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Abstract
Networks play a central role in modern data anal-
ysis, enabling us to reason about systems by
studying the relationships between their parts.
Most often in network analysis, the edges are
given. However, in many systems it is diffi-
cult or impossible to measure the network di-
rectly. Examples of latent networks include eco-
nomic interactions linking financial instruments
and patterns of reciprocity in gang violence. In
these cases, we are limited to noisy observations
of events associated with each node. To enable
analysis of these implicit networks, we develop
a probabilistic model that combines mutually-
exciting point processes with random graph mod-
els. We show how the Poisson superposition
principle enables an elegant auxiliary variable
formulation and a fully-Bayesian, parallel infer-
ence algorithm. We evaluate this new model em-
pirically on several datasets.

1. Introduction
Many types of modern data are characterized via relation-
ships on a network. Social network analysis is the most
commonly considered example, where the properties of in-
dividuals (vertices) can be inferred from “friendship” type
connections (edges). Such analyses are also critical to un-
derstanding regulatory biological pathways, trade relation-
ships between nations, and propagation of disease. The
tasks associated with such data may be unsupervised (e.g.,
identifying low-dimensional representations of edges or
vertices) or supervised (e.g., predicting unobserved links
in the graph). Traditionally, network analysis has focused
on explicit network problems in which the graph itself is
considered to be the observed data. That is, the vertices
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are considered known and the data are the entries in the as-
sociated adjacency matrix. A rich literature has arisen in
recent years for applying statistical machine learning mod-
els to this type of problem, e.g., Liben-Nowell & Kleinberg
(2007); Hoff (2008); Goldenberg et al. (2010).

In this paper we are concerned with implicit networks that
cannot be observed directly, but about which we wish to
perform analysis. In an implicit network, the vertices
or edges of the graph may not be directly observed, but
the graph structure may be inferred from noisy emissions.
These noisy observations are assumed to have been gen-
erated according to underlying dynamics that respect the
latent network structure.

For example, trades on financial stock markets are executed
thousands of times per second. Trades of one stock are
likely to cause subsequent activity on stocks in related in-
dustries. How can we infer such interactions and disen-
tangle them from market-wide fluctuations? Discovering
latent structure underlying financial markets not only re-
veals interpretable patterns of interaction, but also provides
insight into the stability of the market. In Section 4 we will
analyze the stability of mutually-excitatory systems, and in
Section 6 we will explore how stock similarity may be in-
ferred from trading activity.

As another example, both the edges and vertices may be
latent. In Section 7, we examine patterns of violence in
Chicago, which can often be attributed to social structures
in the form of gangs. We would expect that attacks from
one gang onto another might induce cascades of violence,
but the vertices (gang identity of both perpetrator and vic-
tim) are unobserved. As with the financial data, it should
be possible to exploit dynamics to infer these social struc-
tures. In this case spatial information is available as well,
which can help inform latent vertex identities.

In both of these examples, the noisy emissions have the
form of events in time, or “spikes,” and our intuition is
that a spike at a vertex will induce activity at adjacent ver-
tices. In this paper, we formalize this idea into a probabilis-
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tic model based on mutually-interacting point processes.
Specifically, we combine the Hawkes process (Hawkes,
1971) with recently developed exchangeable random graph
priors. This combination allows us to reason about latent
networks in terms of the way that they regulate interaction
in the Hawkes process. Inference in the resulting model can
be done with Markov chain Monte Carlo, and an elegant
data augmentation scheme results in efficient parallelism.

2. Preliminaries
2.1. Poisson Processes

Point processes are fundamental statistical objects that
yield random finite sets of events {sn}Nn=1 ⊂ S , where S
is a compact subset of RD, for example, space or
time. The Poisson process is the canonical exam-
ple. It is governed by a nonnegative “rate” or “inten-
sity” function, λ(s) : S → R+. The number of events
in a subset S ′ ⊂ S follows a Poisson distribution with
mean

∫
S′ λ(s)ds. Moreover, the number of events in dis-

joint subsets are independent.

