

where Kν is the modified Bessel function of the second kind and ν is a hyperparameter that controls

the smoothness of the function. When ν is set to 1/2, the Matérn kernel is identical to the absolute

exponential kernel, i.e.

kMatérn(x,x
′) = σ2

f exp

(
−∥x− x′∥

l

)
ν = 1/2.

ν = 3/2 and ν = 5/2 correspond to the Matérn 3/2 and Matérn 5/2 kernels,

kMatérn(x,x
′) = σ2

f

(
1 +

√
3∥x− x′∥

l

)
exp

(
−
√
3∥x− x′∥

l

)
ν = 3/2,

kMatérn(x,x
′) = σ2

f

(
1 +

√
5∥x− x′∥

l
+

5∥x− x′∥2
3l

)
exp

(
−
√
5∥x− x′∥

l

)
ν = 5/2,

which are popular choices for modeling functions that are not infinitely differentiable (assumed in

RBF kernel) but at least once or twice differentiable.

The Exp-Sine-Squared kernel, also known as “periodic” kernel, is given by

kExp-Sine-Squared(x,x
′) = σ2

f exp

(
−2 sin2(π∥x− x′∥/p)

l2

)
,

where p is the periodicity and l is the lengthscale.

To illustrate how different kernels model different function properties, we show examples of

functions drawn from GPs with the kernels discussed above in Figure 1.1.

To model functions with multiple desired structures, it is possible to combine different kernels to

form a composite kernel. The standard ways to build composite kernels are by adding or multiplying

two or more kernels. For example, multiplying a linear kernel and a periodic kernel can be used to

model a periodic function with increasing/decreasing amplitude. Adding is often used to combine

kernels for individual dimensions, e.g., a sum of RBF kernels with different lengthscales can be used

to model functions with different smoothness in different dimensions. Chapter 2 of Duvenaud (2014)

gives a comprehensive guide on how to express structure with composite kernels.
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Figure 1.1: Examples of functions drawn from GPs with different kernels. Top left: Radial Basis
Function (RBF) kernel, lengthscale l = 1. Top right: Matérn 5/2 kernel, lengthscale l = 1. Bottom
left: Matérn 1/2 kernel, lengthscale l = 1. Bottom right: Exp-Sine-Squared kernel, lengthscalel = 1,
periodicity p = 3.

11



Hyperparameter inference and the associated scalability challenge

Beyond the particular choice of kernel, it is also common for the covariance function to have so-called

hyperparameters θ that govern its specific structure, and the parameterized kernel function is written

as kθ(·, ·). Although a fully-Bayesian treatment is possible (Neal, 1999; Murray and Adams, 2010;

Filippone and Girolami, 2014; Murray and Graham, 2016), the most common approach to determining

hyperparameters is to use empirical Bayes and maximize the log marginal likelihood (evidence) with

respect to the hyperparameter θ, i.e., perform type II maximum likelihood (Berger, 2013; MacKay,

1992). The log MLL for observed data {X,y} is given by:

log p(y|X, θ) = −1

2
y⊤ (KXX(θ) + σ2

ϵ I
)−1

y − 1

2
log
∣∣KXX(θ) + σ2

ϵ I
∣∣− N

2
log 2π , (1.3)

where we write KXX(θ) to indicate the dependence of the Gram matrix on the hyperparameters.

To solve the above optimization problem, quasi-Newton methods such as L-BFGS (Liu and

Nocedal, 1989) or nonlinear conjugate gradient (Hestenes et al., 1952; Fletcher and Reeves, 1964)

are usually used. These iterative optimization methods involve taking the gradient of the objective

several times for each optimization step. As the gradient of Equation (1.3) scales as O(N3), this

optimization becomes prohibitively expensive on large-scale problems, dominating the computational

cost of using GP. Moreover, the non-concavity of the objective in Equation (1.3) makes it difficult to

ensure convergence to a good maximum.

To address the scaling issue, a low-rank approximation to the kernel matrix is often used either

by subsampling the data or via virtual “inducing” points (Smola and Bartlett, 2001; Williams and

Seeger, 2001; Csató and Opper, 2002; Quiñonero-Candela and Rasmussen, 2005; Seeger et al., 2003;

Snelson and Ghahramani, 2006; Titsias, 2009; Hensman et al., 2013; Cheng and Boots, 2017; Shi et al.,

2020). In general, these methods require inversion of a smaller matrix and reduce the computational

complexity to O(NM2) (M is the number of subsampled data or “inducing” points), at the cost of a

larger and often more challenging optimization problem alongside the potential loss of important

information from the dataset. For the special case of the exponentiated quadratic kernel, Burt

et al. (2019) showed that only O(N log2D(N)) computational complexity is needed to achieve an

arbitrarily good approximation with high probability for input with either compact support or

Gaussian distribution of D dimensions.
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1.1.2 Bayesian optimization

I give a brief overview of Bayesian optimization (BO) in this section. For a more comprehensive

treatment, Shahriari et al. (2015a) provide a thorough review of BO.

The goal of Bayesian optimization is to maximize a black-box function f : RD → R over a

compact set B ⊂ RD. Often for simplicity, the domain is scaled and taken as [0, 1]D. We assume

that f is continuous and bounded on this domain. At each iteration of optimization, f is modeled

with a probabilistic surrogate model given the function evaluations observed so far, producing the

normally distributed posterior f(x) ∼ N (µ(x), σ2(x)) for all possible x. The location of the next

function evaluation is selected by maximizing an acquisition function α(x) := Ef [u(x)] to balance

the trade-off of exploration and exploitation, where u is a utility function that defines the acquisition

function. This iterative procedure is carried out until a stopping criterion is met, e.g., the optimal

solution is successfully identified or the maximum number of iterations is reached.

Gaussian process is the most popular surrogate model used in BO. Bayesian neural networks

only start to be explored recently as an alternative surrogate model (Li et al., 2023), but their high

computational cost limits the adoption in practice. There is an equivalence between the Gaussian

process and Bayesian neural networks discovered by Neal (1994). The rise of the popularity of the

Gaussian process in the machine learning community is largely due to this connection and the more

affordable computation used by GP (Williams and Rasmussen, 1995) when compared to Bayesian

neural networks.

Typical acquisition functions include expected improvement (EI, Jones et al., 1998) and upper

confidence bound (UCB, Srinivas et al., 2010). EI is given by

αEI(x) = Ef [(f(x)− f(x∗))+] , (1.4)

where x∗ is the best point observed so far, and the acquisition function has a well-known analytic

form when f is a GP. UCB is similarly computed directly from the marginal posterior,

αUCB(x) = µ(x) +
√
βσ(x), (1.5)

where β is a hyperparameter that controls the exploration-exploitation trade-off. More recently,

information-theoretic acquisition functions have been developed (Hernández-Lobato et al., 2014;

Wang and Jegelka, 2017).
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1.2 Probabilistic Generative Models

The generative model is a powerful tool for modeling complex data distributions. In this section, I

first give a brief overview of the existing literature on generative models. Then I discuss the two

prevalent generative modeling settings, maximum likelihood estimation, and distribution matching.

Finally, I introduce autoregressive models and how they can be trained for any-order modeling in

maximum likelihood estimation.

1.2.1 Overview of generative models

Generative models aim to learn a distribution pθ(x)—usually θ is parameterized by neural networks—

that can generate samples x that resemble the data distribution pdata(x). There are different things

that the learned distribution can be useful for, such as generating new samples, evaluating the

likelihood of observed data, and performing inference on marginal or conditional distributions.

Broadly speaking, generative models can be categorized into two classes: explicit density models

and implicit density models. In explicit density models, the probability density function pθ(x) is

explicitly defined by a parametric function, e.g., a neural network. Depending on what is explicitly

available of the distribution, we can evaluate the likelihood of observed data, or even perform inference

on marginal or conditional distributions. Successful examples of explicit density models include

normalizing flows (Rippel and Adams, 2013; Tabak and Turner, 2013; Dinh et al., 2014; 2016),

variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende and Mohamed, 2015; Kingma

et al., 2016), and autoregressive models (ARMs) (Bengio and Bengio, 2000; Larochelle and Murray,

2011).

In implicit density models, the distribution pθ(x) is implicitly defined by a sampling procedure,

i.e. we are not able to evaluate the likelihood of data but only able to generate samples from the

distribution. Generative adversarial networks (GANs) (Goodfellow et al., 2014; Radford et al., 2015;

Arjovsky et al., 2017; Karras et al., 2019), and diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,

2020; Song and Ermon, 2019) are the most commonly used examples of implicit density models.

Recently, the probability flow ODE formulation of the diffusion model (Song et al., 2020) makes

it a special case of continuous normalizing flows (neural ODE), thus enabling exact log-likelihood

evaluation. VAEs are also sometimes considered to be implicit density models when closed-form

log-likelihood evaluation is not available with non-invertible decoders, such as in the one originally

developed in Kingma and Welling (2013).

Energy-based models (EBMs) (Hinton, 2002; LeCun et al., 2006; Tieleman, 2008) are another
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class of generative models that lie in between implicit and explicit density models. Instead of

specifying a probability density, they explicitly model the negative log probability, i.e. the energy

function. This allows flexibility in modeling the energy function with powerful neural networks

and has found applications in image generation (Ngiam et al., 2011; Du and Mordatch, 2019) and

language processing (Mikolov et al., 2013). But as a result, likelihood evaluation and exact sampling

are intractable with the unnormalized probability.

In this dissertation, we focus on explicit density generative models for the discrete domain, due

to their interpretability and wide applicability for scientific discovery applications. We first define

two prevalent generative modeling settings. Then we give a brief overview of autoregressive models

and how they can be trained for any-order modeling in maximum likelihood estimation.

1.2.2 Generative modeling settings

Maximum likelihood (MLE)

Given a dataset D = {x(i)}Ni=1 drawn from a data distribution pdata, we aim to learn the distribution

pθ(x) that maximizes the probability of the data under our model. Mathematically, we aim to learn

the parameters θ⋆ that maximize the log-likelihood:

θ⋆ = argmax
θ

Ex∼pdata [log pθ(x)] ≈ argmax
θ

1

N

N∑
i=1

log pθ(x
(i)) (1.6)

which is also equivalent to minimizing the Kullback-Leibler divergence under the empirical distribution,

i.e., minimizing DKL(pdata(x)||pθ(x)). This is the setting when we cannot evaluate pdata(x) but can

draw data samples from the empirical distribution, which is most commonly used in generation of

images (e.g., diffusion models (Ho et al., 2020; Song and Ermon, 2019)) and language (e.g., pretrained

transformers (Devlin et al., 2018; Yang et al., 2019b; Radford et al., 2019; Brown et al., 2020)).

Distribution matching (DM)

In this setting, we do not have the tool to draw samples from the distribution of interest. Instead, we

have access to the unnormalized (log) probability mass (or density) function f , usually in the form of

reward function or energy function, that are defined by us or by physical systems to specify how likely

a sample is. For example, we can define the target PMF (or PDF) to be f(x) = exp(r(x)/τ) where

r(x) is the reward (or the negative energy) function and τ > 0 is a temperature parameter. This

expresses the intuitive idea that we would like the model to assign higher probability to data with
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larger reward (lower energy). For example, in conversation systems such as ChatGPT (Ouyang et al.,

2022; OpenAI, 2023), r(x) can express how well a response fits the user’s preference. In molecular

design applications, scientists can specify the reward according to how close a particular sample’s

measured or calculated properties are to some functional desiderata.

Mathematically, we aim to learn the parameters θ such that pθ(x) ≈ f(x)/Z, where Z is the

normalization constant of f . Two common training criteria are to minimize the KL divergence (Noé

et al., 2019; Wu et al., 2019; Damewood et al., 2022):

min
θ

DKL
(
pθ (x)

∥∥f(x)/Z) = Ex∼pθ(x) [log pθ (x)− log f(x)/Z] (1.7)

or the squared distance between the two log probabilities over a distribution of interest q(x) (Bengio

et al., 2021a; Zhang et al., 2022):

min
θ

Ex∼q(x) [log pθ (x)− log f(x)/Z]
2
. (1.8)

When KL divergence is used as a measure of distance, it is also sometimes referred to as energy-

based KL-training (Köhler et al., 2020). This formulation is particularly useful for modeling physical

systems such as the Ising model, molecules, proteins, and materials in thermodynamic equilibrium

(Noé et al., 2019; Wu et al., 2019; Damewood et al., 2022; Köhler et al., 2023). A trained generative

model can be used for evaluating properties by efficient sampling from the equilibrium distribution,

whereas traditional methods such as molecular dynamics or MCMC struggle to sample efficiently due

to the high energy barriers between different states. It is also useful for controlled generation, where

we can specify the reward function to be a function of the desired properties, such as in instructing

language models (Ouyang et al., 2022), or generating molecules with desired properties (Bengio et al.,

2021a).

1.2.3 Autoregressive models

Autoregressive models (ARMs) model the distribution by factorizing the complex high-dimensional

distribution p(x) into univariate conditionals using the chain rule:

log p(x) =
∑D

d=1 log p (xd | x<d) , (1.9)
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where x<d = {x1, . . . , xd−1}. Recently there has been great success in applying autoregressive models

to discrete data, such as natural language (Yang et al., 2019b; Brown et al., 2020), proteins (Shin

et al., 2021; Lin et al., 2023; Madani et al., 2023), and molecules (Segler et al., 2018; Flam-Shepherd

et al., 2022). Due to their sequential nature, evaluation of (joint/marginal) likelihood requires up to

D neural network evaluations, which is costly for long sequences.

Any-order ARMs (AO-ARMs)

Under the maximum likelihood setting, Uria et al. (2014) propose to learn the conditionals of ARMs

for arbitrary orderings σ ∈ SD, where SD denotes the set of all permutations of {1, . . . , D}. The

model ϕ can be trained by maximizing a lower-bound objective (Uria et al., 2014; Hoogeboom et al.,

2021a) that takes an expectation under a uniform distribution on orderings.

log pϕ(x) = logEσ pϕ(x | σ)
Jensen’s inequality

≥ Eσ

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
= Eσ∼U(SD)DEd∼U(1,...,D) log pϕ

(
xσ(d) | xσ(<d)

)
= DEd Eσ

1

D − d+ 1

∑
j∈σ(≥d)

log pϕ
(
xj | xσ(<d)

)
. (1.10)

U(S) denotes the uniform distribution over a finite set S. σ ∈ SD is a random ordering of the

variables and SD defines the set of all permutations of 1, 2, · · · , D. σ(d) denotes the d-th element in

the ordering and σ(< d) = {σ(1), . . . , σ(d− 1)}.

This objective allows scalable training of AO-ARMs, leveraging efficient parallel evaluation of

multiple one-step conditionals in one forward pass with architectures such as the U-Net (Ronneberger

et al., 2015) and Transformers (Vaswani et al., 2017). However, training of AO-ARMs remains a

challenge under the distribution matching setting.

1.3 Overview

The rest of the dissertation is organized as follows. In Chapter 2, I will introduce the challenge of

interpretability in Bayesian optimization when using the Gaussian process as the surrogate model

and show how to address it from the angle of sparsity and multi-objective optimization. In Chapter 3,

I will present a novel deep-learning-enabled approach to address the scalability challenge of using

Gaussian processes as surrogate models. In Chapter 4, I will introduce a new class of generative

models to address the scalability challenge of autoregressive models. Finally, I will conclude the

dissertation in Chapter 5 and discuss future directions.
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1.3.1 Relations to published work

Chapter 2 is based on Liu et al. (2023a):

Sulin Liu*, Qing Feng*, David Eriksson*, Benjamin Letham, and Eytan Bakshy. Sparse Bayesian

optimization. In International Conference on Artificial Intelligence and Statistics, 2023. (* indicates

equal contribution).

Chapter 3 is based on Liu et al. (2020):

Sulin Liu, Xingyuan Sun, Peter J. Ramadge, and Ryan P. Adams. Task-agnostic amortized inference

of Gaussian process hyperparameters. Advances in Neural Information Processing Systems, 2020.

Chapter 4 is based on Liu et al. (2023b):

Sulin Liu, Peter J. Ramadge, and Ryan P. Adams. Generative marginalization models. Under

Submission to Advances in Neural Information Processing Systems, 2023.

Beyond the work presented, the following publication is also related to the dissertation on using

probabilistic surrogate models for controlling safety-critical systems (Kumar et al., 2021):

Athindran Ramesh Kumar*, Sulin Liu*, Jaime F. Fisac, Ryan P. Adams, and Peter J. Ramadge.

ProBF: Learning probabilistic safety certificates with barrier functions. arXiv:2112.12210, 2021. (*

indicates equal contribution, random order).
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Chapter 2

Interpretable System Design via

Sparse Bayesian Optimization

2.1 Introduction

Bayesian optimization (BO) is a technique for efficient global optimization that is used to optimize

the design parameters across a wide range of complex systems, including robotics (Lizotte et al., 2007;

Calandra et al., 2015), machine learning pipelines (Hutter et al., 2011; Snoek et al., 2012; Turner

et al., 2021), internet systems (Letham et al., 2019; Feng et al., 2020), chemistry (Gómez-Bombarelli

et al., 2018; Burger et al., 2020; Shields et al., 2021) and energy (Attia et al., 2020; Liu et al., 2022).

In many applications, including those just mentioned, it is preferable for the optimized parameters

to be sparse. In this paper, we define sparsity in Bayesian optimization to be the property where the

majority of optimized parameters are close to the target parameters that one wishes to regularize

towards. For example, the target parameters may be a zero-vector, where setting parameters to zero

encourages the removal of redundant system configurations. Alternatively, the target parameters

may be the default system parameters (status quo), where sparsity favors the fewest modifications

for consistency and robustness. One reason to prefer sparsity is that it increases interpretability, a

consideration that has recently attracted a great deal of attention in machine learning (Doshi-Velez

and Kim, 2017; Rudin et al., 2022). Interpretability is necessary for humans to be able to understand

and evaluate the outputs of complex systems—the types of systems to which BO is often applied.

In policy/process optimization, sparsity of the policy/control provides a natural way for human

decision-makers to gain insight into the behavior of the system, and identify potential issues (Ustun
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and Rudin, 2016; Hu et al., 2019).

Besides interpretability, sparsity can also be beneficial by producing systems that are easier to

deploy and maintain, reducing the “technical debt” of complex automated systems (Sculley et al.,

2015). As an example, recommender systems are essential to many internet companies, including

e-commerce platforms, streaming services, and social media sites (Bobadilla et al., 2013). A typical

recommendation process involves two stages, the retrieval and ranking stages (Covington et al.,

2016). The parameters in the retrieval stage determine the amount of content to be fetched from

various sets of candidate pools (sources) representing different user interest taxonomies (Wilhelm

et al., 2018). Setting parameters to zero means deactivating these sources. Sparse optimization

can find solutions in which low-quality sources are entirely turned off, thus simplifying the system

and enabling faster development. Similarly in chemistry, a sparse solution requires fewer reagents

and steps to synthesize a compound, which reduces experimentation overhead and accelerates the

discovery of new compounds.

9 12 15 18 21 24 27
Number of active parameters

R
el

ev
an

ce
 (

O
bj

ec
tiv

e)

Figure 2.1: Objective and sparsity trade-offs for a real-world Internet experiment using SEBO. Points
indicate recommender system configurations, where the x-axis corresponds to the number of active
recommendation sources used, i.e. non-sparse parameters. Grey points indicate sub-optimal designs,
while red points represent designs along the Pareto frontier found by SEBO. Decision-makers balance
both system simplicity and performance when deciding which configuration to use.

Sparsity in machine learning is often achieved via regularization, such as L1 regularization used by

the lasso (Tibshirani, 1996), the group norm penalty used by the group lasso (Yuan and Lin, 2006),

and L0 regularization which directly targets setting elements to zero (Zhang, 2008). The purpose of

regularization in machine learning is typically to limit overfitting and thus improve test accuracy

by reducing generalization error (Evgeniou et al., 2002). In our setting, sparsity is a separate goal;

interpretable sparse configurations will generally not improve the optimization objective, and in fact,
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may come at some cost to other metrics. This can be seen in the sparsity-objective Pareto frontier

shown in Figure 2.1 from a real-world recommender system sourcing experiment conducted at a large

Internet firm. The Pareto frontier comprises all of the configurations that produce optimal trade-offs

between sparsity and the optimization objective. In many real-world systems, decision-makers are

willing to trade some amount of objective in order to achieve a higher level of sparsity, because of the

interpretability and simplicity benefits that come with sparsity. Thus, unlike a typical BO problem,

the “optimal" point per the decision maker will not necessarily be the one with the best objective,

but could be some other point on the sparsity-objective Pareto frontier that has more sparsity.

A central aspect of this work is to efficiently learn these trade-offs and offer practitioners a way

to balance sparsity and other metrics. Sparsity in BO is an important topic that has not yet been

addressed in the literature. Past work has used regularization in acquisition function optimization or

modeling, but not for the purpose of sparsity in design parameters (see Section 2.2 for a review). Our

work provides a thorough and broad treatment of sparsity in BO that fills in this gap. The main

contributions of this work are:

1. We study different approaches for incorporating sparse regularization into BO, and provide negative

theoretical results showing that previously studied forms of regularization can fail to optimize for

certain levels of sparsity, regardless of the regularization coefficient.

2. We draw connections between multi-objective BO and acquisition function regularization, and

show how multi-objective BO can be used for automatic selection of the regularization coefficient.

