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Abstract

Neural circuits contain heterogeneous groups of neurons that differ in type, location,
connectivity, and basic response properties. However, traditional methods for
dimensionality reduction and clustering are ill-suited to recovering the structure
underlying the organization of neural circuits. In particular, they do not take
advantage of the rich temporal dependencies in multi-neuron recordings and fail
to account for the noise in neural spike trains. Here we describe new tools for
inferring latent structure from simultaneously recorded spike train data using a
hierarchical extension of a multi-neuron point process model commonly known as
the generalized linear model (GLM). Our approach combines the GLM with flexible
graph-theoretic priors governing the relationship between latent features and neural
connectivity patterns. Fully Bayesian inference via Pdélya-gamma augmentation
of the resulting model allows us to classify neurons and infer latent dimensions of
circuit organization from correlated spike trains. We demonstrate the effectiveness
of our method with applications to synthetic data and multi-neuron recordings in
primate retina, revealing latent patterns of neural types and locations from spike
trains alone.

1 Introduction

Large-scale recording technologies are revolutionizing the field of neuroscience [e.g.,[1}|5,[15]. These
advances present an unprecedented opportunity to probe the underpinnings of neural computation,
but they also pose an extraordinary statistical and computational challenge: how do we make sense
of these complex recordings? To address this challenge, we need methods that not only capture
variability in neural activity and make accurate predictions, but also expose meaningful structure
that may lead to novel hypotheses and interpretations of the circuits under study. In short, we need
exploratory methods that yield interpretable representations of large-scale neural data.

For example, consider a population of distinct retinal ganglion cells (RGCs). These cells only respond
to light within their small receptive field. Moreover, decades of painstaking work have revealed a
plethora of RGC types [16]. Thus, it is natural to characterize these cells in terms of their type and
the location of their receptive field center. Rather than manually searching for such a representation
by probing with different visual stimuli, here we develop a method to automatically discover this
structure from correlated patterns of neural activity.

Our approach combines latent variable network models [6l [10] with generalized linear models of
neural spike trains [[11} 19} [13}[20] in a hierarchical Bayesian framework. The network serves as a
bridge, connecting interpretable latent features of interest to the temporal dynamics of neural spike
trains. Unlike many previous studies [e.g., 2} 3, [17]], our goal here is not necessarily to recover true
synaptic connectivity, nor is our primary emphasis on prediction. Instead, our aim is to explore
and compare latent patterns of functional organization, integrating over possible networks. To do
so, we develop an efficient Markov chain Monte Carlo (MCMC) inference algorithm by leveraging
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Figure 1: Components of the generative model. (a) Neurons influence one another via a sparse weighted network
of interactions. (b) The network parameterizes an autoregressive model with a time-varying activation. (c)
Spike counts are randomly drawn from a discrete distribution with a logistic link function. Each spike induces
an impulse response on the activation of downstream neurons. (d) Standard GLM analyses correspond to a
fully-connected network with Gaussian or Laplace distributed weights, depending on the regularization. (e-g) In
this work, we consider structured models like the stochastic block model (SBM), in which neurons have discrete
latent types (e.g. square or circle), and the latent distance model, in which neurons have latent locations that
determine their probability of connection, capturing intuitive and interpretable patterns of connectivity.

Pélya-gamma augmentation to derive collapsed Gibbs updates for the network. We illustrate the
robustness and scalability of our algorithm with synthetic data examples, and we demonstrate the
scientific potential of our approach with an application to retinal ganglion cell recordings, where we
recover the true underlying cell types and locations from spike trains alone, without reference to the
stimulus.

2 Probabilistic Model

Figure ] illustrates the components of our framework. We begin with a prior distribution on networks
that generates a set of weighted connections between neurons (Fig.[Th). A directed edge indicates a
functional relationship between the spikes of one neuron and the activation of its downstream neighbor.
Each spike induces a weighted impulse response on the activation of the downstream neuron (Fig.[Tb).
The activation is converted into a nonnegative firing rate from which spikes are stochastically sampled
(Fig.[Ik). These spikes then feed back into the subsequent activation, completing an autoregressive
loop, the hallmark of the GLM [19]. Models like these have provided valuable insight into
complex population recordings [13]]. We detail the three components of this model in the reverse
order, working backward from the observed spike counts through the activation to the underlying
network.