We use the notation {sn}Nn=1 ∼ PP(λ(s)) to indicate that
a set of events {sn}Nn=1 is drawn from a Poisson process
with rate λ(s). The likelihood is given by

p({sn}Nn=1|λ(s)) = exp

{
−
∫
S
λ(s)ds

} N∏
n=1

λ(sn). (1)

In this work we will make use of a special property of Pois-
son processes, the Poisson superposition theorem, which
states that {sn} ∼ PP(λ1(s) + . . .+ λK(s)) can be de-
composed into K independent Poisson processes. Let-
ting zn denote the origin of the n-th event, we perform
the decomposition by independently sampling each zn
from Pr(zn = k) ∝ λk(sn), for k ∈ {1 . . .K} (Daley &
Vere-Jones, 1988).

2.2. Hawkes Processes

Though Poisson processes have many nice properties, they
cannot capture interactions between events. For this we
turn to a more general model known as Hawkes pro-
cesses (Hawkes, 1971). A Hawkes process consists of K
point processes and gives rise to sets of marked events
{sn, cn}Nn=1, where cn ∈ {1, . . . ,K} specifies the process
on which the n-th event occurred. For now, we assume
the events are points in time, i.e., sn ∈ [0, T ]. Each of
the K processes is a conditionally Poisson process with
a rate λk(t | {sn : sn < t}) that depends on the history of
events up to time t.

Hawkes processes have additive interactions. Each process
has a “background rate” λ0,k(t), and each event sn on pro-
cess k adds a nonnegative impulse response hk,k′(t − sn)
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Figure 1: Illustration of a Hawkes process. Events induce impulse
responses on connected processes and spawn “child” events. See
the main text for a complete description.

to the intensity of other processes k′. Causality and locality
of influence are enforced by requiring hk,k′(∆t) to be zero
for ∆t /∈ [0,∆tmax].

By the superposition theorem for Poisson processes, these
additive components can be considered independent pro-
cesses, each giving rise to their own events. We augment
our data with a latent random variable zn ∈ {0, . . . , n− 1}
to indicate the cause of the n-th event (0 if the event is due
to the background rate and 1 . . . n− 1 if it was caused by
a preceding event). The augmented Hawkes likelihood is
then the product of likelihoods of each Poisson process:

p({(sn, cn, zn)}Nn=1 | {λ0,k(t)}, {{hk,k′(∆t)}}) =
K∏

k=1

p({sn : cn = k ∧ zn = 0} |λ0,k(t)) ×

N∏
n=1

K∏
k=1

p({sn′ : cn′ = k ∧ zn′ = n} |hcn,k(t− sn)),

where the densities in the product are given by Equation 1.

Figure 1 illustrates a causal cascades of events for a simple
network of three processes (I-III). The first event is caused
by the background rate (z1 = 0), and it induces impulse
responses on processes II and III. Event 2 is spawned by
the impulse on the third process (z2 = 1), and feeds back
onto processes I and II. In some cases a single parent event
induces multiple children, e.g., event 4 spawns events 5a-
c. In this simple example, processes excite one another,
but do not excite themselves. Next we will introduce more
sophisticated models for such interaction networks.

2.3. Random Graph Models

Graphs of K nodes correspond to K ×K matrices.
Unweighted graphs are binary adjacency matrices A
where Ak,k′ = 1 indicates a directed edge from node k to
node k′. Weighted directed graphs can be represented by
a real matrix W whose entries indicate the weights of the
edges. Random graph models reflect the probability of dif-
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ferent network structures through distributions over these
matrices.

Recently, many random graph models have been unified
under an elegant theoretical framework due to Aldous and
Hoover (Aldous, 1981; Hoover, 1979). See Lloyd et al.
(2012) for an overview. Conceptually, the Aldous-Hoover
representation characterizes the class of exchangeable ran-
dom graphs, that is, graph models for which the joint
probability is invariant under permutations of the node la-
bels. Just as de Finetti’s theorem equates exchangeable se-
quences to independent draws from a random probability
measure , Aldous-Hoover renders the entries of A condi-
tionally independent given latent variables of each node.

Empty graph models (Ak,k′ ≡ 0) and complete mod-
els (Ak,k′ ≡ 1) are trivial examples, but much more
structure may be encoded. For example, consider a
model in which nodes are endowed with a location in
space, xk ∈ RD. This could be an abstract feature space
or a real location like the center of a gang territory. The
probability of connection between two notes decreases with
distance between them as Ak,k′ ∼ Bern(ρe−||xk−xk′ ||/τ ),
where ρ is the overall sparsity and τ is the characteristic
distance scale.