We refer to this as the SEBO (“Sparsity Exploring Bayesian Optimization”) method.

3. We develop a novel relaxation strategy for optimizing directly for L0 sparsity, and show that it

significantly outperforms the typical L1 penalty in our context.

4. We show that combining acquisition function regularization with sparse Gaussian process priors

enables sparse optimization in high-dimensional spaces.

5. We provide the first results on achieving sparsity via BO, in a range of synthetic functions and on

three real-world tasks (in systems configuration and AutoML), showing that SEBO is the best

approach for sparse BO. We show the breadth of our method by using it to achieve different forms

of sparsity such as feature-level and group sparsity.

6. We provide a new high-dimensional benchmark problem designed to emulate trade-offs found in

real-world recommender systems, and show how such systems benefit from increased sparsity.

Section 2.2 describes the necessary background and related work. Section 2.3 describes two natural
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approaches for incorporating sparse regularization into acquisition function optimization, both of

which can fail to optimize for some levels of sparsity. Section 2.4 discusses a relationship between

sparse BO and multi-objective BO, and describes how we can use methods from multi-objective BO to

simultaneously optimize for all levels of sparsity. We describe how we optimize with L0 regularization

in Section 2.5. We demonstrate the usefulness of our methods by applying them to a set of synthetic

and real-world benchmarks in Section 2.7. Finally, we discuss the results in Section 2.8.

2.2 Background and Related Work

2.2.1 Regularization in Bayesian optimization

Regularization has been applied to acquisition function optimization, though not for the purpose

of sparsity. Shahriari et al. (2016) used regularization for unbounded BO, in which there are no

bounds on the search space. They applied a form of L2 regularization to the EI target value that

penalized sampling points far from the initial center of the search space. González et al. (2016) used

regularization for batch BO, where the penalty discouraged points from being chosen close to points

that had already been selected for the batch. The penalty term was multiplied with the original

acquisition function value.

2.2.2 Bayesian optimization with sparse models

Eriksson and Jankowiak (2021) introduced the sparse axis-aligned subspaces (SAAS) function prior

in which a structured sparse prior is induced over the inverse-squared kernel lengthscales {ρi}di=1 to

enable BO in high dimensions. The SAAS prior has the form τ ∼ HC(α), ρi ∼ HC(τ) where HC is

the half-Cauchy distribution which concentrates at zero. The goal of the SAAS prior is to turn off

unimportant parameters by shrinking ρi to zero, which avoids overfitting in high-dimensional spaces,

thus enabling sample-efficient high-dimensional BO. The global shrinkage parameter τ controls the

overall sparsity: with more data, τ can be pushed to larger values, adapting the level of sparsity to

the data as needed.

While sparsity in the GP model is different from the sparsity we seek here, we will show

that combining the SAAS model with acquisition regularization is highly effective for sparse high-

dimensional BO. By enforcing regularization in the acquisition function, the parameters identified

as unimportant will be set to their baseline values, generating simpler and more interpretable

policies. Other work has studied feature sparsity in GP regression but without considering sparsity
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in optimization (Oh et al., 2019; Park et al., 2021).

2.2.3 Multi-objective Bayesian optimization

Multi-objective BO is used when there are several (often competing) objectives f1, . . . , fm and we

wish to recover the Pareto frontier of non-dominated configurations. A classic method is ParEGO,

which applies the standard single-objective EI acquisition function to a random scalarization of

the objectives (Knowles, 2006). Many types of scalarizations have been developed for transforming

multi-objective optimization (MOO) problems into single-objective problems (Ehrgott, 2005). Recent

work on multi-objective BO has focused on developing acquisition functions that explicitly target

increasing the hypervolume of the known Pareto frontier. Acquisition functions in this class, such

as Expected Hypervolume Improvement (EHVI), are considered state-of-the-art for multi-objective

BO (Yang et al., 2019a; Daulton et al., 2020; 2021).

2.3 Acquisition Function Regularization

2.3.1 External regularization

We use a regularization term ξ(x) to model sparsity, which may be an L0 quasinorm to target

feature-level sparsity, ξ(x) = ∥x − xs∥0, or can be adjusted for different forms of sparsity such as

group sparsity. Here xs represents the target point that the decision maker wishes to drive the

solution towards, e.g., a zero-vector or the current default parameters (status quo). For our analysis

of regularization, we will assume that xs is the unique global minimum of ξ(x).

A straightforward approach for adding regularization is to simply add a regularization penalty

directly to the acquisition function. This parallels regularized regression techniques like ridge

regression and the lasso. Given a penalty term ξ(x), we then maximize

αER(x;λ) = α(x)− λξ(x) (2.1)

to select the next point for evaluation. We refer to this approach as external regularization (ER). EI

with external regularization is:

αEI-ER(x;λ) = Ef [(f(x)− f(x∗))+]− λξ(x). (2.2)

The regularization coefficient λ must be set, just as with classic regularized regression. This
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formulation separates the explore/exploit value of a point, in α, from its sparsity value, in ξ. This

can perform poorly, because there is necessarily interaction between these two notions of value. We

provide a negative result showing that external regularization cannot capture certain levels of sparsity.

Theorem 2.1. Suppose α(x) = 0 for every x where ξ(x) ≤ θ. Then, for any value of λ > 0, every

maximizer of αER(x;λ) will satisfy ξ(x) > θ, or will equal xs.

This result is shown in Section 6.1.2, which also describes how this setting is easily encountered

in practice when there is a trade-off between objective and sparsity, as in Figure 2.1. Empirically,

Theorem 2.1 means that once a good non-sparse point has been found, sparse points will not be

selected by the regularized acquisition function, regardless of how λ is tuned. Increasing λ will change

the maximum of the regularized acquisition function from a non-sparse point directly to the trivial

solution of xs, skipping all levels of sparsity in between. The acquisition function has no way of

selecting sparse points that improve over other points with a similar level of sparsity.

2.3.2 Internal regularization

An alternative approach for adding regularization to the acquisition optimization is to add it directly

to the objective function. In this approach, instead of using the posterior of f to compute the

acquisition function, we compute the acquisition for the posterior of a regularized function:

g(x;λ) = f(x)− λξ(x). (2.3)

We refer to this as internal regularization (IR). The goal of the acquisition function is then to

maximize g, which can be made to have a sparse maximizer by appropriately setting λ. With internal

regularization, EI becomes

αEI-IR(x;λ) = Ef [(g(x)− g(x∗))+]

= Ef [(f(x)− f(x∗)− λ(ξ(x)− ξ(x∗)))+]
(2.4)

where x∗ is now the incumbent-best of g, not of f . The difference between external and internal

regularization depends on the acquisition function. It is easy to see that for the UCB acquisition

of Equation (1.5), they are identical. For EI they are not, as seen by comparing Equations (2.2)

and (2.4). For EI, internal regularization avoids some of the issues of external regularization by

incorporating sparsity directly into the assessment of improvement. In Equation (2.4), improvement

is measured both in terms of increase of objective and increase in sparsity, and it is measured
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with respect to an incumbent best that has incorporated the sparsity penalty. However, internal

regularization can also be incapable of recovering points at every level of sparsity, as we will show

now. For this result, we are interested in the optimal objective value as a function of sparsity level:

h(θ) = max
x∈B

f(x) subject to ξ(x) = θ. (2.5)

A trade-off between sparsity and objective would result in h(θ) increasing with θ, though it need not

be strictly increasing. We now give the negative result for internal regularization, see Section 6.1.2

for details.

Theorem 2.2. For any θ in the interior of an interval where h is strictly convex, there is no

maximizer of Equation (2.3) with ξ(x) = θ, for any λ > 0.

This result shows that internal regularization can only hope to recover optimal points at all

sparsity levels if h is concave on its entire domain. This is a strong condition, one unlikely to hold for

the types of functions typically of interest in BO, even with simple regularizers. Note that this result

is independent of the choice of λ and the acquisition function used. If the desired level of sparsity

happens to lie within a region where h is strictly convex, internal regularization can be expected to

fail to find the optimum. Figure 6.1 in Section 6.1.2 shows an illustration of this result, in a problem

where h has a region of strict convexity.

We will see in the empirical results that internal regularization performs better than external

regularization, though, consistent with Proposition Theorem 2.2, can fail to cover the entire objective

vs. sparsity trade-off and so neither is the recommended approach for sparse BO. In this paper we

focus on EI, but both forms of regularization can be applied to any acquisition function, including

entropy search methods. In entropy search, the acquisition function evaluates points according to

their information gain with respect to the current belief about the location or function value of the

optimum. The information gain will thus depend on the level of sparsity in a similar way as with EI,

and so external and internal regularization have similar considerations.

2.4 Multi-objective Optimization

There are two fundamental challenges with both of the regularization approaches developed in

Section 2.3. The first is that they both have a regularization coefficient λ that must be set. In a

regression setting, the regularization coefficient is usually set to maximize cross-validation accuracy

through hyperparameter optimization, often using grid search or BO (Snoek et al., 2012). In sparse
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BO, if there is a known desired level of sparsity, λ can be swept in each iteration of optimization to

find a value that produces candidates with the desired level of sparsity. This significantly increases the

overhead of BO by requiring hyperparameter optimization as part of every acquisition optimization.

Furthermore, in real applications the desired level of sparsity is typically not known a priori.

When there is a trade-off between interpretability and system performance, the desired level of

interpretability will depend on what that trade-off looks like. In practice, we thus wish to identify

the best-achievable objective at any particular level of sparsity. The second challenge is that, per

the results of Theorems 2.1 and 2.2, we may not be able to identify the entire objective vs. sparsity

trade-off, no matter how λ is swept. Depending on the problem, it may be that the sparsity levels

of interest cannot be explored via either regularization strategy. Both of these challenges can be

addressed by viewing sparse BO from the lens of multi-objective BO.

2.4.1 Sparse BO as Multi-objective BO

In this section we introduce the Sparsity Exploring Bayesian Optimization method (SEBO), which

takes a multi-objective approach to sparse BO. Rather than considering ξ as a penalty applied to the

objective, we consider f and −ξ to each be objectives that we wish to maximize.

First, we note the following connection between internal regularization and multi-objective BO.

Remark 2.1. Internal regularization can be viewed as a linear scalarization of the two objectives f

and −ξ, with λ the weight. Linear scalarizations are commonly used in MOO (Marler and Arora,

2010)—see Section 6.1.4 for more discussion of the connection between internal regularization and

the ParEGO method for multi-objective BO.

Casting sparse BO as MOO of the objective and sparsity has several advantages. It provides a

solution for setting the regularization coefficient λ, since we can use methods from multi-objective BO

to optimally balance improvements in f and ξ with the goal of exploring the Pareto frontier. We can

use powerful approaches such as EHVI to select points that maximize performance for all levels of

sparsity, or equivalently, maximize sparsity for all levels of performance, explicitly optimizing for the

entire regularization path. The goal of multi-objective BO is to identify the optimum for every level

of sparsity, which enables decision makers to make an informed trade-off between interpretability and

other considerations of system performance. State-of-the-art MOO methods also avoid the issues of

Theorems 2.1 and 2.2 and are able to explore the entire Pareto front.

In our experiments, we use the EHVI acquisition function. Here, the hypervolume improvement

is defined with respect to a worst-case reference point r = [rf , rξ], which can be set to estimates
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for the minimum and maximum values of f and ξ respectively. Given a set of observations Xobs =

{x1, . . . ,xn}, the Pareto hypervolume of is defined as

V (Xobs) = λM

(
n⋃

i=1

(
[rf , rξ]× [f(xi), ξ(xi)]

))
,

where λM denotes the Lebesgue measure. The expected hypervolume improvement is computed as

αSEBO(x) = Ef

[
V (Xobs ∪ {x})− V (Xobs)

]
. (2.6)

This acquisition function is hyperparameter-free, and, as we will see, is highly effective for sparse

BO. In the experiments, we standardize the objectives when calculating the hypervolume. It is also

possible to weight objectives differently to encourage greater exploration of sparse or high-performing

solutions. We refer to the resulting method as SEBO, and explore its performance in combination

with the L0 sparse regularization, described next. The SEBO-L0 algorithm is shown in Section 2.6.

2.5 Acquisition Functions with L0 Sparsity

Our primary focus is L0 sparsity, which comes with the challenge that the L0 quasi-norm is

discontinuous, making the resulting acquisition function challenging to optimize. We will follow the

idea of homotopy continuation, which has been successfully applied to, for instance, solving non-linear

systems of equations and numerical bifurcation analysis (Allgower and Georg, 2012).

The main idea is to define a homotopy H(x, a), where H(x, astart) corresponds to a problem that

is easy to solve and H(x, aend) corresponds to the target problem. In particular, for a > 0 we define

H(x, a) = Ef [u([f(x), φa(x)])] where φa(x) := D −∑D
i=1 exp

(
−0.5 (xi/a)

2
)
≈ ∥x∥0 and x ∈ RD.

Under the assumption that the utility function u(x) defined in Section 2.2 is continuous, we have

lima→0+ H(x, a) = Ef [u([f(x), ∥x∥0])], which corresponds to the original acquisition function with

the L0 quasi-norm.

While it may be tempting to set a to a small value, e.g., a = 10−3, and optimize the acquisition

function directly, this will not work well as the gradient of the homotopy is (numerically) zero

almost everywhere in the domain. On the other hand, setting a to a large value, e.g., a = 1 will

make it much easier to optimize the acquisition function, but also result in a poor approximation

of the true acquisition function that will likely not yield sparse solutions. In order to optimize the

acquisition function, we will start at some value astart large enough to make the acquisition function
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easy to optimize and slowly decrease a towards aend = 0. Each time we change a we re-optimize the

acquisition function starting from the best solution found for the previous value of a.1 This idea is

illustrated in Figure 2.2 where we plot snapshots of H(x, a) for a few values of a as well as show the

resulting continuous homotopy path.
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Figure 2.2: Consider the 1D problem of using SEBO to optimize f(x) = −x2 with an L0 penalty
ξ(x) = ∥x− 0.5∥0. Assume Xobs = {0, 0.25, 0.75, 1.0} have already been evaluated and we want to
optimize SEBO to generate the next candidate. The global optimum of the acquisition function
is given by the sparse point x = 0.5. We show that optimizing the acquisition function along the
continuous homotopy path starting at astart = 10−0.5 allows us to eventually uncover find the true
optimum of x = 0.5.

2.6 SEBO Algorithm

The SEBO-L0 method is described in Algorithm 1. We start with an initial set of space-filling

quasi-random experiment designs. In each iteration step, we fit a SAAS GP model and optimize the

acquisition function to find the next point to evaluate, as shown at Line 1. When optimizing the

acquisition function, homotopy continuation is used to handle the discontinuous L0 norm. This part

is shown on Line 11.

2.7 Experiments

We evaluate EI-IR, EI-ER and SEBO on two synthetic and three real-world problems with a focus

on high-dimensional problems. Note that SEBO can be used for low-dimensional problems as well.

Additional details are included in Section 6.1.6. SEBO also naturally extends to multi-objective BO

problems, and our code release supports that. We focus on single-objective problems to visualize and

understand 2D Pareto frontiers, which are difficult to visualize in higher dimensions. We show the
1This may appear similar to the idea of learning rate annealing. However, rather than decreasing a hyperparameter

of the optimizer, we solve a sequence of optimization problems that approaches the true problem.
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Algorithm 1 Sparsity Exploring Bayesian Optimization with L0 norm (SEBO-L0)

1: procedure SEBO-L0 ▷ Outer loop of BO
2: Place a Gaussian Process prior on f
3: Observe f at n0 quasi-random initial points and get the initial dataset Dn0

4: for n← n0 + 1 to N do
5: Update the posterior probability distribution on f using observed data Dn−1

6: Select the next point xn ← Optimize-Homotopy(f̂n)
7: Evaluate xn: Dn ← {Dn−1, (xn, f(xn))}
8: end for
9: return The best point

10: end procedure
11: procedure Optimize-Homotopy(f̂) ▷ Optimize SEBO-L0 acquisition function
12: Define a homotopy H(x, a) using the posterior on f
13: Initialize a candidate pool Xa ← {}
14: for a← astart to aend do
15: xa ← maximize H(x, a) based on the best points in Xa

16: Xa ← {Xa,xa}
17: end for
18: return xa

19: end procedure

results using L0 regularization for most problems except for the last problem, where the group lasso

is used to demonstrate that the methods can be applied to recover different forms of sparsity, such

as group sparsity. In addition, we provide an ablation study that demonstrates the importance of

using L0 regularization by comparing it to L1 regularization. We show in an ablation study that the

homotopy continuation approach from Section 2.5 is crucial for effective L0 regularization.

2.7.1 Experimental setup

Our experiments all have high-dimensional parameter spaces, so we use the SAAS model when

optimizing with ER, IR, and SEBO. We compare performance to quasi-random search (Sobol), BO

with a standard ARD Matérn-5/2 kernel and the EI acquisition function (GPEI), and SAASBO. For

the SAAS model, we use the same hyperparameters as suggested by Eriksson and Jankowiak (2021)

and use the No-U-Turn (NUTS) sampler for model inference. The acquisition function is computed

by averaging over the MCMC samples. We always scale the domain to be the unit hypercube [0, 1]D

and standardize the objective to have mean 0 and variance 1 before fitting the GP model.

For the homotopy continuation approach described in Section 2.5, we discretize the range of a

to use 30 values starting from astart = 10−0.5, see Section 6.1.6 for more details. Figure 6.5 shows

that SEBO is not sensitive to the choice of astart. We use a deterministic model for sparsity when

using it as an objective. The figures show the mean results across replications (10 replications for the

adaptive bitrate simulation (ABR) problem and 20 for all other experiments), and the error bars
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correspond to 2 standard errors. All experiments were run on a Tesla V100 SXM2 GPU (16GB

RAM). Code for replicating the methods and benchmark experiments in this work is available at

https://github.com/facebookresearch/SparseBO.

2.7.2 Evaluation plots

We evaluate optimization performance in terms of the trade-off between the objective and sparsity.

To compare the trade-offs, we show the resulting Pareto frontier by treating sparsity as a separate

objective, e.g., Figure 2.3 (Right) and Figure 2.4. In particular, for each level of sparsity (active

dimensions), we plot the best value found using at most that number of non-sparse components.

We also show hypervolume traces in Section 6.1.6. In cases where a method is unable to find at

least one configuration for a given level of sparsity we assign replications an imputed function value

corresponding to the worst label shown on the y-axis. For the synthetic problems where the true

active dimensions and optima are known, we plot simple regret for a fixed level of sparsity, e.g., in

Figure 2.3 (Left, Middle).
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Figure 2.3: (Left) Simple regret for Branin embedded into a 50D space, considering only observations
with at most 2 active (non-sparse) parameters. SEBO-L0 performed the best followed by IR with
λ = 0.001. (Middle) SEBO-L0 and IR with λ = 0.001 performed the best for the Hartmann6 function
embedded into a 50D space when considering only observations with at most 6 active parameters.
(Right) The objective-sparsity trade-off after all 100 iterations on the Hartmann6 problem. Shown is
the Pareto frontier between sparsity and simple regret after the evaluation budget has been exhausted.
SEBO-L0 is able to explore the trade-offs and is able to discover sparse configurations with fewer
than 6 active parameters that are not found by the other methods.

2.7.3 Synthetic functions

We first consider two synthetic problems where the level of sparsity is known. We use the Branin

and Hartmann6 functions embedded into a 50D space where 0 is considered sparse, i.e. xs = 0. We

used 50 trials (evaluations) with 8 quasi-random initial points for Branin and 100 trials with 20
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quasi-random initial points for Hartmann6. The results are shown in Figure 2.3. The two leftmost

plots show the optimization results by evaluating the objective only on observed points whose number

of active (i.e., non-zero) parameters was less than or equal to the true effective dimension (2 for

Branin and 6 for Hartmann6).

We observe that SEBO-L0 performed the best, followed by IR with λ = 0.001. This suggests

IR may perform competitively if the regularization coefficient is chosen optimally. On the other

hand, ER performed worse than SEBO and IR. Finally, methods with non-regularized acquisition

functions (Sobol, GPEI, and SAASBO) failed to identify sparse configurations since they do not

explicitly optimize for sparsity of the solutions. Figure 2.3 (Right) visualizes the trade-off between

the objective and sparsity and SEBO-L0 yielded the best sparsity trade-offs.

2.7.4 Ranking sourcing system simulation

The sourcing component of a recommendation system is responsible for retrieving a collection of

items that are sent to the ranking algorithm for scoring. Items are retrieved from multiple sources,

for instance that may represent different aspects of the user interest taxonomy (Wilhelm et al., 2018).

Querying for more items can potentially improve the quality of the recommendation system, but

comes at the cost of increasing the infrastructure load. In addition, each source may require individual

maintenance; thus, deprecating poor sources could reduce technical debt and maintenance costs of

an entire recommendation system (Sculley et al., 2015). Our goal is thus to identify a retrieval policy

that uses a minimal number of sources while still maximizing the ranking quality score, measured by

a function of content relevance and infrastructure load.

We developed a simulation of a recommender sourcing system that simulates the quality and

infrastructure load of recommendations produced by a particular sourcing policy. The sourcing

system is modeled as a topic model, where each source has a different distribution over topics, and

topics have different levels of relevance to the user. When two sources are (topically) similar, they

may obtain duplicate items, which will not improve recommendation quality.