2.1 Logistic Spike Count Models

Generalized linear models assume a stochastic spike generation mechanism. Consider a matrix of
spike counts, § € NT*N for T time bins and N neurons. The expected number of spikes fired by
the n-th neuron in the ¢-th time bin, E[stm], is modeled as a nonlinear function of the instantaneous
activation, 1 p, and a static, neuron-specific parameter, v,. TableElenumerates the three spike count
models considered in this paper, all of which use the logistic function, o (1) = ¥ (1 4+ %)™, to
rectify the activation. The Bernoulli distribution is appropriate for binary spike counts, whereas the



Distribution | p(s |, v) | Standard Form | E[s] |  Var(s)

Bern(o (1)) | o(¢) o(—)'* o o) | o()o(—)
Bin(v,o(¥) | (%) o(¥)* o(—1)"~* ) dsdy | vow) | vow)o(—v)
NB(v,o(¥)) | (“*37) o@)* o(—0)" | () i | vet | wet/o(-u)

Table 1: Table of conditional spike count distributions, their parameterizations, and their properties.

binomial and negative binomial have support for s € [0, 7] and s € [0, 00), respectively. Notably
lacking from this list is the Poisson distribution, which is not directly amenable to the augmentation
schemes we derive below; however, both the binomial and negative binomial distributions converge to
the Poisson under certain limits. Moreover, these distributions afford the added flexibility of modeling
under- and over-dispersed spike counts, a biologically significant feature of neural spiking data [4].
Specifically, while the Poisson has unit dispersion (its mean is equal to its variance), the binomial
distribution is always under-dispersed, since its mean always exceeds its variance, and the negative
binomial is always over-dispersed, with variance greater than its mean.

Importantly, all of these distributions can be written in a standard form, as shown in Table E} We
exploit this fact to develop an efficient Markov chain Monte Carlo (MCMC) inference algorithm
described in Section[3]

2.2 Linear Activation Model

The instantaneous activation of neuron n at time ¢ is modeled as a linear, autoregressive function of
preceding spike counts of neighboring neurons,

N Atmax
wt,n £ bn + Z Z hm%n[At} * St—At,m (1)
m=1 At=1
where b,, is the baseline activation of neuron n and hy,—yp : {1, ..., Atmax} — R is an impulse

response function that models the influence spikes on neuron m have on the activation of neuron n
at a delay of At. To model the impulse response, we use a spike-and-slab formulation [8]],

K
k=1

Here, a,,—, € {0,1} is a binary variable indicating the presence or absence of a connection

from neuron m to neuron n, the weight w,,,—, = [wggn, . wanin] denotes the strength of the

connection, and {¢k}kK:1 is a collection of fixed basis functions. In this paper, we consider scalar
weights (K = 1) and use an exponential basis function, ¢;[At] = e~At/T with time constant

of 7 = 15ms. Since the basis function and the spike train are fixed, we precompute the convolution of

the spike train and the basis function to obtain §§’2L = Zﬁifi ¢r|At] - $¢—At.m. Finally, we combine

the connections, weights, and filtered spike trains and write the activation as,

wt,n = (an © wn)Tgtv (3)
~ K
where a, = [1,a15n1K, ..., aNn1K], Wy = [bp, W1n, ..., WN—p], and 8 = [1,§§)11)7 ,/S\EN)]

Here, ® denotes the Hadamard (elementwise) product and 1k is length- K vector of ones. Hence, all
of these vectors are of size 1 + N K. The difference between our formulation and the standard GLM
is that we have explicitly modeled the sparsity of the weights in a,,—,,. In typical formulations [e.g.,
13]], all connections are present and the weights are regularized with /1 and /5 penalties to promote
sparsity. Instead, we consider structured approaches to modeling the sparsity and weights.

2.3 Random Network Models

Patterns of functional interaction can provide great insight into the computations performed by neural
circuits. Indeed, many circuits are informally described in terms of “types” of neurons that perform
a particular role, or the “features” that neurons encode. Random network models formalize these
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Table 2: Random network models for the binary adjacency matrix or the Gaussian weight matrix.

intuitive descriptions. Types and features correspond to latent variables in a probabilistic model that
governs how likely neurons are to connect and how strongly they influence each other.

Let A = {{am—n}} and W = {{w,,_,, }} denote the binary adjacency matrix and the real-valued
array of weights, respectively. Now suppose {u,,}_; and {v,}\_, are sets of neuron-specific
latent variables that govern the distributions over A and W. Given these latent variables and global
parameters @, the entries in A are conditionally independent Bernoulli random variables, and the
entries in W are conditionally independent Gaussians. That is,

N N
p(AW [ {un, v, }0_1,0) = H H Bern (am—n | p(Um, Un, 9))

m=1n=1

XN (Win—sn | #(Vm, O, 0), B (0, v, 0)), (4)

where p(-), p(-), and 3(+) are functions that output a probability, a mean vector, and a covariance
matrix, respectively. We recover the standard GLM when p(-) = 1, but here we can take advantage
of structured priors like the stochastic block model (SBM) [9]], in which each neuron has a discrete
type, and the latent distance model [[6], in which each neuron has a latent location. Table E] outlines
the various models considered in this paper.