Many models can be constructed in this manner. Stochastic
block models, latent eigenmodels, and their nonparametric
extensions all fall under this class (Lloyd et al., 2012). We
will leverage the generality of the Aldous-Hoover formal-
ism to build a flexible model and inference algorithm for
Hawkes processes with structured interaction networks.

3. The Network Hawkes Model
In order to combine Hawkes processes and random net-
work models, we decompose the Hawkes impulse response
hk,k′(∆t) as follows:

hk,k′(∆t) = Ak,k′Wk,k′gθk,k′ (∆t). (2)

Here, A ∈ {0, 1}K×K is a binary adjacency matrix
and W ∈ RK×K

+ is a non-negative weight matrix. To-
gether these specify the sparsity structure and strength of
the interaction network, respectively. The non-negative
function gθk,k′ (∆t) captures the temporal aspect of the in-
teraction. It is parameterized by θk,k′ and satisfies two
properties: a) it has bounded support for ∆t ∈ [0,∆tmax],
and b) it integrates to one. In other words, g is a probability
density with compact support.

Decomposing h as in Equation 2 has many advantages. It
allows us to express our separate beliefs about the spar-
sity structure of the interaction network and the strength
of the interactions through a spike-and-slab prior on A
and W (Mohamed et al., 2012). The empty graph model
recovers independent background processes, and the com-

plete graph recovers the standard Hawkes process. Mak-
ing g a probability density endows W with units of “ex-
pected number of events” and allows us to compare the
relative strength of interactions. The form suggests an
intuitive generative model: for each impulse response
draw m ∼ Poisson(Wk,k′) number of induced events and
draw the m child event times i.i.d. from g, enabling com-
putationally tractable conjugate priors.

Intuitively, the background rates, λ0,k(t), explain events
that cannot be attributed to preceding events. In the sim-
plest case the background rate is constant. However, there
are often fluctuations in overall intensity that are shared
among the processes, and not reflective of process-to-
process interaction, as we will see in the daily variations
in trading volume on the S&P100 and the seasonal trends
in homicide. To capture these shared background fluctua-
tions, we use a sparse Log Gaussian Cox process (Møller
et al., 1998) to model the background rate:

λ0,k(t) = µk + αk exp{y(t)}, y(t) ∼ GP(0,K(t, t′)).

The kernel K(t, t′) describes the covariance structure of
the background rate that is shared by all processes. For ex-
ample, a periodic kernel may capture seasonal or daily fluc-
tuations. The offset µk accounts for varying background
intensities among processes, and the scaling factor αk gov-
erns how sensitive process k is to these background fluctu-
ations (when αk = 0 we recover the constant background
rate).

Finally, in some cases the process identities, cn, must also
be inferred. With gang incidents in Chicago we may have
only a location, xn ∈ R2. In this case, we may place a spa-
tial Gaussian mixture model over the cn’s, as in Cho et al.
(2013). Alternatively, we may be given the label of the
community in which the incident occurred, but we suspect
that interactions occur between clusters of communities. In
this case we can use a simple clustering model or a non-
parametric model like that of Blundell et al. (2012).

3.1. Inference with Gibbs Sampling

We present a Gibbs sampling procedure for inferring the
model parameters, W , A, {{θk,k′}},{λ0,k(t)}, and, if nec-
essary, {cn}. In order to simplify our Gibbs updates,
we will also sample a set of parent assignments for each
event {zn}. Incorporating these parent variables enables
conjugate prior distributions for W , θk,k′ , and, in the case
of constant background rates, λ0,k. Detailed derviations
are provided in the supplementary material.

Sampling weights W . A gamma prior on the weights,
Wk,k′ ∼ Gamma(α0

W , β0
W ), results in the conditional dis-
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tribution,

Wk,k′ | {sn, cn, zn}Nn=1, θk,k′ ∼ Gamma(αk,k′ , βk,k′),

αk,k′ = α0
W +

N∑
n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′,n

βk,k′ = β0
W +

N∑
n=1

δcn,k.