We consider a 25D retrieval policy in which each parameter specifies the number of items retrieved

from a particular source. Our desired sparsity is to set parameters to 0 (xs = 0), i.e., turning off

the source. See Section 6.1.6 for more details. We used 8 initial points and ran 100 trials for all the

methods. Figure 2.4 (Left) shows that SEBO-L0 performed the best in optimizing the ranking quality

score under different sparsity levels. Sobol and GPEI could not find sparse policies and obtained

worse quality scores even with 25 active parameters. IR and SAASBO performed similarly, and ER
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with the larger regularization parameter λ = 0.01 achieved higher quality score with less than 10

active dimensions.
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Figure 2.4: Objective-sparsity trade-offs after 100 (75 for ABR) trials for the three real-world problems.
(Left) Sourcing problem: SEBO-L0 regularization effectively explored all sparsity trade-offs. (Middle)
SVM problem: ER with λ = 0.01 and IR with λ = 0.01 were able to explore parts of the Pareto
frontier, however were dominated by SEBO-L0. (Right) ABR problem: Similar behavior as in the
SVM problem was seen here with a group lasso penalty.

2.7.5 SVM machine learning hyperparameter tuning

We consider the problem of doing joint feature selection and hyperparameter tuning for a support

vector machine (SVM). We tuned the C, ϵ, and γ hyperparameters of the SVM, jointly with separate

scale factors in the continuous range [0, 1] for each feature. We used 100 features from the CT slice

UCI dataset Asuncion and Newman (2007) and the goal was to minimize the RMSE on the test set.

This produces a 103D optimization problem where we shrink each feature towards a scale factor

of 0, i.e. xs
i = 0, as it effectively removes the feature from the dataset. We took C ∈ [0.01, 1.0],

ϵ ∈ [0.01, 1.0], and γ ∈ [0.001, 0.1], where the center of each interval was considered sparse as this is

the default value in Sklearn (i.e. xs
i = Mid(Hyperparameter Interval)). We optimized C, ϵ, and γ on

a log-scale, and initialized all methods with 20 points and ran 100 evaluations. Figure 2.4 (Middle)

shows that SEBO-L0 was best able to explore the trade-offs between sparsity and (negative) RMSE.

2.7.6 Adaptive bitrate simulation

Video streaming and real-time conferencing systems use adaptive bitrate (ABR) algorithms to balance

video quality and uninterrupted playback. The goal is to maximize the quality of experience (QoE).

The optimal policy for a particular ABR controller may depend on the network, for instance a stream

with large fluctuations in bandwidth will benefit from different ABR parameters than a stream
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with stable bandwidth. This motivates the use of a contextual policy where ABR parameters are

personalized by context variables such as country or network type (Feng et al., 2020). Various other

systems and infrastructure applications commonly rely on tunable parameters which can benefit from

contextualization.

We suppose that the system has already been optimized with a global non-contextual policy,

πglobal, that is used for all contexts. Our goal here is to use sparse BO to find the contextualized

residuals ∆πi for each individual context i, i.e., πi = πglobal + ∆πi, with the target sparse point

xs set to be πglobal. By regularizing the contextualized residuals ∆πi’s using the group lasso (GL)

norm (Yuan and Lin, 2006), we hope to find policies that require minimum alteration to the global

policy πglobal, in which the minimum number of contexts have parameters that deviate from the

global optimum. This adds both simplicity and interpretability to the contextual policy, since we can

interpret the policy by looking at the contextual residuals ∆πi.

Figure 2.4 (Right) shows the results of applying our methods to the contextual ABR optimization

problem from Feng et al. (2020). For this problem, we have 12 contexts and 4 parameters for each

context resulting in a 48D optimization problem. We used 75 trials with 8 quasi-random initial

points for all the methods. The group lasso penalty is defined by assigning parameters for each

individual context to be within the same group. We observe that IR with a fixed λ was able to

explore trade-offs at certain sparsity levels and that stronger regularization (larger λ) resulted in

finding configurations that were more sparse. SEBO-GL, on the other hand, automatically and

efficiently explored the trade-off between sparsity and reward at all sparsity levels. All other baselines

(Sobol, GPEI, SAASBO) failed to find any sparse configurations that achieve non-zero reward.

2.7.7 Ablation study

We show by means of an ablation study the importance of using the homotopy continuation approach

from Section 2.5 to target L0 sparsity. We focus on SEBO as it consistently outperformed IR and ER,

and refer to Figure 6.6 in Section 6.1.6 for additional results on the importance of using the SAAS

model. The results from the ablation study can be seen in Figure 2.5. Using a fixed value of a for

the L0 approximation performs poorly, particularly when a is small, which is due to the acquisition

function being zero almost everywhere and thus difficult to optimize. On the other hand, a = 1

results in a failure to discover sparse configurations and the resulting method performs similar to

SAASBO (see Figure 2.3). In addition, we show that for all approaches (ER, IR, and SEBO), working

directly with L0 regularization works significantly better than the frequently used L1 regularization.
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Figure 2.5: Ablation study on the Hartmann6 function embedded in a 50D space. (Left) SEBO-L0

works much better than SEBO-L1 as it directly targets L0 sparsity. Using a fixed value of a performs
poorly, confirming the importance of our homotopy continuation approach. (Middle) Working directly
with L0 regularization works drastically better than L1 regularization for both IR and ER. (Right)
The 6 important parameters are more frequently included in Pareto optimal configurations for the
embedded Hartmann6 problem.

Finally, we show in Figure 2.5 (Right) how frequently each parameter is turned on (non-zero) in the

final Pareto frontier for each replication of SEBO-L0, which indicates the method correctly identifies

the important parameters.

2.7.8 Interpretation of sparse solutions

Ranking sourcing system simulation

We examine what active dimensions are selected in the recommender sourcing system problem to

understand the obtained sparse solutions. For SEBO-L0 results across 20 replications, we obtain the

optimal 25-dimensional retrieval policy and also compute the average of retrievals per source at each

sparsity level. For each source, we compute a source quality scores based on the simulation setup

stated in Section 6.1.6. Each source contains a mixture over a set of topics with source relevance score

being qs and the infrastructure cost per fetched item being cs. With this, we define and compute the

source quality score as qs − 4× cs. Note the score is computed for each source in order to interpret

the obtained solutions and differ from the quality score used in the optimization.

In Figure 2.6, the left heatmap visualizes the optimal policy at different sparsity levels across

20 replications and the middle one visualizes the average retrieval policy values. Each column

corresponds to one source and is sorted based on source quality score in an ascending order (from left

to right); each row represents the sparsity level (number of active dimensions). The color indicates

the parameter values. As it can be seen, sources with low quality scores are turned off (zero query)
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Figure 2.6: (Left). The heatmap of optimal retrieval policy at different sparsity levels. (Mid) The
heatmap of average retrieval policy values at different sparsity levels. (Right) The scatter plot
between average retrieval policy values with 5 active parameters and source quality score. We can
see that more items are retrieved from higher quality sources, while the number of items from lower
quality sources are driven to zero to achieve sparsity.

and sources with higher scores have higher number of retrievals even with smaller active dimensions.

This indicates that the sparse policy obtained from SEBO identifies the most effective sources at

each sparsity level. The right plot in Figure 2.6 shows the relationship between number of items

retrieved from each source and source quality score with 5 active parameters. Each dot represents a

source. The curve is a fitted spline to visualize the relationship. From both plots we can see that

more items are retrieved from higher quality sources, while the number of items from lower quality

sources are driven to zero.

Synthetic Function - Branin (d = 2, D = 50)

Similar to Figure 2.5 (right), we compute the frequency of each parameter is turned on (non-zero)

in the final Pareto frontier for each replication of SEBO-L0. These frequencies help us to identify

the important parameters and interpret the sparse policies, shown in Figure 2.7 (left). The two true

effective dimensions in augmented Branin (d = 2, D = 50), colored in orange bars, have the highest

frequencies and are identified by SEBO-L0.

SVM Machine Learning Hyperparameter Tuning

Figure 2.7 (right) visualizes the frequency of parameter values being non-sparse in the final Pareto

frontier for each replication of SEBO-L0. The sparse values are the center of each interval of the

three hyperparameters γ, C and ϵ. For the augmented parameters, values being zero are considered

as sparse. The three orange bars correspond to the three effective hyperparameters of the SVM,

which obtains high frequencies of being non-sparse. The gray bars, corresponding to the augmented
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Figure 2.7: (Left) Branin (d = 2, D = 50). The 2 true effective parameters (colored as orange) are
more frequently set to be non-zero in Pareto optimal configurations. (Right) SVM (d = 3, D = 103).
The 3 effective hyperparameters (orange) of the SVM have higher frequencies of being non-sparse
compared with the augmented dimensions (gray bars).

dimensions, have much lower frequencies.

2.8 Discussion

BO is a powerful tool for sample-efficient optimization of real-world systems. Recent developments

in BO have made it possible to optimize hundreds of parameters, providing solutions to complex

optimization problems in science and engineering. Yet practitioners and decision-makers often favor

simplicity in the solutions, e.g., in the design space, for the sake of interpretability, managing risk, or

for reducing technical debt. This poses a new challenge: how should we discover well-performing and

parsimonious designs in a sample-efficient manner?

We show that sparsity-inducing models are not sufficient for producing sparse designs, and examine

several schemes for penalizing design parameters within the acquisition function itself. We utilize

theoretical insights from multi-objective optimization to identify limitations of common penalization

approaches and propose SEBO, which optimizes for both sparsity and performance. In doing so, we

are able to learn the entire set of optimal trade-offs between objective and sparsity, allowing decision

makers to select the amount of objective they are willing to sacrifice for increased interpretability

and simplicity.

Our formulation is compatible with a variety of regularizers, including L0, L1, and the group

lasso penalties. To enable the optimization of the discontinuous L0 penalty, we develop a novel

acquisition function optimization method based on homotopy continuation that enables gradient-based

optimization. We find that SEBO with L0 penalization consistently outperforms all other methods in
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identifying optimal designs, while also eliminating the need to tune regularization hyperparameters.

Our work has a few limitations that suggest areas for future work. First, SEBO can be useful for

identifying the entire Pareto frontier of sparse solutions, but in some contexts decision-makers may

have a desired sparsity level in mind. Further work is required to develop adaptive algorithms that

can efficiently target specific sparsity levels. Second, if the goal is to reduce regret while achieving

sparsity, there may be opportunities for theoretical work on selecting model and acquisition function

regularization parameters simultaneously, see, e.g., Bastani and Bayati (2020).

37



Chapter 3

Amortized Gaussian Process

Hyperparameter Inference

3.1 Introduction

Gaussian processes (GPs) are powerful tools for modeling distributions over functions. They are

highly flexible Bayesian nonparametric models for which the posterior is often available in closed

form. GPs are successful models for a variety of machine learning tasks, from regression and

classification (Rasmussen and Williams, 2006), to Bayesian optimization (Snoek et al., 2012), to

modeling of dynamics (Kuss and Rasmussen, 2004; Wang et al., 2006). The predictive performance

of a Gaussian process, however, is highly dependent on the specifics of the prior on functions, as

determined by the associated positive definite kernel function (Rasmussen and Williams, 2006). To

find a good prior, one needs to first come up with a family of kernel functions that is capable of

capturing the structure of the data.

The kernel hyperparameters must then be determined from data, usually by maximizing the

log marginal likelihood (MLL), i.e., empirical Bayes (Rasmussen and Williams, 2006). There are

two major issues associated with this procedure. First, evaluating the log marginal likelihood

(and its gradient) for different hyperparameters is generally expensive, with O(N3) computational

complexity for N training data. Second, the log MLL is usually highly non-concave, making both

sampling and optimization difficult. Getting stuck in bad local maxima or saddle points can result in

hyperparameters with significant model mismatch and thus poor predictive performance (Rasmussen,

1997; Neal, 1999; Zhang and Leithead, 2005). Alternatively, to avoid the catastrophic failure of
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bad local minima and point-estimates in MLL optimization, one may attempt a full Bayesian

treatment by integrating out the kernel hyperparameters using Markov chain Monte Carlo (MCMC)

techniques (Murray and Adams, 2010; Filippone and Girolami, 2014; Filippone et al., 2013). In

this paper, we focus on the optimization case, although many of the ideas we present could also be

applied to marginalization of hyperparameters.

Various approaches to scaling Gaussian processes have been proposed, exploring innovative ideas

such as intelligently selecting a subset of the data (Smola and Bartlett, 2001; Williams and Seeger,

2001) or constructing a low-rank approximation of the covariance matrix based on virtual “inducing”

points (Csató and Opper, 2002; Quiñonero-Candela and Rasmussen, 2005; Seeger et al., 2003; Snelson

and Ghahramani, 2006; Titsias, 2009; Hensman et al., 2013). These scaling approaches have generally

focused on how to solve the linear system more quickly without having to significantly compromise

the model or the predictive performance, either by reducing the size of the linear system, solving

the linear system approximately, or approximating the model with one that has computationally

convenient structure. Focusing on the linear system has been a sensible approach, as effective

solutions simultaneously enable both direct prediction with the Gaussian process and evaluation of

hyperparameters via the log marginal likelihood.

Here however, we take an entirely different approach and focus solely on the model selection

problem, without reference to linear systems at all. Instead, we amortize the Gaussian process model

selection problem by training a neural network to consume input/output observations and emit

an estimate of the hyperparameters that would otherwise arise from maximizing the log marginal

likelihood. This approach is inspired by amortized variational inference approaches (Kingma and

Welling, 2013; Rezende et al., 2014; Gregor et al., 2014; Ritchie et al., 2016), which similarly sidestep

expensive optimization procedures in favor of directly producing estimates. In the variational

inference case, the neural network produces approximate posterior distributions over the unknown

latent variables; here we produce point estimates of the unknown hyperparameters.

Of course, as noted above, selection of the kernel family is just as important as determination

of hyperparameters, and we view this as a crucial piece of the amortized model selection puzzle.

One approach to modeling the huge space of valid kernel functions is to represent the target kernel

as a composition of different base kernels (Duvenaud et al., 2013; Lloyd et al., 2014; Sun et al.,

2018). In principle, various base kernels, composition rules, and associated hyperparameters could be

modeled as latent random variables, and emitted by a neural network. However, since the latent

variables here involve a mix of discrete variables (types and combinations of kernel functions) and

continuous variables (hyperparameters associated), we have found this approach to be difficult.
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Moreover, the interrelated effects of, e.g., length scale and kernel choice, make it difficult to unify

the hyperparameter space across composed kernels. Thus, instead of working with compositions of

commonly-used kernels, we focus on stationary kernels in the spectral domain and directly learn the

spectral density of the kernel function (Wilson and Adams, 2013; Samo and Roberts, 2015; Remes

et al., 2017). The space of spectral densities provides a unified and compact continuous representation

of the space of stationary covariance functions. In particular, we model the spectral density of

the kernel function as a mixture (Wilson and Adams, 2013) that is capable of approximating any

stationary kernel arbitrarily well.

There are two particularly salient challenges associated with training a single neural network to

produce effective hyperparameters for many different regression-type tasks: both the amount of data

and the dimensionality of the input can vary from problem to problem. To address this, we develop a

specialized hierarchical self-attention structure that consumes datasets and produces spectral densities

while being invariant to permutations of the data and the dimensions. Thus, this single “meta-model”

can be applied to different problems for which a Gaussian process is applicable. The parameters of

the network are trained using gradients computed via reverse-mode automatic differentiation through

the log marginal likelihood of the Gaussian process, for randomly-generated synthetic data from the

prior. Then we directly apply the trained neural model to real-world datasets of varying size and

dimension in different GP applications. Even though the model is trained with only synthetic data,

experimental evidence indicates that the estimated hyperparameters are comparable in quality to

those from the conventional model selection procedures while being ∼100 times faster to obtain.

3.2 Amortized GP Hyperparameter Inference

In this section, we frame the problem of amortized Gaussian process hyperparameter inference.

The objective is to avoid the computational overhead and fragility of maximizing the log marginal

likelihood, particularly within the inner loop of an iterative procedure such as Bayesian optimization

or Bayesian quadrature. Our approach is to instead train a flexible function approximator, i.e., a

neural network, to provide high-quality estimates of kernel hyperparameters, directly from the data.

We call our method amortized hyperparameter inference for Gaussian processes (AHGP).

In GP regression, it is common to use stationary kernels, which include most generic covariance

functions, such as the exponentiated quadratic, rational quadratic and Matérn. Consistent with this,

we will study stationary kernels, but seek to make them highly flexible. One way to achieve flexibility

is via composition of different commonly-used base kernels as in Duvenaud et al. (2013); Lloyd et al.
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Figure 3.1: The top part of the figure gives an illustration of the computation graph in AHGP. The
bottom part describes our hierarchical attention neural net architecture.

(2014); Sun et al. (2018). Model selection in this approach—choice of base kernels, composition rules,

and kernel hyperparameters—could in principle be done via a neural network; however, we have found

the associated optimization problem to be difficult and complicated. First, it involves optimization

over both discrete (kernel types and composition rules) variables and continuous (hyperparameters)

variables. Second, different kernels bring with them continuous parameters with different cardinalities

and interpretations, making it challenging to identify a unified hyperparameter space.

3.2.1 Spectral modeling of stationary kernel functions

In lieu of a compositional approach to the kernel function, we build a flexible approach around the

duality between stationary kernels and their spectral density, taking advantage of the well-known

theorem by Bochner stated below.

Theorem 3.1. (Bochner (1959)) A complex-valued function k on Rd is the covariance function of

a weakly stationary (also known as covariance-stationary) mean square continuous complex-valued

random process on Rd if and only if it can be represented as

k(τ) =

∫
Rd

e2πiω
⊤τdµ(ω), (3.1)

where µ is a positive finite measure, often known as the spectral measure of the random process.

When µ is absolutely continuous with respect to the Lebesgue measure, its Radon–Nikodym

derivative (density) S(ω) is called the spectral density of the random process. The kernel function k(·)

and the spectral density S(·) can be understood to be Fourier transform pairs. We take advantage of
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this correspondence and use a neural network to predict the spectral density of the kernel function

rather than the covariance function itself.

Following previous work (Wilson and Adams, 2013; Wilson et al., 2014), we model the spectral

density via a Gaussian mixture, leading to interpretability and closed form evaluation of the kernel.

Additionally, the fact that Gaussian mixtures are dense in the space of probability distribution

functions (Silverman, 1986; Wilson and Adams, 2013) makes them capable of approximating the

spectral density of any stationary kernel function arbitrarily well. Here we further assume that the

kernel function has a product structure over different dimensions and every dimension has its own

mixture of Gaussians. The product kernel structure is a common modeling choice in Gaussian process

regression, and arises naturally in many generic kernels such as the exponentiated quadratic and its

automatic relevance determination (ARD) version. Additionally, it is common to compose kernels

via element-wise products, with each dimension’s functional properties encoded in its corresponding

kernel function (Rasmussen and Williams, 2006; Gönen and Alpaydin, 2011; Duvenaud et al., 2013;

Wilson et al., 2014).

3.2.2 Formulation

We now formalize this problem of amortized hyperparameter inference in a Gaussian process. We are

interested in fitting many different regression functions of the form f : RD → R, with varying values

of D. For the l-th regression task T (l), a set of input/output training data are observed and are given

by D(l) := {(x(l)
i , y

(l)
i )}Nl

i=1 = {X(l),y(l)}, where y
(l)
i = fl(x

(l)
i ) + ϵ

(l)
i with x

(l)
i ∈ RDl and ϵ

(l)
i being

i.i.d. zero-mean Gaussian noise. Assume we are given L tasks, with each task randomly sampled

i.i.d. from a distribution over tasks, i.e., {T (l)}Ll=1
i.i.d.∼ p(T ). We further assume that for each task,

the function values are generated by some underlying Gaussian process with its own unique kernel

hyperparameters. The spectral density of each task’s GP is modeled as a mixture of M Gaussian

over each dimension as discussed in Section 3.2.1, with weights, means and variances denoted as

θ
(l)
d = {{w(l)

d,m}Mm=1, {µ(l)
d,m}Mm=1, {σ2(l)

d,m}Mm=1} for the d-th dimension in task l. For compactness, we

use θ(l) = {θ(l)d }Dl

d=1 to denote the collective hyperparameters of the spectral density for task l.

The neural network, parameterized by ϕ, defines a function gϕ from a dataset D(l) to an estimate

of its spectral density hyperparameters θ(l), i.e., θ(l) = gϕ(D(l)). Through the duality of spectral

densities and stationary kernel functions, the spectral mixture product (SMP) kernel (Wilson et al.,
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2014) is given by:

kSMPθ
(τ )=

D∏
d=1

kSMPθd
(τd) ,

kSMPθd
(τd)=

M∑
m=1

wd,m exp
{
−2π2τ 2

dσ
2
d,m

}
cos (2πτdµd,m) ,

where τd is the d-th component of τ = x− x′ ∈ RD, i.e., the difference of two data points.

We can now train the neural network to produce hyperparameters using a “dataset of datasets”,{
D(l)

}L
l=1

. With the closed form kernel function specified by its spectral density hyperparameters, the

averaged negative log marginal likelihood evaluated from Eqn (1.3) is used as our training objective:

L
(
ϕ,
{
D(l)

}L

l=1

)
= − 1

L

L∑
l=1

1

Nl
log p

(
y(l)

∣∣∣ X(l), θ(l)
)
, (3.2)

where θ(l) = gϕ(D(l)) and Nl is the number of data points in the l-th dataset. Once the neural

network is trained, it can be used to estimate the GP kernel function that would be appropriate for

a new set of input/output data Dtest by simply doing a forward pass of the neural model.