We can mix and match these models as shown in Figure[I{d-g). For example, in Fig.[Tlg, the adjacency
matrix is distance-dependent and the weights are block structured. Thus, we have a flexible language
for expressing hypotheses about patterns of interaction. In fact, the simple models enumerated above
are instances of a rich family of exchangeable networks known as Aldous-Hoover random graphs,
which have been recently reviewed by Orbanz and Roy [10].

3 Bayesian Inference

Generalized linear models are often fit via maximum a posteriori (MAP) estimation [[L1} [19} 13} 20].
However, as we scale to larger populations of neurons, there will inevitably be structure in the
posterior that is not reflected with a point estimate. Technological advances are expanding the number
of neurons that can be recorded simultaneously, but “high-throughput” recording of many individuals
is still a distant hope. Therefore we expect the complexities of our models to expand faster than the
available distinct data sets to fit them. In this situation, accurately capturing uncertainty is critical.
Moreover, in the Bayesian framework, we also have a coherent way to perform model selection
and evaluate hypotheses regarding complex underlying structure. Finally, after introducing a binary
adjacency matrix and hierarchical network priors, the log posterior is no longer a concave function of
model parameters, making direct optimization challenging (though see Soudry et al. [[17]] for recent
advances in tackling similar problems). These considerations motivate a fully Bayesian approach.

Computation in rich Bayesian models is often challenging, but through thoughtful modeling decisions
it is sometimes possible to find representations that lead to efficient inference. In this case, we have
carefully chosen the logistic models of the preceding section in order to make it possible to apply
the Pdlya-gamma augmentation scheme [[14]. The principal advantage of this approach is that, given
the Pélya-gamma auxiliary variables, the conditional distribution of the weights is Gaussian, and
hence is amenable to efficient Gibbs sampling. Recently, Pillow and Scott [12] used this technique to
develop inference algorithms for negative binomial factor analysis models of neural spike trains. We
build on this work and show how this conditionally Gaussian structure can be exploited to derive
efficient, collapsed Gibbs updates.



3.1 Collapsed Gibbs updates for Gaussian observations

Suppose the observations were actually Gaussian distributed, i.e. ¢, ~ N (¢ n, V). The most
challenging aspect of inference is then sampling the posterior distribution over discrete connec-
tions, A. There may be many posterior modes corresponding to different patterns of connectivity.
Moreover, @, —, and w,,_,, are often highly correlated, which leads to poor mixing of naive Gibbs
sampling. Fortunately, when the observations are Gaussian, we may integrate over possible weights
and sample the binary adjacency matrix from its collapsed conditional distribution.

We combine the conditionally independent Gaussian priors on {w,,—,, } and b,, into a joint Gaussian
distribution, w, | {v,}, 0 ~ N(w,, |, XE,), where X,, is a block diagonal covariance matrix.
Since 1y ,, is linear in w,, (see Eq. , a Gaussian likelihood is conjugate with this Gaussian prior,

given a,, and S = {8:}1_,. This yields the following closed-form conditional:

T
p(w, | S, an, M, 3,) x N(wn | 12% ) HN(St,n |(an, ® 'wn)T 84, Up) X N(wn [, 20),
t=1

3, = {E,‘Ll + (g’T(y;lI)S') ©® (anal)}_l, R, =3, [E;lun + (S’T(u;lI)sw) ©) an} .

Now, consider the conditional distribution of a,, integrating out the corresponding weights.
The prior distribution over a, is a product of Bernoulli distributions with parame-
ters p,, = {p(Um, un,0)}N_,. The conditional distribution is proportional to the ratio of the prior
and posterior partition functions,

p(an ‘ ‘§7 Prns M En) = /p(an7 W | §7 P> My En) dw,
_1 _
(S| Fexp { — Jul=rm, )
~ 1 Te—1_ 1"
(S| Fexp { - 3%, i, )
Thus, we perform a joint update of a,, and w,, by collapsing out the weights to directly sample the

binary entries of a,,. We iterate over each entry, a,,—,,, and sample it from its conditional distribution
given {am’—n m/m. Having sampled a,,, we sample w,, from its Gaussian conditional.