The posterior parameters correspond to the number of
events caused by an interaction and the total unweighted
rate induced by events on node k. Here and elsewhere, δi,j
is the Kronecker delta function. We use the inverse-scale
parameterization of the gamma distribution .

Sampling background rates λ0,k. Similarly,
for background rates λ0,k(t) ≡ λ0,k, the prior
λ0,k ∼ Gamma(α0

λ, β
0
λ) is conjugate with the likeli-

hood and yield the conditional distribution

λ0,k | {sn, cn, zn}Nn=1,∼ Gamma(αλ, βλ),

αλ = α0
λ +

∑
n

δcn,kδzn,0

βλ = β0
λ + T

This conjugacy no longer holds for Gaussian process back-
ground rates, but conditioned upon the parent variables,
we must simply fit a Gaussian process for those events for
which zn = 0. We use elliptical slice sampling (Murray
et al., 2010) for this purpose.

Sampling impulse response parameters θk,k′ . The
logistic-normal density with parameters θk,k′ = {µ, τ}
provides a flexible model for the impulse response:

gk,k′(∆t |µ, τ) = 1

Z
exp

{
−τ

2

(
σ−1

(
∆t

∆tmax

)
− µ

)2
}

σ−1(x) = ln(x/(1− x))

Z =
∆t(∆tmax −∆t)

∆tmax

( τ

2π

)− 1
2

.

The normal-gamma prior µ, τ ∼ NG(µ, τ |µ0
µ, κ

0
µ, α

0
τ , β

0
τ )

is conjugate and yields a conditional distribution with the
following sufficient statistics:

xn,n′ = ln(sn′ − sn)− ln(tmax − (sn′ − sn)),

m =
N∑

n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′ ,n,

x̄ =
1

m

N∑
n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′ ,nxn,n′ .

Intuitively, these correspond to the number of events caused
by an interaction and their average delay.

Collapsed Gibbs sampling A and zn. With Aldous-
Hoover graph priors, the entries in the binary adjacency
matrix A are conditionally independent given the param-
eters of the prior. The likelihood introduces dependencies
between the rows of A, but each column can be sampled
in parallel. Gibbs updates are complicated by strong de-
pendencies between the graph and the parent variables, zn.
Specifically, if zn′ = n, then we must have Acn,cn′ = 1.
To improve the mixing of our sampling algorithm, first we
update A | {sn, cn},W , θk,k′ by marginalizing the parent
variables. The posterior is determined by the likelihood
of the conditionally Poisson process λk′(t | {sn : sn < t})
(Equation 1) with and without interaction Ak,k′ and the
prior comes from the Aldous-Hoover graph model. Then
we update zn | {sn, cn},A,W , θk,k′ by sampling from the
discrete conditional distribution. Though there are N par-
ent variables, they are conditionally independent and may
be sampled in parallel. We have implemented our inference
algorithm on GPUs to capitalize on this parallelism.

Sampling process identities cn. As with the adjacency
matrix, we use a collapsed Gibbs sampler to marginalize
out the parent variables when sampling the process identi-
ties. Unfortunately, the cn’s are not conditionally indepen-
dent and hence must be sampled sequentially.

Computational concerns. Compact impulse responses
limit the number of potential event parents and significantly
reduce the memory requirements and running time of our
algorithm. If the average firing rate is constant, the ex-
pected number of potential parents per event will be linear
in K. Summing the per-event contributions to the log like-
lihood can be done in O(logN) time using standard paral-
lel reductions. Hence, after parallelizing over the columns
of A and the parents zn, one step of our sampling algorithm
takes O(K(K + logN)) time when process identities are
known, and O((K +N)(K + logN)) time otherwise. On
the datasets used in the following experiments, our GPU
implementation1 achieves 5-50 iterations per second.