3.3 Hierarchical Attention Network for GP Hyperparameter

Learning

As described in the previous section, the neural network learns a function from a dataset D(l) to

spectral density parameters {θ(l)d }Dl

d=1, determining the GP kernel function for task l. As in other deep

learning problems, the architecture of the neural network is critical; in particular, the structure of

the network must take advantage of available symmetries. In our case, for general purpose inference

of GP kernel hyperparameters, we require an architecture that is versatile enough to accommodate

datasets of varying input dimension and with different number of data points. Furthermore, the

model should be invariant to permutation of both the data and input dimensions. In other words,

for a given dataset D(l), neither shuffling the order of the (exchangeable) data nor shuffling the order

of the dimensions should change the resulting estimate of the kernel function. Importantly, the

regularization and parameter sharing induced by enforcement of such invariances should enable the

neural network to learn better and faster, analogously to convolutional neural networks for images.
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3.3.1 Architecture

We draw inspiration from multi-head self-attention mechanisms and propose a hierarchical Trans-

former (Vaswani et al., 2017) type of neural network architecture for tackling the problem of learning

GP hyperparameters. A general Transformer model has multiple layers and each layer consists of a

multi-head self-attention sub-layer followed by a feed forward network with residual connections and

layer normalizations. It serves as an autoregressive encoder that maps a set of input data to a set of

output representations. In particular, the self-attention sub-layers allow each input datum to attend

to the representations of other data and produce context-aware representations. Multiple layers of

self-attention enable modeling of high-order non-linear interactions between input representations.

For details about multi-head self-attention mechanisms, we refer readers to Section 6.2.1.

Briefly, our network architecture mainly consists of two hierarchically nested Transformer-like

blocks. A graphic illustration of the proposed architecture is presented in Figure 3.1.

Local Transformer The first transformer block, LocalTransformer, serves as an encoder of the per-

dimension local information about the observed function, e.g., length scale, smoothness, periodicity,

etc. It takes in a set of input/output data specific to the d-th dimension, e.g., D(l)
d = {(x(l)

i,d, y
(l)
i )}Nl

i=1,

and outputs a corresponding set of representations {h(l)
i,d}Nl

i=1. In LocalTransformer, only interactions

within the d-th dimension are involved, hence each h
(l)
i,d is a context-aware representation of local

information about the underlying function around dimension d of datum (x
(l)
i , y

(l)
i ).

Aggregate Function The outputs from LocalTransformer{h(l)
i,d}Nl

i=1 are aggregated through an

AggregateFunction that assembles a single local dimension-specific representation h
(l)
local,d for the d-th

dimension. These feature representations {h(l)
local,d}Dl

d=1 provide a summary of each dimension’s local

information regarding the observed function.

Global Transformer After the dimension-specific local representations {h(l)
local,d}Dl

d=1 are computed,

they are fed into a second dimension-level Transformer block, GlobalTransformer, where non-linear

interactions between the dimensions are modeled through multiple layers of multi-head self-attention.

The final per-dimensional representations {h(l)
global,d}Dl

d=1, which serve as context-aware representations

at a global (dimension) level, are further passed through a multi-layer perceptron (MLP) to produce

the final spectral density hyperparameters {θ(l)d }Dl

d=1.
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3.3.2 Versatility and permutation invariance

Self-attention enables the model to consume a set of input/output data with arbitrary data cardinality

and dimensionality. The versatility of the model makes it general-purpose: one could train a single

neural model to predict GP kernel hyperparameters of different tasks with varying data cardinality

and dimensionality, as long as the inputs are real-valued. The proposed model also possesses the

following permutation equivariance/invariance properties.

Proposition 3.1. If AggregateFunction is permutation invariant, and weights of LocalTransformer

and MLP are shared across dimensions, then the proposed neural network is permutation equivariant

with respect to data dimensions and permutation invariant with respect to data points.

Intuitively, these properties are inherited from the permutation equivariance of self-attention and

the permutation invariance of the AggregateFunction. See Section 6.2.2 for a detailed proof. It is

also noted that the versatility and inductive biases (permutation invariance/equivariance) of the

proposed hierarchical attention network are generic, making our proposed neural model potentially

useful for other tasks that involve learning representations over datasets, such as learning statistics

of datasets in Edwards and Storkey (2016).

3.3.3 Complexity analysis.

For each multi-head self-attention layer, the computational complexity is O(h · n2), where h is the

representation dimension and n is the size of the input set. Assuming that LocalTransformer has

l1 layers with representation dimension h1 and GlobalTransformer has l2 layers with representation

dimension h2, the complexity of our model is O(l1 · h1 ·N2 + l2 · h2 ·D2), where N is the number

of data points and D is the dimensionality. In comparison, exact marginal likelihood optimization

scales as O(r ·N3), where r denotes the number of gradient evaluations during optimization. It is

possible to further reduce the complexity of our model to O(l1 · h1 ·m · N + l2 · h2 ·m ·D) if we

restrict the number of attentions to m by either introducing sparse attentions (Child et al., 2019) or

inducing points (Lee et al., 2019), which we leave for future work.
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3.4 Related Work

3.4.1 Amortized variational inference

Amortized variational inference (Kingma and Welling, 2013; Kingma et al., 2014; Gregor et al.,

2014; Ritchie et al., 2016) was a major inspiration for the present work. Kingma and Welling (2013)

first proposed to use a neural network to amortize the expensive variational inference optimization

through training on the evidence lower bound (ELBO) with the reparametrization trick. Our work

is motivated by this idea, where we use a neural network to produce an estimate of the kernel

hyperparameters conditioned on the data. Instead of producing approximate posteriors, we produce

point estimates. Note that our model can be directly extended to the variational inference framework,

which we leave as future work.

3.4.2 Neural processes

Another line of work, neural processes (NPs) (Garnelo et al., 2018b;a; Kim et al., 2019; Louizos et al.,

2019), makes use of amortized variational inference to predict a distribution over regression functions

from a set of observed input-output pairs. Our work targets estimation of GP hyperparameters as

part of a full GP inference procedure, while neural processes serve as an end-to-end approximations

to the GP inference itself. It should also be noted that our method is task-agnostic: one single

trained neural model can be used across different problems with different dimensionality. In the

neural process approach, different neural networks need to be trained for different types of tasks. In

particular, Kim et al. (2019) proposed to extend the original NP by introducing attention mechanism

between the context data and the target data for better modeling the underlying structure of the

problem. In comparison, the hierarchical attention network proposed in our method models not

only between data points but also between dimensions, which allows the task-agnostic nature of our

method.

3.4.3 GPU-accelerated GP inference

There have been recent efforts (Gardner et al., 2018; Wang et al., 2019) to scale up GP inference

with the help of GPUs by introducing smartly-designed batched conjugate gradient algorithms. In

contrast, our work focuses on providing a task-agnostic method for amortizing the cost of GP model

selection. Note that AHGP is also able to be deployed on GPUs.
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3.4.4 Meta-learning

Under the general meta-learning framework, our model could be regarded as a meta-model for

predicting hyperparameters. There have been recent explorations of meta-learning that are model-

based (Santoro et al., 2016; Duan et al., 2016), metric based (Vinyals et al., 2016; Koch et al.,

2015) or optimization based (Schmidhuber, 1987; Bengio et al., 1992; Finn et al., 2017). Gordon

et al. (2018) extends the meta-learning framework to probabilistic inference for regression. To better

warm-start BO through leveraging previous related BO runs, meta-learning has also been proposed

for BO recently (Feurer et al., 2015; Perrone et al., 2018; Feurer et al., 2018). The BO meta-learning

approaches focus on the few-shot learning setup: i.e. how to build a good surrogate model with

very few function evaluations for a new but similar task. In comparison, our method focuses on fast

inference of GP hyperparameters, and our single trained model is adaptation-free and can be directly

applied to a wider range of new GP use cases.

3.5 Experimental Results

To empirically evaluate the AHGP, we studied three different GP use cases: regression, Bayesian

optimization and Bayesian quadrature.

3.5.1 Baselines

We compare our method to the standard approach of maximizing the log marginal likelihood with

respect to hyperparameters. We also compare with the sparse variational Gaussian processes method

(SGPR) (Titsias, 2009; Hensman et al., 2013), which uses inducing points to approximate the full

GP. The focus of the comparisons will be on the quality of the selected kernel hyperparameters and

the run time of the hyperparameter selection procedure.

The baselines are implemented with two popular GP packages: GPy (GPy, 2012) (implemented

for CPU) and GPyTorch (Gardner et al., 2018) (implemented for GPU). The spectral mixture

(SM) kernel and spectral mixture product (SMP) kernel are used as the kernel functions. These

give rise to eight different baselines: GPy-SM, GPy-SM-Sp, GPy-SMP, GPy-SMP-Sp, GPT-SM,

GPT-SM-Sp, GPT-SMP, GPT-SMP-Sp, where we use “GPT” to denote “GPyTorch” and “Sp” to

denote “SGPR”. The default L-BFGS optimizer is used for GPy and the default Adam (Kingma and

Ba, 2014) optimizer is used for GPyTorch. The GPyTorch baselines make use of batched conjugate

gradient to invert the kernel matrix for efficient approximate inference. We additionally implement a
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full GP baseline with SMP kernel that uses Cholesky decomposition in PyTorch (Paszke et al., 2019),

and its MLL is optimized via reverse-mode automatic differentiation. We will refer to this baseline

as PyT-AD-SMP.

3.5.2 Experimental setup

Synthetic Training Dataset Generation

In our experiments, our training dataset is constructed by sampling multiple sets of input/output

data from synthetically generated GPs with stationary kernel functions. For each GP, its data

dimensionality is sampled uniform randomly from 2∼15. To sample flexible kernel functions, we

randomly generate mixtures of Gaussians to represent its spectral density. The weights of the Gaussian

mixtures are drawn from Dirichlet distribution and the lengthscales (i.e., 1/
√
2πσ(d),m’s) are sampled

from a log-uniform distribution. The number of mixtures is set to 10 and the concentration parameter

of the Dirichlet distribution are set to 1. The input of the data points {x(l)
i }Nl

i=1 are generated from

a Poisson point process within the hypercube [−1, 1]Dl with average density being 30. The data

output values {y(l)i }Nl
i=1 are generated from priors of the GP with its specified kernel function. The

observation noise is i.i.d. randomly sampled from N (0, 0.01). We generate 10000 sets of input/output

data to be used as the whole dataset, of which we do a split with 50% used for training and the rest

for validation. It is worth noting that although our AHGP neural model is trained on datasets with

relative small size (∼30), the trained neural model is able to generalize on real-world datasets of

much larger size, which is presented in details in Section 3.5. This also shows the effectiveness of the

inductive bias introduced in our hierarchical attention network.

Training Details

Our model is trained with PyTorch using the Adam (Kingma and Ba, 2014) optimizer with a

fixed learning rate and a batch size of 64. A description of our model architecture is provided in

Table 3.1, Table 3.2. We also apply 0.1 dropout to self-attention and the MLPs. The number of

Gaussian mixtures in the spectral density prediction is fixed at 10. To validate the effectiveness

of our neural network model, we minimize the efforts of hyperparameter tuning during training.

The only hyperparameters we tuned are learning rate ({10−3, 10−4, 10−5, 10−6}) and number of

layers in LocalTransformer and GlobalTransformer (2∼8). The hyperparameters are tuned based on

performance on the validation set.

Since spectral mixture kernel assume the variance of the kernel function is normalized, we
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Embed each (x
(l)
i,d, y

(l)
i ) to 256 dim

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

AggregateFunction: Average pooling

Table 3.1: LocalTransformer architecture and AggregateFunction

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

MLP for predicting weights, means and variances (each with hidden dim [256, 128])

Table 3.2: GlobalTransformer architecture and the final MLP

standardize the function values {y(l)i }Nl
i=1. We also standardize the data input {x(l)

i }Nl
i=1 as a standard

procedure. During training, we find the validation performance is most sensitive to learning rate and

increasing layers of the Transformers slightly helps. The final model is trained for 200 epochs with

batch size 64, learning rate 10−5 and 8 layers in both Local and Global Transformer. The training

is done on an NVIDIA GTX 1080 Ti GPU. All the evaluation experiments are run using one core

of an Intel(R) Core(TM) i7-6850K CPU for CPU runtime comparisons and an NVIDIA GTX 1080

Ti GPU for GPU runtime comparisons. After training is done with the synthetic data, the same

trained neural model is directly used to predict the kernel hyperparameters for the various unseen

GP use-cases that are shown later.

During evaluation and training, both the data input and output are standardized (with a scaling

of 0.1) and the noise variance of GP is fixed at 0.01. Note that it is possible for our method to learn

the noise variance too. In our experiments, we find the predictive performance is not sensitive to the

noise variance if the data are standardized and setting it to 0.01 gives competitive performance for all

baselines. Meanwhile, it is noted that spectral mixture kernel is flexible enough to model the noise

variance component as well: if one of the Gaussian mixture components has weight w, µ = 0 and

very large σ2, the corresponding kernel matrix will be approximately wI and the weight w represents
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the noise scale.

3.5.3 Regression benchmarks

We evaluate our method and the baselines on regression benchmarks from the UCI collection (Asuncion

and Newman, 2007) used in Hernández-Lobato and Adams (2015) and Sun et al. (2018) following the

same setup: the data are randomly split to 90% for training and 10% for testing. This splitting process

is repeated 10 times and the average test performance is reported. Comparisons with CPU-based

baselines on test RMSE, test log-likelihood and runtime are presented in Figure 3.2 and Table 6.3.

We observe that AHGP has consistently lower run times than the baselines, averaging ∼100 times

faster. Nevertheless, the predictive performance of AHGP is comparable to (and sometimes better

than) the strongest baselines, which perform MLL optimization without approximation. Notably,

AHGP seems to perform slightly better on datasets with fewer data points, such as Yacht. We

believe this demonstrates the robustness of AHGP when there is not enough data for MLL-opt

based approaches to form reasonable point estimates. The sparse variational GP methods are faster

than the full GP methods in general, but with lower performance on both test RMSE and test

log-likelihood. Comparisons with GPU-based methods (GPyTorch-based and PyT-AD-SMP) are in

Section 6.2.3, where similar findings are obtained.

3.5.4 Bayesian optimization

Bayesian optimization (Močkus, 1975) (BO) uses a GP as a surrogate model when the objective

function is expensive to evaluate. The method involves fitting the GP kernel hyperparameters and

maximizing an acquisition function to select a candidate point that is highly promising to achieve the

function minima (maxima) under the model. Since the method is iterative, MLL optimization needs

to be conducted at every BO iteration to update the GP. An amortized approach would greatly reduce

the computation involved. We pick the best performing baselines on the regression benchmarks

(GPy-SM, GPy-SM-Sp, PyT-AD-SMP) and compare them with AHGP. Expected improvement (EI)

is used as the acquisition function. We use standard test functions for global optimization (Derek

Bingham, 2013) as the target functions for the BO experiments.

At the start of every BO iteration, the hyperparameters are randomly re-initialized for all baselines.

A sample of the experimental results is shown in Figures 3.3 and 3.4. Full results on extensive

benchmarks can be found in Section 6.2.3. For runtime, only average is plotted here, Tables 6.8

and 6.9 show details of mean and standard deviation. Again, AHGP is a substantial improvement in
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Figure 3.2: Comparison of AHGP against the CPU baselines on regression benchmarks. In (c),
the numbers are the differences of the corresponding method’s test RMSE with the best RMSE on
the respective dataset. Note that for Naval, the RMSEs are all very close to 0. Only average test
performance is shown here. Refer to Section 6.2.3 for complete results with error bars.

Dataset GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP(Ours)

Boston 83.56±65.67 60.16±9.98 1731.96±525.13 984.17±282.21 1.24±0.16
Concrete 545.08±195.05 138.01±36.99 3307.03±1484.01 1103.31±68.64 2.66±0.05
Energy 43.05±16.51 76.30±5.50 424.39±124.63 284.02±376.79 1.78±0.30
Wine 1629.73±796.54 397.35±163.41 3961.91±1617.62 2380.69±885.05 14.04±1.59
Yacht 18.68±8.44 64.87±1.12 61.56±26.95 233.75±157.30 0.22±0.01
Kin8nm 3391.64±958.03 350.49±69.52 2999.11±1036.25 2435.50±169.28 13.13±0.84
Naval 915.49±881.60 786.15±163.73 17070.97 ± 5960.81 4955.79 ± 2251.73 25.25±0.57
PowPlant 1869.34±1616.23 314.33±74.13 2131.19±490.66 281.75±207.83 7.19±0.55

Table 3.3: Runtime (in seconds) on regression benchmark: CPU-based methods
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(a) Baseline methods use random re-initialization strategy.
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(b) Baseline methods use warmstart initialization strategy.

Figure 3.3: BO performance comparisons. Minimum function values found v.s. number of BO
iterations. Shaded region represents 0.5 standard deviation over 10 runs.
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Figure 3.4: Runtime ratio over AHGP. Left : Baselines use random re-initialization strategy. Right :
Baselines use warmstart initialization strategy.
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run-time. In terms of minimum values found, AHGP is on par with the baselines on some functions

and slightly worse on functions with higher dimensionality. Of particular note—consistent with what

was seen on the regression benchmarks—AHGP has the greatest improvement in the beginning when

there are few observations available.

To ensure fairness to baseline fitting procedures, we also conducted experiments where the

hyperparameter selection in the BO inner loop was initialized using the best from the previous

iteration. As expected, this warm-starting results in decreased run times for the baselines, although

still slower than AHGP (in Figure 3.3b). This warm-starting, however, seems to compromise the

hyperparameter selection—presumably due to local minima—and damage the overall outer loop

optimization.

3.5.5 Bayesian quadrature

Bayesian quadrature (O’Hagan, 1991; Rasmussen and Ghahramani, 2003) performs Bayesian inference

about the value of a difficult numerical integral through modeling the underlying function as a GP.

The tractability of the Gaussian process makes it relatively easy to calculate a Bayesian estimate of

many integrals in closed form. For example, Gunter et al. (2014) applies Bayesian quadrature to the

task of probabilistic inference and achieves faster convergence than Monte Carlo methods.

We evaluate our model on four standard test functions provided in Emukit (Paleyes et al., 2019). In

Figure 3.5, we plot the average distance to ground truth versus number of iterations. Table 3.4 shows

the log-likelihood of the true integral evaluated at the final probabilistic estimate. AHGP compares

well with the baselines across all tasks. More importantly, AHGP appears to be robust across different

tasks while the baselines often suffer from large variances and occasional divergence.

Target Function GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)

Hennig1D NaN -29.66±26.12 4.23±0.16 3.89±0.27
Hennig2D NaN -39.99±36.57 -0.13±4.48 2.41±2.30
Sombrero2D NaN -0.63±3.56 4.95±0.26 3.23±0.43
Circular Gaussian 3.79±1.01 4.01±1.27 5.17±0.04 3.47±1.09

Table 3.4: Log-likelihood of the true integral evaluated at the final prediction of Bayesian quadrature.
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Figure 3.5: Bayesian quadrature performance comparisons. The first four plots show the integral
error v.s. number of BQ iterations. Shaded region represents 0.5 standard deviation over 5 runs.
The last one shows runtime ratio over AHGP.
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Chapter 4

Scalable Discrete Generative Modeling

with Marginalization Models

4.1 Introduction

Deep generative models have seen remarkable progress in multiple fields, encompassing image

generation, audio syntheis, natural language modeling and science discovery. Most existing models do

not support efficient probabilistic inference for key questions such as marginal probability p(xs) and

conditional probability p(xu|xv), where s, u and v are disjoint subsets of the variables. The ability to

answer such questions is important for many applications such as outlier detection (Ren et al., 2019;

Mitchell et al., 2023), masked language modeling (Devlin et al., 2018; Yang et al., 2019b), image

inpainting (Yeh et al., 2017), and constrained protein/molecule design (Wang et al., 2022; Schneuing

et al., 2022). Furthermore, the capacity to conduct such inference for arbitrary subsets of variables

empowers users with control and flexibility in leveraging the model according to their specific needs

and preferences. For instance, in protein design domain scientists may want to manually guide the

generation of a protein from a user-defined secondary (local) structure under a particular path over

the relevant variables, which is only feasible if the generative model can perform arbitrary marginal

inference.

Towards this end, neural autoregressive models (ARMs) (Bengio and Bengio, 2000; Larochelle

and Murray, 2011) are developed to facilitate conditional/marginal inference based on the idea of

modeling a high-dimensional joint distribution as a factorization of univariate conditionals using

the chain rule of probability. Many efforts have been made to scale up ARMs and enable any-order
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generative modeling under the setting of maximum likelihood estimation (MLE) (Larochelle and

Murray, 2011; Uria et al., 2014; Hoogeboom et al., 2021a), and great progress has been made in

applications such as masked language modeling (Yang et al., 2019b) and image inpainting (Hoogeboom

et al., 2021a). However, marginal likelihood evaluation in most widely-used modern neural network

architectures (e.g., Transformers (Vaswani et al., 2017) and U-nets (Ronneberger et al., 2015)) is

limited by O(D) neural network passes, where D is the length of the sequence. This scaling makes

it difficult to evaluate likelihoods on long sequences arising in data such as natural language and

proteins. Additionally, in the setting of distribution matching (DM)—where a function such as a

reward or energy can be evaluated pointwise and interpreted as an unnormalized (log) probability

for the generative model to match—ARMs are limited to fixed-order generative modeling and lack

scalability in training. The subsampling techniques developed for MLE to scale the training of

conditionals are no longer applicable when matching log-probabilities (see Section 4.3.3 for details).