= p(an ‘ pn)

3.2 Poélya-gamma augmentation for discrete observations

Now, let us turn to the non-conjugate case of discrete count observations. The Pélya-gamma aug-
mentation [14] introduces auxiliary variables, w; ,, conditioned upon which the discrete likelihood
appears Gaussian and our collapsed Gibbs updates apply. The integral identity underlying this scheme
is
(6w)a —b ki) > —wip? /2

Cm =c2 A (& pPG(w‘b,O) dw, )
where k = a — b/2 and p(w | b, 0) is the density of the P6lya-gamma distribution PG(b, 0), which
does not depend on 7). Notice that the discrete likelihoods in Table [1| can all be rewritten like

the left-hand side of (§), for some a, b, and ¢ that are functions of s and v. Using (3] along with
priors p(v)) and p(v), we write the joint density of (¢, s, v) as

p(s, v, ) = / p(v) p(¥) (s, v) 9=b(s:v) gh(s,)9 g—wip®/2 ppc(w]|b(s,v),0) dw. (6)
0

The integrand of Eq. @deﬁnes a joint density on (s, v, 1, w) which admits p(s, v, ) as a marginal
density. Conditioned on the auxiliary variable, w, the likelihood as a function of ¥ is,

p(s|Y,v,w) x (s —wi?/2 N (afl/@(s, v) |, wil) .
Thus, after conditioning on s, v, and w, we effectively have a linear Gaussian likelihood for 1.

We apply this augmentation scheme to the full model, introducing auxiliary variables, w; ,, for each
spike count, s; ,,. Given these variables, the conditional distribution of w,, can be computed in closed
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Figure 2: Weighted adjacency matrices showing inferred networks and connection probabilities for synthetic
data. (a,d) True network. (b,e) Posterior mean using joint inference of network GLM. (c,f) MAP estimation.

form, as before. Let Ky, = [K(S1,n,Vn); - .., k(ST ,n, V)] and Q, = diag([wi n,...,wr ). Then
we have p(w,, | 8, S, @n, b, Xy Wiy V) < N (wy, | @1, X)), where

3, = {2;1 + (S‘TQn@) © (anal)} Con=s, [Eglun + (S‘Tnn) © an} .

Having introduced auxiliary variables, we must now derive Markov transitions to update them as
well. Fortunately, the Pdlya-gamma distribution is designed such that the conditional distribution of
the auxiliary variables is simply a “tilted” P6lya-gamma distribution,

p(wt,n | St,ny Un, '(/)t,n) = PPG (Wt,n | b(st,n> Vn)a ¢t,n)'

These auxiliary variables are conditionally independent given the activation and hence can be
sampled in parallel. Moreover, efficient algorithms are available to generate Pdlya-gamma random
variates [21]]. Our Gibbs updates for the remaining parameters and latent variables (v, U,,, v, and 8)
are described in the supplementary material. A Python implementation of our inference algorithm is
available at https://github.com/slinderman/pyglm.

4 Synthetic Data Experiments

The need for network models is most pressing in recordings of large populations where the network
is difficult to estimate and even harder to interpret. To assess the robustness and scalability of our
framework, we apply our methods to simulated data with known ground truth. We simulate a one
minute recording (1ms time bins) from a population of 200 neurons with discrete latent types that
govern the connection strength via a stochastic block model and continuous latent locations that
govern connection probability via a latent distance model. The spikes are generated from a Bernoulli
observation model.

First, we show that our approach of jointly inferring the network and its latent variables can provide
dramatic improvements over alternative approaches. For comparison, consider the two-step procedure
of Stevenson et al. in which the network is fit with an ¢; -regularized GLM and then a probabilistic
network model is fit to the GLM connection weights. The advantage of this strategy is that the
expensive GLM fitting is only performed once. However, when the data is limited, both the network
and the latent variables are uncertain. Our Bayesian approach finds a very accurate network (Fig. 2p)
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Figure 3: Scalability of our inference algorithm as a function of: (a) the number of time bins, 7"; (b) the number
of neurons, IV; and (c) the average sparsity of the network, p. Wall-clock time is divided into time spent sampling
auxiliary variables (“Obs.”) and time spent sampling the network (“Net.”).

by jointly sampling networks and latent variables. In contrast, the standard GLM does not account
for latent structure and finds strong connections as well as spuriously correlated neurons (Fig. [2k).
Moreover, our fully Bayesian approach finds a set of latent locations that mimics the true locations
and therefore accurately estimates connection probability (Fig.[2k). In contrast, subsequently fitting a
latent distance model to the adjacency matrix of a thresholded GLM network finds an embedding
that has no resemblance to the true locations, which is reflected in its poor estimate of connection
probability (Fig. 2.