4. Stability of Network Hawkes Processes
Due to their recurrent nature, Hawkes processes must be
constrained to ensure their positive feedback does not lead
to infinite numbers of events. A stable system must satisfy2

λmax = max | eig(A⊙W ) | < 1

(c.f. Daley & Vere-Jones (1988)). When we are condition-
ing on finite datasets we do not have to worry about this.
We simply place weak priors on the network parameters,

1https://github.com/slinderman
2In this context λmax refers to an eigenvalue rather than a rate,

and ⊙ denotes the Hadamard product.

https://github.com/slinderman
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Figure 2: Empirical and theoretical distribution of the maximum eigenvalue for Erdős-Renyi graphs with gamma weights. (a) Four
gamma weight distributions. The colors correspond to the curves in the remaining panels. (b) Sparsity that theoretically yields 99%
probability of stability as a function of p(W ) and K. (c) and (d) Theoretical (solid) and empirical (dots) distribution of the maximum
eigenvalue. Color corresponds to the weight distribution in (a) and intensity indicates K and ρ shown in (b).

e.g., a beta prior on the sparsity ρ of an Erdős-Renyi graph,
and a Jeffreys prior on the scale of the gamma weight distri-
bution. For the generative model, however, we would like
to set our hyperparameters such that the prior distribution
places little mass on unstable networks. In order to do so,
we use tools from random matrix theory.

The celebrated circular law describes the asymptotic eigen-
value distribution for K × K random matrices with en-
tries that are i.i.d. with zero mean and variance σ2.
As K grows, the eigenvalues are uniformly distributed
over a disk in the complex plane centered at the origin
and with radius σ

√
K. In our case, however, the mean

of the entries, µ = E[Ak,k′Wk,k′ ], is not zero. Silverstein
(1994) has analyzed such “noncentral” random matrices
and shown that the largest eigenvalue is asymptotically dis-
tributed as λmax ∼ N (µK, σ2).

In the simple case of Wk,k′ ∼ Gamma(α, β)
and Ak,k′ ∼ Bern(ρ), we have µ = ρα/β and
σ =

√
ρ((1− ρ)α2 + α)/β. For a given K, α and β, we

can tune the sparsity parameter ρ to achieve stability with
high probability. We simply set ρ such that the minimum
of σ

√
K and, say, µK + 3σ, equals one. Figures 2a and 2b

show a variety of weight distributions and the maximum
stable ρ. Increasing the network size, the mean, or the
variance will require a concomitant increase in sparsity.

This approach relies on asymptotic eigenvalue distribu-
tions, and it is unclear how quickly the spectra of ran-
dom matrices will converge to this distribution. To test
this, we computed the empirical eigenvalue distribution for
random matrices of various size, mean, and variance. We
generated 104 random matrices for each weight distribu-
tion in Figure 2a with sizes K = 4, 64, and 1024, and ρ
set to the theoretical maximum indicated by dots in Fig-
ure 2b. The theoretical and empirical distributions of the
maximum eigenvalue are shown in Figures 2c and 2d. We
find that for small mean and variance weights, for exam-
ple Gamma(1, 5) in the Figure 2c, the empirical results
closely match the theory. As the weights grow larger, as
in Gamma(8, 12) in 2d, the empirical eigenvalue distri-

butions have increased variance and lead to a greater than
expected probability of unstable matrices for the range of
network sizes tested here. We conclude that networks with
strong weights should be counterbalanced by strong spar-
sity limits, or additional structure in the adjacency matrix
that prohibits excitatory feedback loops.

5. Synthetic Results
Our inference algorithm is first tested on synthetic data gen-
erated from the network Hawkes model. We perform two
tests: a) a link prediction task where the process identities
are given and the goal is to simply infer whether or not an
interaction exists, and b) an event prediction task where we
measure the probability of held-out event sequences.

The network Hawkes model can be used for link predic-
tion by considering the posterior probability of interac-
tions P (Ak,k′ | {sn, cn}). By thresholding at varying prob-
abilities we compute a ROC curve. A standard Hawkes
process assumes a complete set of interactions (Ak,k′ ≡ 1),
but we can similarly threshold its inferred weight matrix to
perform link prediction.

Cross correlation provides a simple alternative measure of
interaction. By summing the cross-correlation over off-
sets ∆t ∈ [0,∆tmax), we get a measure of directed inter-
action. A probabilistic alternative is offered by the gen-
eralized linear model for point processes (GLM), a pop-
ular model for spiking dynamics in computational neuro-
science (Paninski, 2004). The GLM allows for constant
background rates and both excitatory and inhibitory inter-
actions. Impulse responses are modeled with linear ba-
sis functions. Area under the impulse response provides
a measure of directed excitatory interaction that we use to
compute a ROC curve. See the supplementary material for
a detailed description of this model.