[?][C][=C][C][=C][C][=C][Ring1][=Branch1]⋯ [Cl][C][=C][C][=C][C][=C][Ring1][=Branch1]    ⋯ [F][C][=C][C][=C][C][=C][Ring1][=Branch1]⋯

pθ( ) pθ( ) pθ( )+=
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<latexit sha1_base64="+UQ4L6yXIuH0TxdcXgQOPwYzOXY="></latexit>
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variable  is marginalized outx1

[?]

Figure 4.1: Marginalization models enable estimation of any marginal probability with a neural
network θ that learns to “marginalize out” variables. The figure illustrates marginalization of a single
variable on bit strings (representing molecules) with only two alternatives (versus K) for clarity. The
bars represent probability masses.

To enable more scalability and flexibility in generative modeling of discrete data, we propose

a new family of generative models, marginalization models (MaMs), that directly model the

marginal distribution p(xs) for any subset of variables xs in x. Direct access to marginals not only 1)

scales up inference for any marginal, but also 2) enables any-order generative modeling and scalable

training under both generative modeling settings.

The unique structure of the model allows it to simultaneously represent the coupled collection of

all marginal distributions of a given discrete joint probability mass function. For the model to be

valid, it must be consistent with the sum rule of probability, a condition we refer to as marginalization

self-consistency (see Figure 4.1); enforcing this constraint is one of the key contributions of this work.

We show that marginalization models can be trained under both maximum likelihood and

distribution matching settings. We demonstrate the effectiveness of the proposed model in both
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Figure 4.2: Scalability of sequential discrete generative models. The y-axis unit is # of NN forward
passes.

settings on a variety of discrete data distributions, including binary images, text, physical systems,

and molecules. We empirically demonstrate that marginalization models achieve orders of magnitude

speedup in likelihood evaluation. For distribution matching, marginalization models enable scalable

training of any-order generative models that previous methods fail to achieve.

4.2 Marginalization Models

We propose marginalization models (MaMs), a new type of generative model that enables both

scalable any-order generative modeling and efficient marginal evaluation for both maximum likelihood

and distribution matching. The flexibility and scalability of marginalization models are enabled by

the explicit modeling of the marginal distribution and enforcing marginalization self-consistency.

In this paper, we focus on generative modeling of discrete structures using vectors of discrete

variables. The vector representation encompasses various real-world problems with discrete structures,

including language sequence modeling, protein design, and molecules with string-based representations

(e.g., SMILES (Weininger et al., 1989) and SELFIES (Krenn et al., 2020)). Moreover, vector

representations are inherently applicable to any discrete problem, since it is feasible to encode any

discrete object into a vector of discrete variables.

4.2.1 Definition

We are interested in modeling the discrete probability distribution p(x), where x = (x1, . . . , xD) is a

D-dimensional vector and each xd takes K possible discrete values.
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4.2.2 Marginalization

Given a distribution p(x), and x = [x1, . . . , xD], where xd ∈ {1, . . . ,K}. Let xs be a subset of

variables of x, xs ⊆ {x1, . . . , xD}. Denote the complement set of variables as xsc = {x1, . . . , xD} \ xs.

The marginal of xs is obtained by summing over all values of xsc :

p(xs) =
∑

xsc
p(xs,xsc) (4.1)

We refer to (4.1) as the marginalization self-consistency that any valid distribution should follow.

The goal of a marginalization model θ is to estimate the marginals p(xs) for any subset of variables xs

as closely as possible. To achieve this, we train a deep neural network pθ that minimizes the distance

of pθ(x) and p(x) on the full joint distribution 1 while enforcing the marginalization self-consistency.

4.2.3 Parameterization

To approximate arbitrary marginals over xs with a single neural network forward pass, we additionally

include the “marginalized out” variables xsc in the input by introducing a special symbol “?” to denote

the missing values. By doing this, we create an augmented D-dimensional vector representation

xaug
s ∈ X aug ≜ {1, . . . ,K, ?}D and feed it to the NN. For example, for a binary vector of length 4, if

xs = {x1, x3} where x1 = 0 and x3 = 1, then xaug
s = [0, ?, 1, ?] where “?” denotes x2 and x4 being

marginalized out. From here onwards we will use xaug
s and xs interchangeably.

A marginalization model parameterized by a neural network θ takes in the augmented vector

representation xaug
s ∈ {1, . . . ,K, ?}D, and outputs the marginal log probability fθ(xs) = log pθ(xs)

that must satisfy the marginalization self-consistency constraints1:

∑
xsc

pθ([xs,xsc ]) = pθ(xs) ∀xs ∈ {1, . . . ,K, ?}D

where [xs,xsc ] denotes the concatenation of xs and xsc . Given a random ordering of the variables

σ ∈ SD where SD defines the set of all permutations of 1, 2, · · · , D, the marginalization can be

imposed over one variable at a time, which leads to the following one-step marginalization constraints:

pθ(xσ(<d)) =
∑

xσ(d)
pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] . (4.2)

1An alternative is to consider minimizing distance over some marginal distribution of interest if we only cares about
a specific marginal. Note this is impractical under the distribution matching setting, when the true marginal p(xs) is
intractable to evaluate in general.

1To make sure pθ is normalized, we can either additionally enforce pθ([?? · · ·?]) = 1 or let Zθ = pθ([?? · · ·?]) be the
normalization constant.
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4.2.4 Sampling

Given the learned marginalization model, one can sample from the learned distribution by picking an

arbitrary order σ and sampling one variable at a time. To evaluate the conditionals at each step of

the generation, we can use the product rule of probability:

pθ(xσ(d)|xσ(<d)) =
pθ([xσ(<d), xσ(d)])

pθ(xσ(<d))
.

However, the above is not a valid conditional if the marginalization constraint is not strictly enforced,

since it might not sum up exactly to one. Hence we use following normalized conditional:

pθ(xσ(d)|xσ(<d)) =
pθ([xσ(<d), xσ(d)])∑

xσ(d)
pθ([xσ(<d), xσ(d)])

. (4.3)

In this paper, we focus on the sampling procedure that generates one variable at a time, but

marginalization models can also facilitate sampling multiple variables at a time in a similar fashion.

4.2.5 Learning marginals jointly with conditionals

In training, we impose the marginalization self-consistency by minimizing the squared error of the

constraints in (4.2). When the number of discrete values each xd can take becomes large, each

marginalization constraint in (4.2) requires K NN forward passes, which makes training challenging

to scale when K is large. To address this issue, we augment the marginalization models with

conditionals parameterized by ϕ. The marginalization constraints in (4.2) can be broken into K

parallel marginalization constraints based on conditionals and marginals that allows subsampling the

constraints during training:

pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D]. (4.4)

During training, we need to specify a distribution q(x) for subsampling the marginalization constraints

to optimize on. In practice, it can be set to the distribution we are interested to perform marginal

inference on, such as pdata or the distribution of the generative model pθ,ϕ.
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4.3 Training the Marginalization Models

4.3.1 Maximum likelihood

In this setting, we train MaM with the maximum likelihood objective in Equation (1.6) while

additionally enforcing the marginalization constraints in Equation (4.2):

max
θ,ϕ

Ex∼pdata log pθ(x) (4.5)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Two-stage training

A typical way to solve the above optimization problem is to convert the constraints into a penalty

term and optimize the penalized objective, but we empirically found the learning to be slow and

unstable. Instead, we identify an alternative two-stage optimization formulation that is theoretically

equivalent to Equation (4.5), but leads to more efficient training:

Claim 4.1. Solving the optimization problem in Equation (4.5) is equivalent to the following two-

stage optimization procedure, under mild assumption about the neural networks used being universal

approximators:

Stage 1: max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
Stage 2: min

θ
Ex∼q(x)Eσ∼U(SD)Ed∼U(1,··· ,D)

(
log[pθ(xσ(<d))pϕ(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2
,

The intuition is that the chain rule of probability implies that there is a one-to-one correspondence

between optimal conditionals and marginals: log pθ(x) =
∑D

d=1 log pϕ
(
xσ(d)|xσ(<d)

)
for any σ and

x. By assuming neural networks are universal approximators, we can first optimize for the optimal

conditionals, and then optimize for the corresponding optimal marginals. This is equivalent to first

fitting an order-agnostic autoregressive model (Uria et al., 2014; Hoogeboom et al., 2021a) and then

distilling that model into the marginalization network. We provide more details in Section 6.3.1.

The procedure to train MaM for maximum likelihood is presented in Algorithm 2.
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4.3.2 Distribution matching

In this setting, we train MaM using the distribution matching objective in Equation (1.7) with a

penalty term to enforce the marginalization constraints in Equation (4.2):

min
θ,ϕ

DKL (pθ (x) ||p (x)) + λEx∼q(x)Eσ Ed

(
log
[
pθ
(
xσ(<d)

)
pϕ
(
xσ(d)|xσ(<d)

)]
− log pθ

(
xσ(≤d

))2
,

where σ ∼ U(SD), d ∼ U(1, · · · , D) and q(x) is the distribution of interest for evaluating marginals.

The procedure to train MaM for distribution matching is presented in Algorithm 3. In the following,

we discuss the key components that enables scalable training.

Scalable training

We use REINFORCE to estimate the gradient of the KL divergence term:

∇θDKL(pθ(x)||p(x)) = Ex∼pθ(x) [∇θ log pθ (x) (log pθ (x)− log f (x))]

≈ 1

N

∑N
i=1∇θ log pθ(x

(i))
(
log pθ(x

(i))− log f(x(i))
)

(4.6)

For the penalty term, we subsample the ordering σ and step d for each data x.

Persistent MCMC sampling

We need cheap and effective samples from pθ in order to perform REINFORCE, so a persistent set of

Markov chains are maintained by randomly picking an ordering and taking block Gibbs sampling

steps using the conditional distribution pϕ(xσ(d)|xσ(<d)), in similar fashion to persistent contrastive

divergence used in training RBMs (Tieleman, 2008). The samples from the conditional distribution

pϕ serve as approximate samples from pθ when they are close to each other. Otherwise, we can

additionally use importance sampling for adjustment.

4.3.3 Addressing limitations of ARMs

We discuss in more detail about how MaMs address some limitations of ARMs. The first one is

general to both settings, while the latter two are specific to distribution matching.

Non-Scalable evaluation of likelihoods

Due to sequential conditional modeling, evaluation of any arbitrary marginal p(xo) with ARMs

requires applying the NN up to D times, which is inefficient in time and memory for high-dimensional
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Algorithm 2 MaM Maximum Likelihood Estimation Training

Input: Data Dtrain, q(x), network θ and ϕ
Stage 1: Optimize ϕ with the lower bound objective used in AO-ARM
for i in {1, · · · , N1} do

minibatch x ∼ Dtrain
Sample σ ∼ U(SD), d ∼ U(1, · · · , D)
L ←∑

j∈σ(≥d) log pϕ
(
xj |xσ(<d)

)
▷ Parallel evaluation of one-step conditional objectives

L ← D
D−d+1L

Update ϕ with gradient of L
end for
Stage 2: Optimize θ to distill the marginals from optimized conditionals ϕ
for i in {1, · · · , N2} do

minibatch x ∼ q(x)
Sample σ ∼ U(SD), d ∼ U(1, · · · , D)

L ←
(
log[pθ(xσ(<d))pϕ(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2
▷ Squared logrithmic error of marginalization constraint

Update θ with gradient of L
end for

Algorithm 3 MaM Distribution Matching Training

Input: q(x), network θ and ϕ, Gibbs sampling block size M
Joint training of ϕ and θ:
for j in {1, · · · , N} do

Sample σ ∼ U(SD)
Sample x′ ∼ pϕ(xσ(≤M)|xσ(>M)) ▷ Persistent block Gibbs sampling
Sample x̃ ∼ q(x)
Sample d̃ ∼ U(1, · · · , D), σ̃ ∼ U(SD)

Lpenalty ←
(
log[pθ(x̃σ̃(<d̃))pϕ(x̃σ̃(d̃)|x̃σ̃(<d̃))]− log pθ(x̃σ̃(≤d̃))

)2
▷ Squared logrithmic error of marginalization constraint

∇θ,ϕDKL ← REINFORCE gradient estimate with x′

∇θ,ϕ ← ∇θ,ϕDKL + λ∇θ,ϕLpenalty
Update θ and ϕ with gradient ∇θ,ϕ

x← x′

end for
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data. In comparison, MaMs are able to estimate any arbitrary marginal with one NN forward pass.

Lack of support for training with any-order

In distribution matching, the objectives in Equations (1.7) and (1.8) minimize the distance between

log pϕ(x) and log p(x). However, unless the model is perfectly self-consistent, it will not be the case

that log pϕ(x) = Eσ log pϕ(x|σ). In particular, we would not expect it to work to have an objective

that takes an expectation over orderings σ and uses log pϕ(x|σ) to match the target log p(x), i.e.,

EσEpϕ(·|σ)d(pϕ(·|σ), p) ̸= Epϕ
d(pϕ, p). The MaM self-consistency constraint addresses this issue, while

ARMs need to be trained with a preset order to minimize the distance between log pϕ(x|σ) and the

target density log p(x). MaMs are not limited to fixed ordering because marginals are order-agnostic

and we can optimize over expectation of orderings for the marginalization self-consistency constraints.
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Figure 4.3: Approximating log pϕ(x) with one-step conditional (ARM-MC) results in extremely high
gradient variance during DM training.

Non-Scalable training

When minimizing the difference between log pϕ(x|σ) and the target log p(x), ARMs need to sum condi-

tionals to evaluate log pϕ(x|σ). One might consider subsampling one-step conditionals pϕ(xσ(d)|xσ(<d)

to estimate pϕ(x), but this leads to high variance of the REINFORCE gradient in Equation (4.6)

due to the product of the score function and distance terms, which are both high variance (We

validate this in experiments, see Figure 4.3). Consequently, training ARMs for distribution matching

necessitates a sequence of D conditional evaluations to compute the gradient of the objective function.

This constraint leads to an effective batch size of B×D, significantly limiting the scalability of ARMs

to high-dimensional problems. Furthermore, obtaining Monte Carlo samples from ARMs for the

REINFORCE gradient estimator is slow when the dimension is high. Due to the fixed input ordering,

this process requires D sequential sampling steps, making more cost-effective sampling approaches
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like persistent MCMC infeasible.

Marginalization models circumvent this challenge by directly estimating the log-likelihood with the

marginal neural network. Additionally, the support for any-order training enables efficient sampling

through the utilization of persistent MCMC methods.

4.4 Related Work

4.4.1 Autoregressive models

Autoregressive models (ARMs) decompose a joint probability distribution into a sequence of condi-

tional probabilities (Bengio and Bengio, 2000; Larochelle and Murray, 2011). Recent developments in

deep learning have greatly advanced the performance of ARMs across different modalities, including

images, audio, and text. Any-order (Order-agnostic) ARMs were first introduced in (Uria et al.,

2014) by training with the any-order lower-bound objective for the maximum likelihood setting and

recently seen in ARDM (Hoogeboom et al., 2021a) with state-of-the-art performance for any-order

discrete modeling of image/text/audio.

4.4.2 Discrete diffusion models

Discrete diffusion models learn to denoise from a latent base distribution into the data distribution.

Sohl-Dickstein et al. (2015) first proposed diffusion for binary data and was extended in Hoogeboom

et al. (2021b) for categorical data and both works adds uniform noise in the diffusion process. A

wider range of transition distributions was proposed in Austin et al. (2021) and insert-and-delete

diffusion processes have been explored in Johnson et al. (2021). Hoogeboom et al. (2021a) explored the

connection between ARMs and diffusion model with absorbing diffusion and showed that OA-ARDMs

are equivalent to absorbing diffusion models in infinite time limit, but achieves better performance

with a smaller number of steps.

4.4.3 Discrete normalizing flow

Normalizing flows transform a latent base distribution into the data distribution by applying a

sequence of invertible transformations (Rippel and Adams, 2013; Tabak and Turner, 2013; Dinh

et al., 2014; Sohl-Dickstein et al., 2015; Rezende and Mohamed, 2015; Dinh et al., 2016; Kingma

et al., 2016; Papamakarios et al., 2017). They have been extended to discrete data (Tran et al., 2019;

Hoogeboom et al., 2019) with carefully designed discrete variable transformations. Their performance
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is competitive on character-level text modeling, but they do not allow any-order modeling and could

be limited to discrete data with small number of categories due to the use of a straight-through

gradient estimators.

4.4.4 GFlowNets

GFlowNets (Bengio et al., 2021a;b) formulate the problem of generation as matching the probability

flow at terminal states to the target normalized density. Zhang et al. (2022) proposes to apply

GFlowNets to discrete data and additionally train an energy function from data. GFlowNets assume

certain generation paths through a DAG, which limits its flexibility in sampling/generation. Compared

to autoregressive models, this approach does not scale as well during training and its exact likelihood

evaluation is intractable. We note that GFlowNet training also enforces a local detailed balance

condition that is similar in spirit to the marginalization self-consistency presented here.

4.4.5 Probabilistic circuits

Probabilistic circuits were recently proposed as a framework for tractable probabilistic models that

unify tractable probabilistic models, including Chow-Liu trees (Chow and Liu, 1968), arithmetic

circuits (Darwiche, 2003), sum-product networks (Poon and Domingos, 2011), etc. This type of model

uses circuits that follow smoothness and decomposibilty structural properties such that probability

densities/masses are tractable. The expressiveness of the model is limited by the allowed circuit

structures.

4.5 Experiments

We conduct experiments with marginalization models (MaM) on both MLE and DM settings for

discrete problems including binary images, text, molecules and phyiscal systems. We consider

the following baselines for comparison: Any-order ARM (AO-ARM) (Hoogeboom et al., 2021a),

ARM (Larochelle and Murray, 2011), GFlowNet (Bengio et al., 2021a; Zhang et al., 2022), and

Discrete Flow (Tran et al., 2019)2. Only MaM and (AO-)ARM supports marginal inference, so ARM

will be the major focus of comparison. Discrete flow allows exact likelihood evaluation while GFlowNet

needs to approximate the likelihood with sum using importance samples. For evaluating AO-ARM,

we can either use it as an ensemble model (AO-ARM-E) by averaging the likelihood estimate from
2Results are only reported on text8 for discrete flow as there is no public code implementation.
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Figure 4.4: An example of the data generated (with 100/400/700 pixels masked) for comparing the
quality of likelihood estimate. Numbers below the images are LL estimates from MaM’s marginal
network (left) and AO-ARM-E’s ensemble estimate (right).

several random orderings or as a single model (AO-ARM-S) that picks a single ordering at random.

Neural network architecture and training hyperparameter details can be found in Section 6.3.2.

4.5.1 Maximum likelihood estimation

Binary MNIST

We report the negative test likelihood (bits/digit), likelihood estimate quality and likelihood inference

time per minibatch (of size 16) in Section 4.5.1. To keep GPU memory usage the same, we

sequentially evaluate the likelihood for ARMs. Both MaM and AO-ARM use a U-Net architecture

with 4 ResNet Blocks interleaved with attention layers (see Section 6.3.2). GFlowNets fail to scale

to large architectures as U-Net, hence we report GFlowNet results using an MLP from Zhang et al.

(2022). For MaM, we use the conditional network to evaluate the likelihood on test data, since

marginals are not strictly valid but only approximations. The marginal network is used for evaluating

likelihood quality and inference time.

In order to evaluate the quality of marginal likelihood estimates, we employ a controlled experiment

where we randomly mask out portions of a test image and generate multiple samples with varying

levels of masking (refer to Figure 4.4). This process allows us to obtain a set of distinct yet comparable

samples, each associated with a different likelihood value. For each model, we evaluate the likelihood

of the generated samples and compare that with AO-ARM-Ensemble’s estimate since it achieves the

best likelihood on test data. We report the Spearman’s correlation and Pearson correlation of the

likelihood estimates from the given model against that from AO-ARM-Ensemble. MaM achieves

close to 4 order of magnitude speed-up while only at slightly worse quality. Additional results on

generated samples, marginal likelihood on partial images are available in Section 6.3.2.
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Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ LL inference time (s) ↓
AO-ARM-E-U-Net 0.148 1.0 1.0 661.98 ± 0.49
AO-ARM-S-U-Net 0.149 0.996 0.993 132.40 ± 0.03
MaM-U-Net 0.149 0.992 0.993 0.018 ± 0.00
GflowNet-MLP 0.189 – – –

Table 4.1: Performance Comparison on Binary-MNIST

Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ LL inf. time (s) ↓
AO-ARM-E-Transfomer 0.652 1.0 1.0 96.87± 0.04
AO-ARM-S-Transfomer 0.655 0.996 0.994 19.32± 0.01
MaM-Transfomer 0.655 0.998 0.995 0.006±0.00

Table 4.2: Performance Comparison on Molecular Sets

Molecular Sets

We test generative modeling of MaM on a benchmarking molecular dataset (Polykovskiy et al.,

2020) refined from the ZINC database (Sterling and Irwin, 2015). Same metrics are reported as

Binary-MNIST. Likelihood quality is measured similarly but on random groups of test molecules

instead of generated ones. The generated molecules from MaM and AO-ARM are comparable

to standard state-of-the-art molecular generative models, such as CharRNN (Segler et al., 2018),

JTN-VAE (Jin et al., 2018), and LatentGAN (Prykhodko et al., 2019) (see Section 6.3.2), with

additional controllability and flexibility in any-order generation. MaM supports much faster marginal

inference, which is useful for domain scientists to reason about likelihood of substructures. Generated

molecules and histogram plots of their properties are available in Section 6.3.2.

text8

Text8 (Mahoney, 2011) is a character level language modeling task with 100M characters split into

chunks of 250 character. We follow the same procedure as Binary-MNIST and report the same

metrics. The results of discrete flow is from Tran et al. (2019) (for which unfortunately no open-source

implementations exist to measure other metrics).