Next, we address the scalability of our MCMC algorithm. Three major parameters govern the
complexity of inference: the number of time bins, 7’; the number of neurons, N; and the level of
sparsity, p. The following experiments were run on a quad-core Intel i5 with 6GB of RAM. As shown
in Fig.[3p, the wall clock time per iteration scales linearly with 7" since we must resample N'T" auxiliary
variables. We scale at least quadratically with N due to the network, as shown in Fig.[Bb. However,
the total cost could actually be worse than quadratic since the cost of updating each connection could
depend on N. Fortunately, the complexity of our collapsed Gibbs sampling algorithm only depends
on the number of incident connections, d, or equivalently, the sparsity p = d/N. Specifically, we
must solve a linear system of size d, which incurs a cubic cost, as seen in Fig. .

5 Retinal Ganglion Cells

Finally, we demonstrate the efficacy of this approach with an application to spike trains simultaneously
recorded from a population of 27 retinal ganglion cells (RGCs), which have previously been studied
by Pillow et al. [[13]]. Retinal ganglion cells respond to light shown upon their receptive field. Thus, it
is natural to characterize these cells by the location of their receptive field center. Moreover, retinal
ganglion cells come in a variety of types [[16]. This population is comprised of two types of cells, on
and off cells, which are characterized by their response to visual stimuli. On cells increase their firing
when light is shone upon their receptive field; off cells decrease their firing rate in response to light in
their receptive field. In this case, the population is driven by a binary white noise stimulus. Given
the stimulus, the cell locations and types are readily inferred. Here, we show how these intuitive
representations can be discovered in a purely unsupervised manner given one minute of spiking data
alone and no knowledge of the stimulus.

Figure []illustrates the results of our analysis. Since the data are binned at 1ms resolution, we have
at most one spike per bin and we use a Bernoulli observation model. We fit the 12 network models
of Table 2] (4 adjacency models and 3 weight models), and we find that, in terms of predictive log
likelihood of held-out neurons, a latent distance model of the adjacency matrix and SBM of the
weight matrix performs best (Fig.[4h). See the supplementary material for a detailed description of
this comparison. Looking into the latent locations underlying the adjacency matrix our network GLM
(NGLM), we find that the inferred distances between cells are highly correlated with the distances
between the true locations. For comparison, we also fit a 2D Bernoulli linear dynamical system
(LDS) — the Bernoulli equivalent of the Poisson LDS [7] — and we take rows of the N x2 emission
matrix as locations. In contrast to our network GLM, the distances between LDS locations are nearly
uncorrelated with the true distances (Fig. @) since the LDS does not capture the fact that distance
only affects the probability of connection, not the weight. Not only are our distances accurate, the
inferred locations are nearly identical to the true locations, up to affine transformation. In Fig. @k,
semitransparent markers show the inferred on cell locations, which have been rotated and scaled to
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Figure 4: Using our framework, retinal ganglion cell types and locations can be inferred from spike trains alone.
(a) Model comparison. (b) True and inferred distances between cells. (c¢) True and inferred cell locations. (d-f)
Inferred network, connection probability, and mean weight, respectively. See main text for further details.

best align with the true locations shown by the outlined marks. Based solely on patterns of correlated
spiking, we have recovered the receptive field arrangements.

Fig.[@d shows the inferred network, A ® W, under a latent distance model of connection probability
and a stochastic block model for connection weight. The underlying connection probabilities from
the distance model are shown in Fig. . Finally, Fig. @f shows that we have discovered not only
the cell locations, but also their latent types. With an SBM, the mean weight is a function of latent
type, and under the posterior, the neurons are clearly clustered into the two true types that exhibit the
expected within-class excitation and between-class inhibition.

6 Conclusion

Our results with both synthetic and real neural data provide compelling evidence that our methods can
find meaningful structure underlying neural spike trains. Given the extensive work on characterizing
retinal ganglion cell responses, we have considerable evidence that the representation we learn from
spike trains alone is indeed the optimal way to summarize this population of cells. This lends us
confidence that we may trust the representations learned from spike trains recorded from more
enigmatic brain areas as well. While we have omitted stimulus from our models and only used
it for confirming types and locations, in practice we could incorporate it into our model and even
capture type- and location-dependent patterns of stimulus dependence with our hierarchical approach.
Likewise, the network GLM could be combined with the PLDS as in Vidne et al. [20] to capture
sources of low dimensional, shared variability.

Latent functional networks underlying spike trains can provide unique insight into the structure of
neural populations. Looking forward, methods that extract interpretable representations from complex
neural data, like those developed here, will be key to capitalizing on the dramatic advances in neural
recording technology. We have shown that networks provide a natural bridge to connect neural types
and features to spike trains, and demonstrated promising results on both real and synthetic data.
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