We sampled ten network Hawkes processes of 30 nodes
each with Erdős-Renyi graph models, constant background
rates, and the priors described in Section 3. The Hawkes
processes were simulated for T = 1000 seconds. We used
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Figure 4: Comparison of predictive log likelihoods for the same
set of networks as in Figure 3, compared to a baseline of a Pois-
son process with constant rate. Improvement in predictive likeli-
hood over baseline is normalized by the number of events in the
test data to obtain units of “bits per spike.” The network Hawkes
model outperforms the competitors in all sample networks.

the models above to predict the presence or absence of in-
teractions. The results of this experiment are shown in the
ROC curves of Figure 3. The network Hawkes model ac-
curately identifies the sparse interactions, outperforming all
other models. With the Hawkes process and the GLM we
can evaluate the log likelihood of held-out test data. On
this task, the network Hawkes outperforms the competitors
for all networks. On average, the network Hawkes model

Financial Model Pred. log lkhd. (bits/spike)
Indep. LGCP 0.579± 0.006
Std. Hawkes 0.903± 0.003
Net. Hawkes (Erdős-Renyi) 0.893± 0.003
Net. Hawkes (Latent Distance) 0.879± 0.004

Figure 5: Comparison of financial models on a event prediction
task, relative to a homogeneous Poisson process baseline.

achieves 2.2 ± .1 bits/spike improvement in predictive log
likelihood over a homogeneous Poisson process. Figure 4
shows that on average the standard Hawkes and the GLM
provide only 60% and 72%, respectively, of this predictive
power. See the supplementary material for further analysis.

6. Trades on the S&P 100
As an example of how Hawkes processes may discover
interpretable latent structure in real-world data, we study
the trades on the S&P 100 index collected at 1s intervals
during the week of Sep. 28 through Oct. 2, 2009. Every
time a stock price changes by ±0.1% of its current price
an event is logged on the stock’s process, yielding a total
of K = 100 processes and N=182,037 events.

Trading volume varies substantially over the course of the
day, with peaks at the opening and closing of the market.
This daily variation is incorporated into the background
rate via a Log Gaussian Cox Process (LGCP) with a pe-
riodic kernel (see supplementary material). We look for
short-term interactions on top of this background rate with
time scales of ∆tmax = 60s. In Figure 5 we compare the
predictive performance of independent LGCPs, a standard
Hawkes process with LGCP background rates, and the net-

τ

Latent Dimension 1

L
a

te
n

t 
D

im
e

n
s
io

n
 2

Inferred Embedding of Financial Stocks

 

 
IT

Financials

Energy

Health Care

Consumer

Industrials

A
A

P
L

J
N

J

J
P

M

C
V

S

P
G

W
A

G

X
O

M

Top 4 eigenvectors of A ⋅W

Figure 6: Top: A sample from the posterior distribution over em-
beddings of stocks from the six largest sectors of the S&P100
under a latent distance graph model with two latent dimensions.
Scale bar: the characteristic length scale of the latent distance
model. The latent embedding tends to embed stocks such that
they are nearby to, and hence more likely to interact with, others
in their sector. Bottom: Hinton diagram of the top 4 eigenvectors.
Size indicates magnitude of each stock’s component in the eigen-
vector and colors denote sectors as in the top panel, with the addi-
tion of Materials (aqua), Utilities (orange), and Telecomm (gray).
We show the eigenvectors corresponding to the four largest eigen-
values λmax = 0.74 (top row) to λ4 = 0.34 (bottom row).