4.5.2 Distribution matching training

We compare with ARM that uses sum of conditionals to evaluate log pϕ with fixed forward ordering

and ARM-MC that uses a one-step conditional to estimate log pϕ. ARM can be regarded as the golden

standard of learning autoregressive conditionals, since its gradient is the most informative. MaM uses

marginal network to evaluate log pθ and subsamples a one-step marginalization constraint for each data
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Model NLL (bpc) ↓ Spearman’s ↑ Pearson ↑ LL inf. time (s) ↓
Discrete Flow (8 flows) 1.23 – – –
AO-ARM-E-Transfomer 1.494 1.0 1.0 207.60 ± 0.33
AO-ARM-S-Transfomer 1.529 0.982 0.987 41.40 ± 0.01
MaM-Transfomer 1.529 0.937 0.945 0.005 ± 0.000

Table 4.3: Performance Comparison on text8

point in the batch. The effective batch size for ARM and GFlowNet is B ×O(D) for batch of size B,

and B×O(1) for ARM-MC and MaM . MaM and ARM optimizes KL divergence using REINFORCE

gradient estimator with baseline. GFlowNet minimizes squared distance following (Zhang et al.,

2022).

Ising model

Ising models (Ising, 1925) model interacting spins and are widely studied in mathematics and

physics (see MacKay (2003)). We study Ising model on a square lattice. The spins of the D sites

are represented a D-dimensional binary vector and its distribution is p∗(x) ∝ f∗(x) = exp (−EJ(x))

where EJ(x) ≜ −x⊤Jx− θ⊤x, with J being the binary adjacency matrix. These models, although

simplistic, serve as bear analogies to the complex behavior of high-entropy alloys (Damewood et al.,

2022). A quantum extentions of the Ising model, transverse-field Ising model, is extensively studied

in quantum physical systems (Kogut, 1979; Sachdev, 1999; Amico et al., 2008).

We compare MaM with ARM, ARM-MC, and GFlowNet on a 10×10 (D=100) and a larger

30×30 (D=900) Ising model where ARMs and GFlowNets fail to scale. 2000 ground truth samples

are generated following Grathwohl et al. (2021) and we measure test negative log-likelihood on

those samples. We also measure DKL(pθ(x)||p∗) by sampling from the learned model and evaluating∑M
i=1(log pθ(xi)−log f∗(xi)). Figure 4.5 contains KDE plots of −EJ(x) for the generated samples.

As described in Section 4.3.3, the ARM-MC gradient suffers from high variance and fails to

converge. It also tends to collapse and converge to a single sample. MaM-DM has significant speedup

in inference time and is the only model that supports any-order generative modeling. The performance

in terms of KL divergence and likelihood are slightly worse than models with fixed/learned order,

which is expected since any-order modeling is harder than fixed-order modeling, and MaM-DM

is solving a more complicated task of jointly learning conditionals and marginals. On a 30 × 30

(D = 900) Ising model, MaM-DM achieves a bpd of 0.835 on ground-truth samples while ARM and

GFlowNet fails to scale. Distribution of generated samples is shown in Figure 4.5.
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Model NLL (bpd) ↓ KL divergence ↓ Inference time (s) ↓
ARM-Forward-Order-MLP 0.79 -78.63 5.29±0.07e-01
ARM-MC-Forward-Order-MLP 24.84 -18.01 5.30±0.07e-01
MaM-Any-Order-MLP 0.80 -77.77 3.75±0.08e-04
GFlowNet-Learned-Order-MLP 0.78 -78.17 –

Table 4.4: Performance Comparison on Ising model (10× 10)
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Figure 4.5: Ising model: 2000 samples are generated for each method.

Molecular generation with target property

In this task, we are interested in training generative models towards a specific target property of

interest g(x), such as lipophilicity (logP), synthetic accessibility (SA) etc. We define the distribution

of molecules to follow p∗(x) ∝ exp(−(g(x)− g∗)2/τ), where g∗ is the target value of the property

and τ is a temperature parameter.
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Figure 4.6: Target property matching: 2000 samples are generated for each method.

We train ARM and MaM for lipophilicity of target values 4.0 and −4.0, both with τ = 1.0 and

τ = 0.1. Both models are trained for 4000 iterations with batch size 512. Results are shown in

Figure 4.6 and Section 4.5.2.Additional Figures 6.26 and 6.27 are presented in Section 6.3.2. Findings
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are consistent with the Ising model experiments. There is a small gap in the performance of MaM

against ARM, but MaM supports any-order modeling and scales to problems with much larger

dimension.

Model KL divergence ↓
Distribution logP = 4, τ = 1.0 logP = −4, τ = 1.0 logP = 4, τ = 0.1 logP = 4, τ = 0.1

ARM-FO-MLP -174.25 -168.62 -167.83 -160.2
MaM-AO-MLP -173.07 -166.43 -165.75 -157.59

Table 4.5: Performance Comparison on Target Lipophilicity

[C][=C][C][=C][C][=C][Ring1][=Branch1]

[?][?][?][?][C][=C][Ring1][=Branch1]

[C][=C][C][=C][?][?][?][?][?][?][?][?][?]⋯

Figure 4.7: Conditionally generate towards low lipophilicity from user-defined substructures of
Benzene. Left: Masking out the left 4 SELFIES characters. Right: masking the right 4-20 characters.

4.6 Conclusion

In conclusion, marginalization models are a novel family of generative models for high-dimensional

discrete data that offer scalable and flexible generative modeling with tractable likelihoods. These

models explicitly model all induced marginal distributions, allowing for fast evaluation of arbitrary

marginal probabilities with a single forward pass of the neural network. Marginalization models also

support scalable training for any-order generative modeling, which previous methods struggle to

achieve under the setting of distribution matching. Potential future work includes designing new

neural network architectures that automatically satisfy the marginalization self-consistency.
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Chapter 5

Conclusion and Future Works

In this chapter, I briefly discuss some promising future directions.

5.1 Bayesian Optimization With Sparsity Constraints

In Chapter 2, we have shown that the proposed SEBO method can automatically identify the

Pareto frontier trade-off between sparsity and system performance. However, in some contexts,

decision-makers may have a desired sparsity level in mind. Further work is required to develop

adaptive algorithms that can efficiently optimize system performance given a specific sparsity budget.

Mathematically, this problem can be formulated as a constrained optimization problem:

max
x

f(x)

s.t. ∥x∥0 ≤ s

where f is an unknown black-box function and s is the desired sparsity level.

For the method to be successful, the major challenge will be how to take account of the sparsity

constraint in the design of the acquisition function. On one hand, there is no final utility for a

solution that violates the sparsity constraint. A natural way to extend SEBO for this setting would

be to treat all solutions that violate the sparsity constraint to have the same sparsity objective, i.e.

ξ(x) =


s+ 1 if ∥x∥0 > s

∥x∥0 otherwise
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However, this formulation only considers the utility of dense solutions in terms of achieving better

system performance but neglects their “hidden utility” in providing more information that helps

improve the quality of the GP surrogate model. Therefore it would be interesting to explore methods

that take account of the “hidden utility” of dense solutions in the design of the acquisition function.

Another aspect of sparse system designs is to consider the varying deployment cost of designs

with different sparsity levels. Prior works (Snoek et al., 2012; Lee et al., 2020) have studied how to

design proper acquisition functions that take account of the deployment cost. But it remains open to

design methods that optimize for sparse solutions while taking account of the deployment cost.

5.2 Equivariance in Discrete Generative Modeling

Many problems in physical sciences comprise a large amount of symmetries. For example, molecules,

crystals, and Ising models are invariant with respect to global rotations or permutations of identical

elements. In the context of generative modeling, we would like to have models that are equivariant

to these symmetries. Recently, equivariant generative models have been developed for the continuous

setting, such as equivariant normalizing flows (Köhler et al., 2020), flow matching (Klein et al.,

2023) and diffusion models (Hoogeboom et al., 2022). Discrete generative models such as any-order

autoregressive models and the proposed marginalization models will benefit from taking account of

the symmetries to improve the sample efficiency and generalization.

Gebauer et al. (2019) has explored enforcing equivariance under translation and rotation using

distance-based featurization in autoregressive models for molecule 3D point clouds generation. For

discrete data, it remains an open question how to enforce equivariance for more general symmetries

such as permutation and rotation in any-order autoregressive models and marginalization models.

5.3 Structured Generative Modeling

The major types of generative models—such as diffusion models and language models—do not assume

any explicit latent structure but instead, generate directly in the data input space. But often latent

structures exist in the data, such as the collective variables and coarse-graining in molecular dynamics.

It would be interesting to explore how to incorporate these latent structures into the generative

models for two reasons. First, the latent structures can improve the interpretability of the generative

models for end-users such as domain scientists. For example, evaluating the likelihood of latent

structures provide insights about the underlying dynamics. Also, the dependence on latent structures
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allows the end-users to explicitly control the generation process.

5.4 Summary of Contributions

Probabilistic models have huge potential in accelerating scientific discovery and engineering design.

This dissertation has developed the first Bayesian optimization method for interpretable system

configuration optimization. I also developed amortized inference for Gaussian process, a probabilistic

surrogate model that is widely used in scientific discovery. Finally, I developed a new class of

generative models—marginalization models—that scales up any-order autoregressive modeling of

discrete data for distribution matching.
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Chapter 6

Appendix

6.1 Appendix of Chapter 2

6.1.1 Code Implementations

The GPEI, SAASBO and EHVI used in SEBO were implemented using BoTorch (Balandat et al.,

2020), a framework for BO in PyTorch and are available in Ax (https://github.com/facebook/

Ax). The code is licensed under the MIT License. The SVM hyperparameter tuning experiment

uses the SVM implementation in Sklearn and the CT slice dataset in the UCI machine learning

repository (Asuncion and Newman, 2007). The Adaptive bitrate simulation experiment is available

at https://github.com/facebookresearch/ContextualBO, licensed under the MIT License.

6.1.2 Proof of Theorem 2.1

Here we provide the proofs of Theorems 2.1 and 2.2, as well as an illustration of the result of

Theorem 2.2.

Proof of Theorem 2.1. Suppose x† ∈ argmaxαER(x;λ) and ξ(x†) ≤ θ. Then, α(x†) = 0, so

αER(x
†;λ) = −λξ(x†).

By x† being a maximizer of αER we must have

−λξ(x†) = αER(x
†;λ) ≥ αER(x

s;λ) = −λξ(xs).

Thus ξ(x†) ≤ ξ(xs). Because xs is a strict global minimum, we have then that x† = xs.
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This setting where the acquisition value is 0 for all sparse points is easily encountered in practice

when there is a trade-off between the objective function and sparsity, as in Figure 2.1, and we

have sampled a point close to the (non-sparse) optimum. Consider the EI acquisition function with

external regularization. Once the GP is confident that sparse points have worse objective value than

non-sparse points, sparse points will have acquisition value approximately 0, as their improvement is

being evaluated with respect to a non-sparse incumbent best x∗.

6.1.3 Proof of Theorem 2.2

We assume ξ is continuous and bounded, which implies h is continuous and bounded:

Assumption 6.1. ξ is continuous on B, and has minimum value ξ(xs) = sl and maximum value su.

Proposition 6.1. h is continuous and bounded on the domain [sl, su].

Sketch of Proof. This result falls from the continuity and boundedness of f , and by applying the

intermediate value theorem to ξ.

Proof of Theorem 2.2. Suppose h is strictly convex over the interval [θl, θu]. For the sake of con-

tradiction, assume that there exists a θ† ∈ (θl, θu) and an x† such that x† ∈ argmax g(x;λ) and

ξ(x†) = θ†.

It is clear that x† ∈ argmax f(x) subject to ξ(x) = θ†, otherwise the point with strictly larger

f and equal ξ value would have a higher value for g, and x† could not be optimal for g. Thus,

f(x†) = h(θ†).

We can express θ† = tθl + (1− t)θu for some t ∈ (0, 1). By strict convexity of h on this interval,

we have that

h(θ†) < th(θl) + (1− t)h(θu). (6.1)

Take xu ∈ argmax f(x) subject to ξ(x) = θu, and xl ∈ argmax f(x) subject to ξ(x) = θl. These are

the points in B corresponding to h(θl) and h(θu). The optimality of x† implies that g(x†;λ) ≥ g(xu;λ)

and g(x†;λ) ≥ g(xl;λ). Thus,

g(x†;λ) ≥ tg(xl;λ) + (1− t)g(xu;λ)

h(θ†)− λθ† ≥ th(θl)− tλθl + (1− t)h(θu)− (1− t)λθu

h(θ†) ≥ th(θl) + (1− t)h(θu), (6.2)
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Figure 6.1: An illustration of the negative theoretical result on internal regularization. (Left) The
objective f is a modified Branin function. The sparsity penalty ξ is the L1 norm. (Right) The
optimal objective vs. sparsity trade-off, h(θ), shows the best-achievable objective value for any
specified value of L1 norm. The shaded region is an interval where h is strictly convex.

using θ† = tθl + (1− t)θu. The result in Equation (6.2) contradicts the convexity in Equation (6.1),

and so x† cannot be optimal for g.

Figure 6.1 shows an illustration of the result of Theorem 2.2 on a log-transformed version of the

classic Branin problem, where f(x1, x2) = − log(10 + Branin(x1, x2)), and we are using a traditional

L1 regularization penalty, ξ(x1, x2) = |x1|+ |x2|. The right panel shows h(θ), from Equation (2.5),

as it traces the trade-off from the minimum of ξ to the maximum of f . There is a wide interval of

L1-norm values in the middle, 0.4 to 2.7, where h(θ) is strictly convex. By Theorem 2.2, there is no

value of λ under which the maximizer of Equation (2.3) has L1 norm in that range. That range of

sparsity levels thus cannot be reached by maximizing the regularized function g.

6.1.4 Relationship between ParEGO and Internal Regularization

As described in Section 2.2, ParEGO applies the EI acquisition function to a random scalarization

of multiple objectives. With internal regularization, random sampling of λ for each acquisition

optimization produces a ParEGO-style strategy for sparse BO, that differs only in the form of the

scalarization.

The inability of linear scalarizations to capture the entire Pareto front, seen in Theorem 2.2,

is a well-known failure mode for MOO. This result has inspired a large number of alternative

scalarizations (Das and Dennis, 1997). ParEGO avoids the issue by replacing the linear scalarization

with an augmented Chebyshev scalarization (Bowman, 1976). When applied to the context of sparse
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regularization, this means maximizing

T (x;λ) = C(f(x)− λξ(x))−max(f∗ − f(x), λ(ξ(x)− ξ(xs)),

where f∗ is an estimate for the maximum of f and C is a constant, usually set to 0.05. Unlike g

in Equation (2.3), maximizers of T span the entire objective vs. sparsity trade-off (Knowles, 2006).

Using EI to optimize this regularized function with randomly sampled values of λ is equivalent to

applying ParEGO to the objective and the (negative) sparsity penalty.

6.1.5 Additional Details for Optimization with L0 Sparsity

In this section we provide some additional details for the homotopy continuation described in

Section 2.5. For computational reasons, we use a sequence of 30 a’s starting from astart = 10−0.5

and ending at 10−3 that is linearly spaced on a log-scale. First, we optimize the acquisition function

using L-BFGS-B from 20 different starting points to obtain 20 local optima of H(x, astart). We then

increment the value of a and use L-BFGS-B to re-optimize the homotopy starting from each of

the previously found 20 local optima. This process is continued until we reach a = 0 which is the

acquisition function corresponding to the true L0 norm. Note that this procedure traces 20 curves

c(a) ∈ argminx H(x, a) from a = astart to a = 0 and that this curve is of finite length under the

assumption that the domain is compact. These curves are potentially different as the acquisition

function may be non-convex and have multiple local optima. Finally, we choose the candidate as the

point that achieves the best acquisition function value.

We use astart = 10−0.5 as it strikes a balance between being large enough to find initial points

with non-zero acquisition function values, and being small enough to discover points that are almost

sparse. To better understand this choice note that maxx,z∈[0,1]

∣∣φ′
10−0.5(x− z)

∣∣ ≈ 0.067 while, e.g.,

maxx,z∈[0,1] |φ′
0.1(x− z)| ≈ 2× 10−20 which shows that 0.1 may be too small to serve as astart. We

also investigate this choice in an ablation study in Section 6.1.6 and find that the performance of

SEBO-L0 is not sensitive to the choice of astart as long as the value is not too small.

6.1.6 Additional Experimental Studies

Ranking sourcing system simulation

In the sourcing simulation experiment in Section 2.7, the recommender sourcing system has 25 content

sources and 1000 possible pieces of content (i.e., items) for retrieval. We consider a 25-dimensional
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retrieval policy x over the integer domain [0, 50]25. We take inspiration from the Latent Dirichlet

Allocation (LDA) model (Blei et al., 2003) in defining a generative probabilistic model of items

recommended by each source. We assume there are 8 latent topics and that each item can be

represented as a mixture over topics. Each source contains a mixture over a set of topics, and

particular items will be more likely to be recommended by topically related sources. Such topical

overlaps can create redundancy of recommendations across sources. Retrieving more items from

additional sources comes at a cost, making sparse retrieval policies preferred.

Before describing the simulation in pseudo-code, we need the following definitions:

• T is the number of latent topics.

• K is the number of distinct items.

• S is the number of content sources.

• θs ∈ ∆T is the topic distribution for source s, where ∆T denotes the T -dimensional simplex.

{θs}Ss=1 follow a Dirichlet distribution, i.e., θs ∼ Dir(α) where α = 0.2.

• ϕi ∈ ∆K is the item distribution for each topic i, where ∆K denotes the K-dimensional simplex.

{ϕi}Ti=1 also follow a Dirichlet distribution, i.e., ϕi ∼ Dir(β) where β = 0.5.

• zs,k is the topic assignment for item k in source s and follows a multinomial distribution:

zs,k ∼ Multi(θs)

• ws,k is the indicator of item k is retrieved from source s and follows multinomial distribution:

ws,k ∼ Multi(ϕzs,k).

• Qi is the relevance score of each topic i and is sampled from a log-normal distribution with

mean 0.25 and standard deviation 1.5.

• mk is the relevance score of each item k, which is derived as the weighted average across topic

scores based on the item distribution over 8 latent topics, i.e., mk =
∑T

i=1 ϕi,kQi.

• cs is the infrastructure cost per fetched item for source s. The cost cs is assumed to be positively

correlated with source relevance score qs =
∑T

i=1 θs,iQi and follows a Gaussian distribution

with mean qs
2
∑S

s=1 qs
and standard deviation of 0.1.

To simulate the retrieval of one item from the source s, we sample a topic for an item k from

the multinomial Multi(θs), i.e., zs,k ∼ Multi(θs), and sample an item ws,k ∼ Multi(ϕzs,k) where ws,k
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indicates item k being retrieved from source s. Given the sourcing policy x ∈ RS , we execute the

above sampling xs times for each source s as described at Line 1 in Algorithm 4, and then compute

the quality score given a list of retrieved items.

The overall content relevance score is the sum of the content relevance scores after de-duplicating

the retrieved content. The infrastructure load is a sum of products of a number of retrievals and the

cost per fetched item cs for each source, in which cs varies across sources and positively correlates

with the source relevance score. This setup is based on the real-world observation that sources

providing higher relevance content are generally more computationally expensive. The objective in

the benchmark experiments is a weighted sum of overall content relevance and negative infrastructure

load. In the experiment, we repeat this simulation (at Line 10) 1000 times for a given policy and

compute the mean and standard error of the objective values, which we refer to as the quality score

in the main text.

Algorithm 4 Recsys Simulation

1: procedure Item-retrieval(xs)
2: n⃗s ←

−→
0 ∈ RK ▷ number of retrievals for K distinct items

3: for n← 1 to xs do ▷ retrieve xs items
4: Sample a topic for an item k in source s i.e. zs,k ∼ Multi(θs)
5: Sample an item ws,k ∼ Multi(ϕzs,k)
6: n⃗s ← n⃗s + w⃗s

7: end for
8: return n⃗s

9: end procedure

10: procedure Sourcing(x)
11: n⃗← −→0 ∈ RK ▷ number of retrievals for K distinct items
12: for s← 1 to S do ▷ retrieve items for each source s
13: n⃗s ← Item-retrieval(xs)
14: n⃗← {n⃗+ n⃗s}
15: end for
16: Compute relevance score RS =

∑K
k=1 1(nk > 0)mk and infrastructure cost C =

∑S
s=1 cs × xs

17: return quality score Q = RS− 0.6× C
18: end procedure

Hypervolume Trace Plots

We evaluate optimization performance by showing the average best obtained hypervolume across

20 replicates, with 95% confidence interval over 100 trials. The results are shown for the sourcing

problem (left), the SVM problem (middle) and the Hartmann6 function embedded into a 50D (right)

in Figure 6.2. It can be seen that SEBO-L0 (red traces) outperforms all the other methods and

achieved the best hypervolume value over 100 iterations. The IR and ER methods with well selected
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regularization parameter values can sometimes achieve competitive results and usually outperform

the methods with non-regularized acquisition functions, e.g. SAASBO.
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Figure 6.2: Hypervolume benchmark traces. (Left) Sourcing problem.(Middle) SVM problem. (Right)
Hartmann6 function embedded into a 50D. The results are the average best hypervolume (with 95%
confidence interval) obtained over 100 iterations across 20 replications. SEBO-L0, shown in red,
performs the best in all three problems.
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Figure 6.3: Results of IR with different λ values for Hartmann6 function embedded into a 50D space.
(Left) The objective-sparsity trade-off after all 100 iterations. (Right) The simple regret considering
only observations with at most 6 active (non-sparse) parameters.