Discovering Latent Network Structure in Point Process Data

Communities Clusters
0

0.1

0.2

0.3

0.4

0.5

0.6

Process ID Model

P
re

d
. 
L
o
g
 L

k
h
d
 (

b
it
s
/s

)

 

 

Empty

Complete

Erdos−Renyi

Distance

(a)

Receiving Cluster

In
it
ia

ti
n

g
 C

lu
s
te

r

Cluster Interactions

 

 

1 2 3 4

1

2

3

4

0

20

40

(b)
−87.9 −87.8 −87.7 −87.6 −87.5

41.6

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

42.1
Inferred Gang Regions

 

 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

(c)

1980 1985 1990 1994
  0

  1

  2

  3

λ
1
(t

)

1980 1985 1990 1994
  0

  1

  2

  3

λ
2
(t

)

1980 1985 1990 1994
  0

  1

  2

  3

λ
3
(t

)

1980 1985 1990 1994
  0

  1

  2

  3

λ
4
(t

) 
[H

o
m

/D
a

y
/k

m
2
]

×
1

0
−

3

 

 
Offset

Background

Interactions

(d)

Figure 7: Inferred interactions among clusters of community areas in the city of Chicago. (a) Predictive log likelihood for “communities”
and “clusters” process identity models and four graph models. Panels (b-d) present results for the model with the highest predictive log
likelihood: an Erdős-Renyi graph with K = 4 clusters. (b) The weighted interaction network in units of induced homicides over the
training period (1980-1993). (c) Inferred clustering of the 77 community areas. (d) The intensity for each cluster, broken down into the
offset, the shared background rate, and the interactions (units of 10−3 homicides per day per square kilometer).

work Hawkes model with LGCP background rates under
two graph priors. The models are trained on four days of
data and tested on the fifth. Though the network Hawkes is
slightly outperformed by the standard Hawkes, the differ-
ence is small relative to the performance improvement from
considering interactions, and the inferred network parame-
ters provide interpretable insight into the market structure.

In the latent distance model for A, each stock has a la-
tent embedding xk ∈ R2 such that nearby stocks are more
likely to interact, as described in Section 2.3. Figure 6
shows a sample from the posterior distribution over embed-
dings in R2 for ρ = 0.2 and τ = 1. We have plotted stocks
in the six largest sectors, as listed on Bloomberg.com.
Some sectors, notably energy and financials, tend to cluster
together, indicating an increased probability of interaction
between stocks in the same sector. Other sectors, such as
consumer goods, are broadly distributed, suggesting that
these stocks are less influenced by others in their sector.
For the consumer industry, which is driven by slowly vary-
ing factors like inventory, this may not be surprising.

The Hinton diagram in the bottom panel of Figure 6 shows
the top 4 eigenvectors of the interaction network. All eigen-
values are less than 1, indicating that the system is stable.
The top row corresponds to first eigenvector (λmax = 0.74).
Apple (AAPL), J.P. Morgan (JPM), and Exxon Mobil (XOM)
have notably large entries in the eigenvector, suggesting
that their activity will spawn cascades of self-excitation.

7. Gangs of Chicago
In our final example, we study spatiotemporal patterns of
gang-related homicide in Chicago. Sociologists have sug-
gested that gang-related homicide is mediated by under-
lying social networks and occurs in mutually-exciting, re-
taliatory patterns (Papachristos, 2009). This is consistent
with a spatiotemporal Hawkes process in which processes
correspond to gang territories and homicides incite further
homicides in rival territories.

We study gang-related homicides between 1980 and 1995
(Block et al., 2005). Homicides are labeled by the com-
munity in which they occurred. Over this time-frame there
were N = 1637 gang-related homicides in the 77 commu-
nities of Chicago.

We evaluate our model with an event-prediction task, train-
ing on 1980-1993 and testing on 1994-1995. We use a Log
Gaussian Cox Process (LGCP) temporal background rate
in all model variations. Our baseline is a single process
with a uniform spatial rate for the city. We test two pro-
cess identity models: a) the “community” model, which
considers each community a separate process, and b) the
“cluster” model, which groups communities into processes.
The number of clusters is chosen by cross-validation (see
supplementary material). For each process identity model,
we compare four graph models: a) independent LGCPs
(empty), b) a standard Hawkes process with all possible in-
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teractions (complete), c) a network Hawkes model with a
sparsity-inducing Erdős-Renyi graph prior, and d) a net-
work Hawkes model with a latent distance model that
prefers short-range interactions.