We conduct a sensitivity analysis of regularization parameter λ used by IR and ER by sweeping

different values of λ on the 50D Hartmann6 benchmark. The results are given in Figure 6.3 and

Figure 6.4. We observe that we are able to control the sparsity level by appropriately choosing λ. In

general, larger λ implies stronger regularization and results in finding configurations with a higher

level of sparsity. When λ increases above a certain point, the regularization becomes too strong and

fails to help find high-quality sparse points.
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Figure 6.4: Results of ER with different λ values for Hartmann6 function embedded into a 50D space.
(Left) The objective-sparsity trade-off after all 100 iterations. (Right) The simple regret considering
only observations with at most 6 active (non-sparse) parameters.

By comparing results of IR and ER for different λ values, we note that IR is able to achieve

effective optimization performance over a wider range of λ’s while ER is more sensitive to the value

of λ. This validates the discussion about ER in Section 2.3.1 that ER is not as effective as IR due to

ER’s inability to select a new sparse point that improves over sparse points from previous iterates if

the new sparse point does not improve on the dense points that are already observed.

Sensitivity Analysis of astart in SEBO-L0 Optimization
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Figure 6.5: Ablation study of astart in SEBO-L0. (Left). Results of Branin (d = 2, D = 50). (Right).
Results of Sourcing (D = 25). There is no statistically significant difference between using different
astart except for the extremely small astart (= 10−2). This shows the robustness of having a default
astart for optimizing SEBO-L0 acquisition function.

The value of astart is set to be 10−0.5 for all the experiments. To better understand the robustness

of this choice we conducted an ablation study on the Branin(d = 2, D = 50) and Sourcing (D = 25)

problems considered in Section 2.7. The results in Figure 6.5 show that there is no statistically
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significant difference between using 10−1, 10−0.5, 100 and 101 as the value of astart. However, using a

value of 10−2 leads to a clear drop in performance as this starting value is too small to optimize the

acquisition function.

Ablation Study on Using SAAS
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Figure 6.6: Results for the Hartmann6 function embedded in a 50D space. IR-L1 using the SAAS
model significantly outperforms IR-L1 using a standard GP.

To illustrate the importance of using the SAAS model, we compare to using IR-L1 with a standard

GP in Figure 6.6. We observe that IR-L1 with a standard GP fails to discover non-trivial sparse

configurations for all values of λ. This confirms that sparsity in the GP model is crucial for finding

sparse configurations. This can also be observed by comparing performances of SAASBO and GPEI

in Figure 2.3 where there is a huge gap in terms of the best function value optimized even when

looking at dense points (active dimensions = 50).

Benchmark with Additional High-dimensional BO methods

We conduct evaluations of additional high-dimensional BO methods for the Hartmann6 function

embedded in a 50D space, including trust region BO (TuRBO) by (Eriksson et al., 2019) and Random

Embedding BO (REMBO) by (Wang et al., 2016). The left plot in Figure 6.7 shows the trade-off

between the objective and sparsity after all 100 iterations. Although SAASBO and TuRBO achieve

good non-sparse solutions, they fail to obtain sparse solutions. REMBO does not obtain better sparse

solution than SAASBO. In the right plot, we show the simple regret considering only observations

with at most 35 active (non-sparse) parameters. SEBO-L0 outperforms these high-dimensional BO

since these methods do not encourage sparse solutions.
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Figure 6.7: Results of additional high-dimensional BO methods for the Hartmann6 function embedded
in a 50D space. (Left) The objective-sparsity trade-off after all 100 iterations. SAASBO and TuRBO,
although obtaining competitive objective values with 50 active parameters, do not encourage sparse
solutions. (Right) The simple regret for Hartmann6 function considering only observations with at
most 35 active (non-sparse) parameters.

Low-dimensional BO Problem

SEBO can also be applied to low-dim problems using arbitrary GP models as it targets the trade-off

between objective and sparsity. In the experiments section (Section 2.7), we focus on high-dimensional

problems because sparsity (and interpretability) tends to be more important with more parameters.

In Figure 6.8, we compare the performance on the Hartmann6 problem for Sobol, SAASBO, GPEI,

and SEBO with L0 or L1 penalty using a standard GP as a surrogate model. This problem is known

to have structures where some dimensions are more important than others for maximizing function

value. SEBO-L0 with a standard GP achieves the best trade-off in the low-dimensional (6D) problem.
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Figure 6.8: Hartmann6 function where 0 is considered sparse. Standard GP (without SAAS model)
is used as the GP surrogate model for SEBO-L1 and SEBO-L0.
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6.2 Appendix of Chapter 3

6.2.1 Attention Mechanism

In this section, we give a brief overview of the most commonly used attention mechanisms.

Dot-product attention is an attention mechanism that takes in m queries Q ∈ Rm×dk and maps

them to outputs using n key-value pairs K ∈ Rn×dk , V ∈ Rn×dk . The output is a weighted sum of

values with each value’s weight being determined by the dot product of the corresponding key with

the query:

Attention(Q,K,V) = WV ∈ Rm×dv ,with W = softmax(QKT /
√
dk) ∈ Rm×n.

Intuitively, for each query, attention computes an aggregated vector based on its relevance to the

key-value pairs.

Multi-head attention was first introduced in Vaswani et al. (2017), extends a single dot-product

attention to multiple attentions. It first projects the original keys, values and queries onto H different

keys, values and queries. And dot attention is applied for each of these H projections. The final

values are calculated by taking a linear transformation of the concatenated different head-specific

values:

MultiHead(Q,K,V) := concat (head1, . . . ,headH)W,

headh := Attention(QWQ
h ,KWK

h ,VWV
h ).

The multiple heads allow the attention mechanism to learn richer representations by combining

representations from different subspaces.

Self-attention For sequential data, self-attention defines a key-value-query tuple for each datum

in a sequence so that they can attend to each other. Combined with multi-head attention, one

could apply a feed-forward network right after with residual connection to make up a multi-head

self-attention sub-block. By stacking up multiple multi-head self-attention sub-blocks, one could

formulate a multi-layer Transformer encoder (Vaswani et al., 2017) that allows extracting feature

representations hierarchically through modeling interactions between input representations at different

levels and maps a sequence of data to a sequence of final feature representations for downstream
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tasks. It is most commonly used as the fundamental functional block of the powerful Transformer

type of models that achieves state-of-the-art performance on many NLP tasks (Vaswani et al., 2017;

Devlin et al., 2018).

6.2.2 Proof of Proposition 3.1

We start by defining permutation equivariant and permutation invariant functions.

Definition 6.1. (Permutation equivariant function) Let Sn be the set of all permutations of indices

{1, 2, · · · , n}. A function f : Xn → Yn is permutation equivariant if and only if for any permutation

π ∈ Sn, f(πx) = πf(x).

Definition 6.2. (Permutation invariant function) Let Sn be the set of all permutations of indices

{1, 2, · · · , n}. A function f : Xn → Y is permutation invariant if and only if for any permutation

π ∈ Sn, f(πx) = f(x).

Next, we start the proof.

Proof. We assume our neural network takes in the l-th dataset D(l) as input. By definition of the

multi-head self-attention mechanism, it is obvious that a single multi-head self-attention sublock

is permutation equivariant. From (Zaheer et al., 2017) we know stacks of permutation equivariant

layers are still permutation equivariant. Therefore, for every dimension, the input/output data

{(x(l)
i,d, y

(l)
i )}Nl

i=1 are always mapped to the same corresponding {h(l)
i,d}Nl

i=1 regardless of their order.

Further if AggregateFunction is permutation invariant, we have h
(l)
local,d invariant of the order of data

points for each dimension.

As the LocalTransformer is sharing the same weights for all dimensions,{h(l)
local,d}Dl

d=1 will remain

equivariant with regards to permutation of dimensions. Next {h(l)
local,d}Dl

d=1 are passed through

stacks of multi-head self-attention subblocks which is permutation equivariant, therefore the final

{h(l)
global,d}Dl

d=1 are permutation equivariant. Again the weight sharing of the final MLP ensures that

the final predicted spectral density hyperparameters {θ(l)d }Dl

d=1 are permutation equivariant with

regards to data dimensions. They are also permutation invariant with regards to data points, as

{h(l)
local,d}Dl

d=1 are invariant of the order of input/output data.
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6.2.3 Additional Experimental Details and Results

Is the Model Actually Learning?

Our method (AHGP) has demonstrated competitive performance across different applications.

However, is the neural model really learning? In this section, we will construct experiments to

conduct a sanity-check on this empirically. In the experiments, we augment each dataset by adding

a new feature dimension to each datapoint. We test with two extreme cases: 1. an i.i.d random

Gaussian noise and 2. the exact same label of the data point. The new dimension is also standardized

and treated just like normal features. And then we apply our trained neural model on the augmented

regression datasets.

One should expect a sensible model to predict the noise dimension with large lengthscales, as

the dimension does not contain any useful information and should be discarded by assigning large

lengthscales. Meanwhile, the label dimension should be identified with the smallest lengthscales

because they carry the most information across all dimensions. Table 6.1 shows a summary of the

weighted lengthscales predicted by our model on the regression benchmarks. Results show that our

model is able to consistently identify the noise dimension with very large lengthscales and the label

dimension with the smallest lengthscales, which suggests that our model is learning generalizable

representations.

Dataset Boston Concrete Energy Wine Yacht Kin8nm Naval PowPlant

Noise dim. len. 163.14±1.61 185.74±3.88 180.71±0.91 87.31±3.84 217.94±4.67 129.77±1.81 148.88±0.59 118.65±2.46
Label dim. len. 1.77±0.00 1.71±0.00 1.51±0.00 1.40±0.01 1.15±0.01 1.46±0.00 1.37±0.00 1.63±0.00

Table 6.1: Predicted weighted lengthscales of noise and label dimensions

Regression Benchmarks

For SGPR methods, the number of inducing points is set to 10% of the number of training data. The

full comparisons with the CPU-based baselines in terms of test RMSE and log marginal likelihood in

Tables 3.3 and 6.3.

The comparisons of AHGP with the GPU-based baselines are presented in Figure 6.9 and

Tables 6.4 to 6.6. Results are similar to comparisons with the CPU-based baselines in the main

section. Note that GPyTorch baselines perform slightly worse than GPy baselines, since GPyTorch

uses conjugate gradient method to approximately solve for matrix inverse instead of doing the

Cholesky decomposition. In comparison, PyT-AD-SMP uses Cholesky decomposition and generally

achieves better performance than GPT-SMP.
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Figure 6.9: Comparison of AHGP against the GPU-based baselines on regression benchmarks. In (c),
the numbers are the differences of the corresponding method’s test RMSE with the best RMSE on the
respective dataset. Note that for Naval, the RMSEs are all very close to 0 except PyT-AD-SMP which
runs out of GPU memory.

Dataset GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP(Ours)

Boston 10.99±0.05 4.80±0.04 4.19±1.16 10.33±0.07 8.83±0.47 0.05±0.00
Concrete 32.10±3.69 3.98±0.14 4.12±0.02 32.69±10.72 8.24±0.14 0.13±0.00
Energy 4.17±0.12 2.47±0.13 6.49±1.76 6.72±0.13 6.17±0.56 0.08±0.02
Wine 46.63±0.19 5.32±0.15 10.20±0.08 39.19±0.07 11.22±0.31 0.38±0.00
Yacht 2.37±0.16 4.01±0.16 1.64±0.05 2.53±0.15 9.96±0.20 0.02±0.00
Kin8nm 66.55±21.34 10.86±0.14 10.80±0.15 53.79±1.13 19.23±0.69 0.46±0.00
Naval 99.58±1.98 32.12±0.70 Out of memory 106.01±0.52 46.83±0.57 0.84±0.13
PowPlant 49.36±0.14 11.29±0.67 7.66±0.06 32.17±0.06 14.15±0.89 0.33±0.01

Table 6.6: Runtime (in seconds) on regression benchmark: GPU-based methods
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Dataset GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP(Ours)

Boston 2.960±0.506 3.027±0.506 2.710±0.482 2.971±0.487 2.723±0.387
Concrete 3.573±0.848 4.747±0.386 3.695±0.805 4.907±0.393 3.448±0.448
Energy 0.488±0.036 0.503±0.058 0.483±0.044 1.728±1.233 0.515±0.071
Wine 0.577±0.027 0.661±0.028 0.580±0.028 0.690±0.038 0.580±0.035
Yacht 0.868±0.567 0.821±0.283 0.681±0.288 0.845±0.387 0.460±0.265
Kin8nm 0.080±0.003 0.080±0.004 0.085±0.004 0.093±0.009 0.199±0.008
Naval 0.000±0.000 0.001±0.001 0.000±0.000 0.006±0.002 0.002±0.000
PowPlant 3.250±0.299 4.097±0.348 2.977±0.210 4.068±0.221 4.234±0.242

Table 6.2: Test RMSE on regression benchmarks: CPU-based methods

Dataset GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP (Ours)

Boston -2.649±0.364 -3.527±1.086 -2.538±0.281 -2.939±0.642 -2.367±0.115
Concrete -2.656±0.637 -3.435±0.238 -2.690±0.574 -3.757±0.579 -3.460±1.334
Energy -1.059±0.019 -1.103±0.046 -1.079±0.028 -2.534±0.557 -0.837±0.215
Wine -0.427±0.058 -4.331±1.328 -0.410±0.053 -1.053±0.051 -0.321±0.075
Yacht -1.573±0.254 -1.526±0.108 -1.500±0.077 -1.979±0.742 -0.997±0.092
Kin8nm 1.119±0.044 0.655±0.177 1.020±0.054 0.748±0.198 0.192±0.039
Naval 6.157±0.267 5.433±1.063 6.211±0.011 3.643±0.164 5.393±0.102
PowPlant -2.591±0.115 -3.831±0.330 -2.475±0.060 -2.936±0.047 -3.112±0.151

Table 6.3: Test log-likelihood on regression benchmarks: CPU-based methods

Dataset GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP(Ours)

Boston 3.150±0.674 4.582±1.168 2.906±0.488 3.294±0.900 4.647±1.133 2.723±0.387
Concrete 6.295±1.071 7.568±0.558 3.710±0.742 6.393±0.877 7.290±0.535 3.448±0.448
Energy 0.485±0.041 1.004±0.166 0.472±0.041 0.483±0.050 0.958±0.201 0.515±0.071
Wine 0.641±0.030 0.663±0.033 0.579±0.027 0.644±0.030 0.666±0.034 0.580±0.035
Yacht 0.678±0.315 2.597±1.149 0.622±0.265 0.681±0.316 2.514±1.539 0.460±0.265
Kin8nm 0.089±0.005 0.108±0.004 0.081±0.004 0.089±0.005 0.105±0.003 0.199±0.008
Naval 0.000±0.000 0.003±0.000 Out of memory 0.001±0.000 0.003±0.000 0.002±0.000
PowPlant 4.501±0.238 4.412±0.241 2.922±0.256 4.462±0.230 4.161±0.241 4.234±0.242

Table 6.4: Test RMSE on regression benchmarks: GPU-based methods

Dataset GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP (Ours)

Boston -2.692±0.442 -12.440±5.930 -2.757±0.416 -2.687±0.439 -11.390±5.270 -2.367±0.115
Concrete -3.030±0.640 -3.347±0.107 -3.132±1.262 -3.095±0.720 -3.285±0.078 -3.460±1.334
Energy -1.073±0.020 -1.269±0.064 -1.496±0.400 -1.068±0.023 -1.266±0.067 -0.837±0.215
Wine -0.517±0.079 -1.067±0.129 -0.306±0.064 -0.527±0.076 -1.028±0.115 -0.321±0.075
Yacht -1.492±0.105 -2.416±0.634 -1.030±0.770 -1.492±0.106 -2.477±1.071 -0.997±0.092
Kin8nm 0.921±0.086 0.819±0.042 1.108±0.047 0.917±0.090 0.854±0.045 0.192±0.039
Naval 5.892±0.028 5.253±0.215 Out of memory 5.933±0.017 5.372±0.113 5.393±0.102
PowPlant -2.923±0.120 -2.903±0.135 -2.540±0.153 -2.920±0.150 -2.834±0.078 -3.112±0.151

Table 6.5: Test log-likelihood on regression benchmarks: GPU-based methods

Comparing with Sparse Variational GP with Different Number of Inducing Points

To fully compare the sparse variational GP (SGPR) with our method, we conducted another

experiment by varying the number of inducing points used in SGPR. To illustrate the difference

when different number of inducing points is used, we pick the Concrete in UCI datasets (Asuncion
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and Newman, 2007), on which we see an obvious performance gap between GPy-SM (MLL-opt)

and GPy-SM-Sp (SGPR). In the experiment, the number of inducing points in GPy-SM-Sp is set to

{10%, 20%, 40%, 60%, 80%, 100%} of the total number of training data. The comparisons with GPy-

SM and AHGP in terms of test RMSE, test log-likelihood and run time is shown in Figure 6.10 and

Table 6.7. By increasing the number of inducing points, the gap between SGPR and MLL-opt is

gradually reduced, although a small gap remains even when the number of inducing points is set

to 100%. We also observe increased run times when then number of inducing points is increased.

As SGPR has a more complicated optimization problem than MLL-opt, its run time is slower than

MLL-opt when the number of inducing points is set to the same as the training data.
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(b) CPU runtime ratio over AHGP

Figure 6.10: Comparison of SGPR (GPy-SM-Sp) with MLL-opt (GPy-SM) and AHGP. The percentage
represents how many inducing points (in terms of the number of training data) are used in SGPR.

Method Test RMSE ↓ Test log-likelihood ↑ Runtime ↓
GPy-SM-Sp-10% 4.747±0.386 -3.435±0.238 138.01±36.99
GPy-SM-Sp-20% 4.277±0.268 -3.155±0.135 261.36±68.15
GPy-SM-Sp-40% 3.988±0.332 -2.999±0.184 620.73±118.55
GPy-SM-Sp-60% 3.878±0.464 -2.870±0.297 876.00±157.93
GPy-SM-Sp-80% 3.818±0.614 -2.699±0.175 1144.39±111.37
GPy-SM-Sp-100% 3.704±0.396 -2.690±0.144 1818.10±190.88
GPy-SM 3.573±0.848 -2.656±0.637 545.08±195.05
AHGP(Ours) 3.448±0.448 -3.460±1.334 2.66±0.05

Table 6.7: Comparison of test RMSE, test log-likelihood and runtime

Better Predictive Performance for Free (Sometimes)?

Surprisingly, AHGP performs even better than the MLL-opt approaches in terms of RMSE/log-

likelihood on dataset with fewer data points (e.g., Yacht with n = 308) in terms both test RMSE

and test log-likelihood. It is therefore of great interest to investigate the underlying reason behind
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this phenomenon. One natural question to ask would be: “Is AHGP learning a better kernel

function than the optimized one on the training data? Or is it some other reason”. We examine the

marginal likelihood on the training data achieved by AHGP and MLL-opt. It turns out the MLL-opt

method still achieves a slightly better marginal likelihood on the training data (1.04 v.s. 0.85).

This demonstrates that MLL-opt method is doing a good job in optimizing the marginal likelihood.

However, its performance on test set shows that a perfectly optimized kernel hyperparameter on a

relative small number of training data can still lead to overfitting. In comparison, AHGP only uses

synthetic data during training and this training procedure seems to add extra regularization effect

which prevents kernel hyperparamter estimate of AHGP from overfitting towards the training data

and hence helps AHGP achieve a better performance on the in test time.

Bayesian Optimization

We pick the best performing baselines on the regression benchmarks (GPy-SM, GPy-SM-Sp, PyT-

AD-SMP) and compare them with our method. The number of inducing points in GPy-SM-Sp is set

to 20. Standard test functions for global optimization (Derek Bingham, 2013) are used as the target

functions for Bayesian optimization. Five initial input points are randomly sampled and function

values at the points are evaluated; those input points with their function values serve as the initial

input/output data of GP. At the beginning of each BO iteration, hyperparameters are randomly

reinitialized for all the baselines and then optimized through MLL optimization. The full results are

shown in Figure 6.11, Figure 6.12a and Table 6.8.

For comparison, we also implement another warmstart initialization strategy which sets the

initialization as the best hyperparameters from the previous BO iteration. The full results are shown

in Figure 6.13, Figure 6.12b and Table 6.9.

Function GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)

Ackley 2275.32±343.28 5871.42±489.04 1288.16±70.09 47.86±3.66
Griewank 2192.96±1003.29 5863.13±626.95 1272.42±76.59 46.36±2.84
Hartmann3 614.48±169.35 5801.73±559.05 711.35±7.47 16.44±1.44
Hartmann6 1721.76±568.42 5935.85±503.19 961.31±24.82 28.65±2.44
Levy 3903.18±483.52 5707.24±628.55 1282.01±70.42 45.04±5.59
SixHumpCamel 1127.34±466.70 5898.18±608.69 625.29±4.76 12.84±1.66
Michalewicz10 1115.01±152.13 5891.81±461.76 1295.83±73.77 48.48±4.24
Michalewicz2 383.41±62.54 5762.95±486.45 629.56±4.56 13.10±1.57
Stybtang10 2826.95±581.05 5849.69±526.99 1276.52±77.09 50.12±3.14
Stybtang2 886.45±424.75 5776.96±588.76 633.21±10.43 12.80±1.63
Stybtang5 1119.24±186.60 6186.69±562.42 872.66±19.39 25.74±2.87

Table 6.8: Runtime (in seconds) on Bayesian optimization tasks: random initialization strategy
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Figure 6.11: Bayesian optimization performance comparison: random initialization strategy. Shaded
region indicates 0.5 standard deviations over 10 runs.

To evaluate our method on real-world Bayesian optimization problems, we additionally applied

our method to tuning learning and model hyperparameters of logistic regression via BO. The goal is

to find the hyperparameters that achieves the highest test accuracy when a fixed amount of time

is used for training. We experiment on the task of training logistic regression on MNIST data

with stochastic gradient descent. The training involves four hyperparameters: learning rate, ℓ2

regularization parameter, ℓ1 regularization parameter and mini-batch size. We present the results in

Figure 6.14 and Table 6.10. AHGP achieves comparable test accuracy with the strongest baselines

(GPy-SM, PyT-AD-SMP) while being much faster. The SGPR baseline, however, has a lower test

accuracy and much longer runtime.
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(a) Random initialization strategy.
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(b) Warmstart initialization strategy.

Figure 6.12: Runtime on Bayesian optimization tasks.

Function GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)

Ackley 92.12±49.74 4381.99±2374.99 1933.38±517.41 51.35±2.11
Griewank 115.26±45.74 4066.03±1975.20 1998.14±864.66 49.59±5.81
Hartmann3 91.61±37.23 1501.48±1299.30 792.04±74.54 19.51±0.98
Hartmann6 82.10±35.08 3957.00±2495.70 1853.98±751.37 31.47±0.92
Levy 114.29±60.44 5024.81±1751.92 2022.96±461.09 49.18±5.91
SixHumpCamel 101.05±66.46 912.45±634.74 957.04±375.30 14.90±0.44
Michalewicz10 103.03±64.24 4005.42±2546.93 2133.61±1378.63 51.78±1.84
Michalewicz2 47.00±19.18 311.37±209.75 622.09±36.82 15.16±0.42
Stybtang10 126.53±109.21 4692.10±2186.68 1952.56±806.56 48.05±5.44
Stybtang2 119.43±105.15 969.05±945.01 734.70±219.21 14.38±0.26
Stybtang5 120.84±64.67 4655.30±1802.18 1482.06±504.21 27.35±1.28

Table 6.9: Runtime (in seconds) on Bayesian optimization tasks: warmstart initialization strategy

GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)

195.90 ± 99.81 1067.70±41.40 23.85±0.45 1.23±0.06

Table 6.10: Runtime (in seconds) on Bayesian optimization for training logistic regression on MNIST

Bayesian Quadrature

For all the tasks, we start with 10 initial points and their function values. The function values are

standardized. And the results are reported on the standardized function values. Random initialization

strategy is used for GP hyperparameters at the start of each outer iteration. The number of inducing

points in GPy-SM-Sp is set to 20. The full runtime results are reported in Table 6.11.

Model Sensitivity

To evaluate the sensitivity of our method with regards to the random initialization during training,

we run 10 different trials with the same training hyperparameters. The 10 different trained models

are evaluated on the regression benchmarks. For each trained model, the same 10 data-splits are
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Figure 6.13: Bayesian optimization performance comparison: warmstart initialization strategy.
Shaded region indicates 0.5 standard deviations over 10 runs.

used. The average test RMSEs by the different trained models are reported in Figure 6.15. For

better visualization, we scaled the median of the RMSEs to 1 for each regression task. In general,

AHGP is not very sensitive to the randomness involved in deep learning training. We also observe a

slightly bigger variation on dataset with fewer data points.
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Figure 6.14: Bayesian optimization for training logistic regression on MNIST.

Function GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)

Circular Gaussian 1.59±0.68 66.90±23.00 0.57±0.03 0.03±0.00
Hennig1D 0.90±0.17 29.77±19.83 0.22±0.01 0.02±0.00
Hennig2D 1.03±0.19 72.47±26.82 0.54±0.05 0.03±0.00
Sombrero2D 1.02±0.26 75.42±20.06 0.53±0.02 0.03±0.00

Table 6.11: Runtime (in seconds) on Bayesian quadrature tasks
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Figure 6.15: Violin plot of the test RMSEs evaluated with the 10 trained models. (The violin plot
shows the probability density of the RMSEs, smoothed by a kernel density estimator.)

6.3 Appendix of Chapter 4

6.3.1 Additional Technical Details

Proof of Claim 4.1

Proof. From the single-step marginalization self-consistency in Equation (4.4), we have

log pθ(x) =

D∑
d=1

log pϕ
(
xσ(d)|xσ(<d)

)
, ∀x, σ.
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Therefore we can rewrite the optimization in Equation (4.5) as:

max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
(6.3)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Let p∗ be the optimal probability distribution that maximizes the likelihood on training data, and

from the chain rule we have:

p∗ = argmax
p

Ex∼pdata log p(x) = Ex∼pdataEσ∼U(SD)

D∑
d=1

log p
(
xσ(d)|xσ(<d)

)
Then p∗ is also the optimal solution to Equation (6.3) the marginalization constraints are automatically

satisfied by p∗ since it is a valid distribution. From the universal approximation theorem (Hornik et al.,

1989; Hornik, 1991; Cybenko, 1989), we can use separate neural networks to model pθ (marginals) and

pϕ (conditionals), and obtain optimal solution to Equation (6.3) with θ∗ and ϕ∗ that approximates

p∗ arbitrarily well.

Specifically, if θ∗ and ϕ∗ satisfy the following three conditions below, they are the optimal solution

to Equation (6.3):

pϕ∗
(
xσ(d) | xσ(<d)

)
= p∗

(
xσ(d) | xσ(<d)

)
, ∀ x, σ (6.4)

pθ∗(xs) = p∗(xs)Zθ∗ , ∀ x, s ⊆ {1, · · · , D} (6.5)

pθ∗(xσ(<d))pϕ∗(xσ(d)|xσ(<d)) = pθ∗(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] (6.6)

where Zθ∗ is the normalization constant of pθ∗ and is equal to pθ∗([?? · · ·?]). It is easy to see from

the definition of conditional probabilities that satisfying any two of the optimal conditions leads to

the third one.

To obtain the optimal ϕ∗, it suffices to solve the following optimization problem:

Stage 1: max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
because p∗ = argmaxp Ex∼pdataEσ∼U(SD)

∑D
d=1 log p

∗ (xσ(d)|xσ(<d)

)
due to chain rule. Solving Stage

1 is equivalent to finding ϕ∗ that satisfies condition in Equation (6.4). Then we can obtain the
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optimal θ∗ by solving for the condition in Equation (6.6) given the optimal conditionals ϕ∗:

Stage 2: min
θ

Ex∼q(x)Eσ∼U(SD)Ed∼U(1,··· ,D)

(
log[pθ(xσ(<d))pϕ∗(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2

6.3.2 Additional Experimental Details and Results

Dataset details

Binary MNIST Binary MNIST is a dataset introduced in (Salakhutdinov and Murray, 2008) that

stochastically set each pixel to 1 or 0 in proportion to its pixel intensity. We use the training and test

split of (Salakhutdinov and Murray, 2008) provided at https://github.com/yburda/iwae/tree/

master (Burda et al., 2015).

To evaluate the quality of the likelihood estimates, we employ a controlled experiment where we

randomly mask out portions (100, 400, and 700 pixels) of a test image and generate multiple samples

with varying levels of masking (refer to Figure 4.4). We repeat this for 160 (randomly subsampled)

test images and created a dataset of 640 sets of comparable images. To further test the quality of the

marginal likelihood estimates on partially observed images, we curate a dataset of 160 sets of partial

test images (7 ∼ 9 images in each set) by randomly subsampling from the test set and masking the

upper half of the images. To make sure the partial images are comparable but different in their

log-likelihood, in each set, we remove samples that have a log-likelihood close to another sample

within the threshold of 5.0.

Molecular Sets The molecules in MOSES are represented either in SMILES (Weininger et al.,

1989) or SELFIES (Krenn et al., 2020) strings. We construct a vocabulary (including a stop token)

from all molecules and use discrete valued strings to represent molecules. It is worth noting that

MaM can also be applied for modeling molecules at a coarse-grained level with predefined blocks,

which we leave for future work.

The test set used for evaluating likelihood estimate quality is constructed in a similar manner to

Binary MNIST, by drawing sets of random samples from the test dataset.

text8 In this dataset, we use a vocabulary of size 27 to represent the letter alphabet with an extra

value to represent spaces.

The test set of datasets used for evaluating likelihood estimate quality is constructed in a similar
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manner to Binary MNIST, each set is generated by randomly masking out portions of a test text

sequence (by 50, 100, 150, 200 tokens) and generating samples.

Ising model The Ising model is defined on a 2D cyclic lattice. The J matrix is defined to be

σAN , where σ is a scalar and AN is the adjacency matrix of a N ×N grid. Positive σ encourages

neighboring sites to have the same spins and negative σ encourages them to have opposite spins. The

bias term θ places a bias towards positive or negative spins. In our experiments, we set σ to 0.1 and

θ to 1 scaled by 0.2. Since we only have access to the unnormalized probability, we generate 2000

samples following (Grathwohl et al., 2021) using Gibbs sampling with 1, 000, 000 steps for 10× 10 and

30× 30 lattice sizes. Those data serve as ground-truth samples from the Ising model for evaluating

the test log-likelihood.

Molecular generation with target property During training, we need to optimize on the loss

objective on samples generated from the neural network model. However, if the model generates

SMILES strings, not all strings correspond to a valid molecule, which makes training at the start

challenging when most generated SMILES strings are invalid molecules. Therefore, we use SELFIES

string representation as it is a 100% robust in that every SELFIES string corresponds to a valid

molecule and every molecule can be represented by SELFIES.

Training details

Binary MNIST

• 0, 1 and “?” are represented by a scalar value (“?” takes the value 0) and additionally a mask

indicating if it is a “?”.

• U-Net with 4 ResNet Blocks interleaved with attention layers for both AO-ARM and MaM.

MaM uses two separate neural networks for learning marginals ϕ and conditionals θ. Input

resolution is 28× 28 with 256 channels used.

• The mask is concatenated to the input. 3/4 of the channels are used to encode input. The

remaining 1/4 channels encode the mask cardinality (see Hoogeboom et al. (2021a) for details).

• MaM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the

downsampling blocks and an additional MLP with 2 hidden layers of dimension 4096. We

observe it is necessary to finetune not only on the additional MLP but also on the downsampling
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blocks to get a good estimate of the marginal probability, which shows marginal network and

conditional network rely on different features to make the final prediction.

• Batch size is 128, Adam is used with learning rate 0.0001. Gradient clipping is set to 100. Both

AO-ARM and MaM conditionals are trained for 600 epochs. The MaM marginals are finetuned

from the trained conditionals for 100 epochs.

MOSES and text8

• Transformer with 12 layers, 768 dimensions, 12 heads, 3072 MLP hidden layer dimensions for

both AO-ARM and MaM. Two separate networks are used for MaM.

• SMILES or SELFIES string representation and “?” are first converted into one-hot encodings

as input to the Transformer.

• MaM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the MLP

of the Transformer.

• Batch size is 512 for MOSES and 256 for text8.

• AdamW is used with learning rate 0.0005, betas 0.9/0.99, weight decay 0.001. Gradient clipping

is set to 0.25. Both AO-ARM and MaM conditionals are trained for 1000 epochs for text8 and

200 epochs for MOSES. The MaM marginals are finetuned from the trained conditionals for

200 epochs.

Ising model and molecule generation with target property

• Ising model input are of {0, 1, ?} values and are one-encoded as input to the neural network.

The same is done for molecule SELFIES strings.

• MLP with residual layers, 3 hidden layers, feature dimension is 2048 for Ising model. 6 hidden

layers, feature dimension 4096 for molecule target generation.

• Adam is used with learning rate of 0.0001. Batch size is 512 and 4096 for molecule target

generation. ARM, GFlowNet and MaM are trained with 19, 800 steps for the Ising model.

ARM and MaM are trained with 3, 000 steps for molecule target generation.

• Separate networks are used for conditionals and marginals of MaM. They are trained jointly

with penalty parameter λ set to 4.
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Compute

• All models are trained on a single NVIDIA A100. The evaluation time is tested on an NVIDIA

GTX 1080Ti.

Additional results on Binary MNIST
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-59.03, -55.58

Partial-5

Figure 6.16: An example set of partial images for evaluating marginal likelihood estimate quality.
The numbers in the captions show the log-likelihood calculated using learned marginals (left) v.s.
learned conditionals (right)

Likelihood estimate on partial Binary MNIST images Figure 6.16 illustrates an example

set of partial images that we evaluate and compare likelihood estimate from MaM against ARM.

Table 6.12 contains the comparison of the marginal likelihood estimate quality and inference time.

Table 6.12: Performance Comparison on Binary-MNIST partial images

Model Spearman’s ↑ Pearson ↑ LL inference time (s) ↓
AO-ARM-E-U-Net 1.0 1.0 248.96 ± 0.14
AO-ARM-S-U-Net 1.0 0.997 49.75 ± 0.03
MaM-U-Net 0.998 0.995 0.02 ± 0.00

0.1111, 0.0000 -14.2229, -16.1155 -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418 -61.0715, -63.9271 -67.4851, -71.1942 -79.8951, -84.4266

Figure 6.17: An example of the trajectory every 112 step when generating an MNIST digit following
a random order. The future pixels are generated by conditioning on the existent filled-in pixels. The
numbers in the captions show the log-likelihood calculated using learned marginals (left) v.s. learned
conditionals (right)

Generated image samples Figure 6.17 shows how a digit is generated pixel-by-pixel following a

random order. We show generated samples from MaM using the learned conditionals ϕ in Figure 6.18.
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Figure 6.18: Generated samples: Binary MNIST

120



Table 6.13: Performance Comparison on MOSES

Model Valid↑ Unique
10k↑

Frag
Test↓

Scaf
TestSF↑

Int
Div1↑

Int
Div2↑

Filters↑ Novelty↑

Train 1.0 1.0 1.0 0.9907 0.8567 0.8508 1.0 1.0
HMM 0.076 0.5671 0.5754 0.049 0.8466 0.8104 0.9024 0.9994
NGram 0.2376 0.9217 0.9846 0.0977 0.8738 0.8644 0.9582 0.9694
CharRNN 0.9748 0.9994 0.9998 0.1101 0.8562 0.8503 0.9943 0.8419
JTN-VAE 1.0 0.9996 0.9965 0.1009 0.8551 0.8493 0.976 0.9143
MaM-SMILES 0.7192 0.9999 0.9978 0.1264 0.8557 0.8499 0.9763 0.9485
MaM-SELFIES 1.0 0.9999 0.997 0.0943 0.8684 0.8625 0.894 0.9155
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Figure 6.19: KDE plots of lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation
of Drug-likeness (QED), and molecular weight for generated molecules. 30, 000 molecules are generated
for each method.
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Additional results on MOSES

Comparing MaM with SOTA on MOSES molecule generation We compare the quality of

molecules generated by MaM with standard baselines and state-of-the-art methods in Table 6.13

and Figure 6.19. Details of the baseline methods are provided in (Polykovskiy et al., 2020). MaM-

SMILES/SELFIES represents MaM trained on SMILES/SELFIES string representations of molecules.

MaM performs either better or comparable to SOTA molecule generative modeling methods. The

major advantage of MaM and AO-ARM is that their order-agnostic modeling enables generation in

any desired order of the SMILES/SELFIES string (or molecule sub-blocks).

Generated molecular samples Figure 6.20 and Figure 6.21 plot the generated molecules from

MaM-SMILES and MaM-SELFIES.
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Figure 6.20: Generated samples from MaM-SMILES: MOSES

123



Figure 6.21: Generated samples from MaM-SELFIES: MOSES
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Additional results on text8

Samples used for evaluating likelihood estimate quality We show an example of a set

of generated samples from masking different portions of the same text, which is then used for

evaluating and comparing the likelihood estimate quality. Their log-likelihood calculated using the

conditionals with the AO-ARM are in decreasing order. We use MaM marginal network to evaluate

the log-likelihood and compare its quality with that of the AO-ARM conditionals.

Original text:

the subject of a book by lawrence weschler in one nine nine five entitled mr

wilson s cabinet of wonder and the museum s founder david wilson received a

macarthur foundation genius award in two zero zero three the museum claims to

attract around six

Text generated from masking out 50 tokens:

the_su_je_t of a b_ok_by_la_r_nce _es_h___ _n o___nine n_ne five entitled

mr_wilson s_cabinet of wonder and the museum s founder __vid w_l_o_ r__eive_

a macarthur fou__a__on _e___s_awa_d in two _ero z_r_ _hree _he museum c_aims

_o attr_ct ar_u_d s__

the subject of a book by lawrence heschell in one nine nine five entitled mr

wilson s cabinet of wonder and the museum s founder david wilson received a

macarthur foundation dennis award in two zero zero three the museum claims to

attract around sev

Text generated from masking out 100 tokens:

_the_su_je_t _f __b__k__y_l__r_nc_ _es_h_____n o___nine n_ne five_

enti_l_d mr_wil_o_ __c_b__et of wond_r an_ _h_ mu_eu_ s f_u_der___vid

_w_l_______eive_ a_maca_thur f_u__a___n _e_____a_a_d __ two _er_ z_r_

_h_ee____ museum c_a_ms__o __tr_ct ar_u__ ___

the subject of a book by lawrence bessheim in one nine nine five entitled mr

wilson s cabinet of wonder and the museum s founder david wilson received a

macarthur foundation leaven award in two zero zero three the museum claims to

detract around the
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Text generated from masking out 150 tokens:

_the__u____t__f __________l__r_nc_ _es_h_____n o___n__e n_ne__ive_

e_ti_l__m__wil______c____et of won___ an____________ s___u_der___vid_

w_________eiv__ a__a_a_th________a___n _e_____a_______ two__e__ z_r_

___e_____ _use_m c_a_ms___ __tr_ct_a_____ ___

the tudepot of europe de laurence desthefs in one nine nine five entitled

mr wild the cabinet of wonder anne cedallica s founder david wright received

arnasa the culmination team sparked in two zero zero three the museum claims

to retract athlet c a

Text generated from masking out 200 tokens:

_t____________f __________l__r____ _______ _____o______e__n___iv__

e__i_l__ ____wil______c_____t___ w______a____________________der_____d_

w_____ ____e________a_a___________a___n_e_____a_______t_____________

___e_____ _u_e___c_a__s___ ___r_c__a_____ ___

the builder of the pro walter a a e sec press one nine nine five esciele

the wild men convert of wark flax notes the world undergroand whirl spiken

america ascent and martin decree a letter to the antler s default museum

chafes in america ascent vis

Additional experiments on Ising model

Generated samples We compare ground truth samples and MaM samples in Figure 6.22 and

Figure 6.23.

Additional experiments on molecule target generation

Target property distribution matching on lipophilicity (logP) Figure 6.24 and Figure 6.25

show the logP of generated samples of length D = 55 towards target values 4.0 and −4.0 under

distribution temperature τ = 1.0 and τ = 0.1. For τ = 1.0, the peak of the probability density (mass)

appears around 2.0 (or −2.0) because there are more valid molecules in total with that logP than

molecules with 4.0 (or −4.0), although a single molecule with 4.0 (or −4.0) has a higher probability

than 2.0 (or −2.0). When the temperature is set to much lower (τ = 0.1), the peaks concentrate

around 4.0 (or −4.0) because the probability of logP value being away from 4.0 (or −4.0) quickly
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Figure 6.22: Samples: 10× 10 Ising model. Ground truth (left) v.s. MaM (right).

Figure 6.23: Samples: 30× 30 Ising model. Ground truth (left) v.s. MaM (right).

diminishes to zero. We additionally show results on molecules of length D = 500. In this case, logP

values are shifted towards the target but their peaks are closer to 0 than when D = 55, possibly due

to the enlarged molecule space containing more molecules with logP around 0. Also, this is validated

by the result when τ = 0.1 for D = 500, the larger design space allows for more molecules with logP

values that are close to, but not precisely, the target value.

Conditionally generated samples More samples from conditionally generating towards low

lipophilicity (target = −4.0, τ = 1.0) from user-defined substructures of Benzene. We are able to

generate from any partial substructures with any-order generative modeling of MaM. Figure 6.26

shows conditional generation from masking out the left 4 SELFIES characters. Figure 6.27 shows
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Figure 6.24: Target property matching with different temperatures. 2000 samples are generated for
each method.
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Figure 6.25: Target property matching with different temperatures. 2000 samples are generated for
each method.

conditional generation from masking the right 4 ∼ 20 characters.

128



Figure 6.26: Generated samples from masking out the left 4 SELFIES characters of a Benzene.

Figure 6.27: Generated samples from masking out the right 4-20 SELFIES characters of a Benzene.
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