The community process identity model improves predic-
tive performance by accounting for higher rates in South
and West Chicago where gangs are deeply entrenched. Al-
lowing for interactions between community areas, how-
ever, results in a decrease in predictive power due to over-
fitting (there is insufficient data to fit all 772 potential in-
teractions). Interestingly, sparse graph priors do not help.
They bias the model toward sparser but stronger interac-
tions which are not supported by the test data. These re-
sults are shown in the “communities” group of Figure 7a.
Clustering the communities improves predictive perfor-
mance for all graph models, as seen in the “clusters” group.
Moreover, the clustered models benefit from the inclusion
of excitatory interactions, with the highest predictive log
likelihoods coming from a four-cluster Erdős-Renyi graph
model with interactions shown in Figure 7b. Distance-
dependent graph priors do not improve predictive perfor-
mance on this dataset, suggesting that either interactions do
not occur over short distances, or that local rivalries are not
substantial enough to be discovered in our dataset. More
data is necessary to conclusively say which.

Looking into the inferred clusters in Figure 7c and their
rates in 7d, we can interpret the clusters as “safe suburbs”
in gold, “buffer neighborhoods” in green, and “gang ter-
ritories” in red and blue. Self-excitation in the blue clus-
ter (Figure 7b) suggests that these regions are prone to
bursts of activity, as one might expect during a turf-war.
This interpretation is supported by reports of “a burst of
street-gang violence in 1990 and 1991” in West Englewood
(41.77◦N, −87.67◦W) (Block & Block, 1993).

Figure 7d also shows a significant increase in the homicide
rate between 1989 and 1995, consistent with reports of es-
calating gang warfare (Block & Block, 1993). In addition
to this long-term trend, homicide rates show a pronounced
seasonal effect, peaking in the summer and tapering in the
winter. A LGCP with a quadratic kernel point-wise added
to a periodic kernel captures both effects.

8. Related Work
Gomez-Rodriguez et al. (2010) introduced one of the ear-
liest algorithms for discovering latent networks from cas-
cades of events. They developed a highly scalable approx-
imate inference algorithm, but they did not explore the po-
tential of random network models or emphasize the point
process nature of the data. Simma & Jordan (2010) studied
this problem from the context of Hawkes processes and de-
veloped an expectation-maximization inference algorithm.

We have adapted their latent variable formulation in our
fully-Bayesian inference algorithm and introduced a frame-
work for prior distributions over the latent network.

Others have considered special cases of the model we have
proposed. Blundell et al. (2012) combine Hawkes pro-
cesses and the Infinite Relational Model (a specific ex-
changeable graph model with an Aldous-Hoover represen-
tation) to cluster processes and discover interactions. Cho
et al. (2013) applied Hawkes processes to gang incidents in
Los Angeles. They developed a spatial Gaussian mixture
model (GMM) for process identities, but did not explore
structured network priors. We experimented with this pro-
cess identity model but found that it suffers in predictive
log likelihood tests (see supplementary material).

Recently, Iwata et al. (2013) developed a stochastic EM
algorithm for Hawkes processes, leveraging similar conju-
gacy properties, but without network priors. Zhou et al.
(2013) have developed a promising optimization-based ap-
proach to discovering low-rank networks in Hawkes pro-
cesses, similar to some of the network models we explored.

Perry & Wolfe (2013) derived a partial likelihood inference
algorithm for Hawkes processes with a similar emphasis
on structural patterns in the network of interactions. They
provide an estimator capable of discovering homophily and
other network effects. Our fully-Bayesian approach gener-
alizes this method to capitalize on recent developments in
random network models (Lloyd et al., 2012).

Finally, generalized linear models (GLMs) are widely used
in computational neuroscience (Paninski, 2004). GLMs al-
low for both excitatory and inhibitory interactions, but, as
we have shown, when the data consists of purely excitatory
interactions, Hawkes processes outperform GLMs in link-
and event-prediction tests.

9. Conclusion
We developed a framework for discovering latent network
structure from spiking data. Our auxiliary variable formu-
lation of the multivariate Hawkes process supported arbi-
trary Aldous-Hoover graph priors, Log Gaussian Cox Pro-
cess background rates, and models of unobserved process
identities. Our parallel MCMC algorithm allowed us to
reason about uncertainty in the latent network in a fully-
Bayesian manner. We leveraged results from random ma-
trix theory to analyze the conditions under which random
network models will be stable, and our applications uncov-
ered interpretable latent networks in a variety of synthetic
and real-world problems.
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