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Abstract
Safety-critical applications require controllers/policies that can guarantee safety
with high confidence. The control barrier function is a useful tool to guarantee
safety if we have access to the ground-truth system dynamics. In practice, we
have inaccurate knowledge of the system dynamics, which can lead to unsafe
behaviors due to unmodeled residual dynamics. Learning the residual dynamics
with deterministic machine learning models can prevent the unsafe behavior but can
fail when the predictions are imperfect. In this situation, a probabilistic learning
method that reasons about the uncertainty of its predictions can help provide
robust safety margins. In this work, we use a Gaussian process to model the
projection of the residual dynamics onto a control barrier function. We propose a
novel optimization procedure to generate safe controls that can guarantee safety
with high probability. The safety filter is provided with the ability to reason
about the uncertainty of the predictions from the GP. We show the efficacy of this
method through experiments on Segway and Quadrotor simulations. Our proposed
probabilistic approach is able to reduce the number of safety violations significantly
as compared to the deterministic approach with a neural network.

1 Introduction
Reasoning about safety is critical when it comes to controlling a system in an unsafe or unpredictable
environment. Traditional control design identifies a parametric first-principles model based on prior
knowledge, then uses this model as the basis of controller design. However, such a model has inherent
inaccuracies due to parameter estimation errors and errors arising from unmodelled dynamics. These
issues can make it difficult for the controller to achieve its goals while avoiding unsafe behaviors.
Learning can be used to reduce model uncertainty (i.e., residuals between the actual and the nominal
model) [5, 6, 20, 16]. This can avoid the use of controllers that assume a worst-case bounded model
error [30, 21], which does not accurately reflect the true model uncertainty.

In this work, we focus on safety for a system whose exact dynamics are not available. Given an
accurate model, one can utilize Control Barrier Functions (CBFs) [2, 3] to provide a safety filter for
the desired controller by solving a quadratic program (CBF-QP) to project the control to the space
of safe controls. For example, Taylor et al. [26] directly learns the residuals dynamics of the CBF
with a neural network and then synthesizes a safe controller by filtering the goal-reaching controller
with the learned dynamics. This learning-based approach (LCBF-QP) results in better modeling
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of the dynamics for applying the CBF to ensure safety. However, it has a strong requirement that
the learned dynamics is sufficiently accurate. This is needed to ensure that the CBF is successful in
guaranteeing safety. In practice, this requirement is hard to satisfy with neural nets which are prone
to errors as a result of limited training data or out-of-distribution test data. Further, the predictions
are deterministic, so even predictions with large potential errors are used with full confidence.

Here, we take a probabilistic view of learning model uncertainty. We use Gaussian processes
(GPs) [24]—a highly flexible Bayesian nonparametric model—to directly model the uncertain
dynamics of how the CBF evolves over time. The GP model not only allows us to incorporate
prior knowledge about the dynamics via specifying its kernel function, but also provides closed-
form posterior distributions for evaluation. Our approach is in similar spirit to [6, 13, 29] where
probabilistic modeling is used to better capture the uncertainty in the residual dynamics. Specifically,
we use probabilistic modeling for safety-critical control with CBFs. (See Section 5 for a more
detailed discussion of the differences.) Since we are using CBF to do safety filtering, we use GPs to
directly model the residual dynamics of the CBF, which results in a lower output dimension for the
GPs. Additionally, with the posterior distribution over the CBF dynamics, we are able to construct a
novel CBF safety filtering optimization procedure that provides probabilistic safety guarantee with
high confidence under the GP models. However, incorporating variance estimates into the CBF
safety constraint gives rise to a new type of non-convex quadratically constrained quadratic program
(QCQP), which is challenging to solve. We show how this non-convex optimization problem can be
transformed to a convex one. This result is potentially of independent interest for CBF safety filtering
with probabilistic constraints under Gaussian dynamics. We call our approach Probabilistic Safety
Certificates with Control Barrier Functions (ProBF). The effectiveness of this probabilistic safety
approach is demonstrated through experiments on a Segway and Quadrotor simulation.

2 Background
2.1 Learning Residual Dynamics for Control Barrier Functions
First we introduce an important class of functions. A function α : R → R belongs to the set of
extended class-K functions K∞,e [2] if it satisfies: (1) α is strictly increasing and α(0) = 0, (2)
limr→∞ α(r) =∞ and limr→−∞ α(r) = −∞.

Now consider a non-linear control-affine system with state x ∈ Rs and control u ∈ Rm:

ẋ = f(x) + g(x)u
u=k(x)−−−−−→ ẋ = f(x) + g(x)k(x). (1)

A control barrier function (CBF) can be used to synthesize a safe controller for the system (1) that is
forward invariant with regards to safety.

Definition 1. Control Barrier Function (CBF)[2]: Let h : Rs → R be a continuously differentiable
function with 0 being a regular value and let S := {x ∈ S |h(x) ≥ 0} ⊂ Rs. Then the function h is
a Control Barrier Function (CBF) for (1) on S if there exists α ∈ K∞,e such that for all x ∈ S :

sup
u∈Rm

ḣ(x,u) = sup
u∈Rm

[
∂h

∂x
(x)(f(x) + g(x)u)

]
≥ −α(h(x)). (2)

Theorem 1. Safety Invariance[2]: Let h be a CBF such that S is the set of safe
states. Then the system (1) is safe with any controller that satisfies (2): i.e. Kcbf(x) ={
u ∈ Rm | ∂h∂x (x)(f(x) + g(x)u) ≥ −α(h(x))

}
.

By Theorem 1, the existence of a CBF enables us to provide a safety filter for the desired controller
ud by solving the following quadratic program (CBF-QP):

min
u
‖u− ud‖2 s.t.

∂h

∂x
(x) (f(x) + g(x)u) + α(h(x)) ≥ 0.

In practice, the true system model is never known precisely. Instead, we have a nominal model̂̇x = f̂(x) + ĝ(x)u that approximates the true system. Using the same approach as Taylor et al.
[27, 26], we decompose the true system into a nominal model and the residual dynamics:

ẋ = f̂(x) + ĝ(x)u +
(
f(x)− f̂(x)

)
+
(
g(x)− ĝ(x)

)
u (3)
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The residual dynamics also affects how the time derivative of the CBF is calculated:

ḣ(x,u) =
∂h

∂x
(x)
(
f̂(x) + ĝ(x)u

)
︸ ︷︷ ︸

ĥ(x,u)

+
∂h

∂x
(x)
(
f(x)− f̂(x)

)
︸ ︷︷ ︸

b(x)

+
∂h

∂x
(x)
(
g(x)− ĝ(x)

)
︸ ︷︷ ︸

a(x)>

u. (4)

Here b(x) and a(x) are the residual dynamics in the CBF time derivative.

To apply CBF on the true system, we make an assumption on the residual dynamics. Intuitively,
we assume that we have the same capability of maintaining safety with the true system as with the
system nominal model. This holds when the true system has the same actuation capability as the
nominal model [25].

Assumption 1. If a function h is a valid CBF for the nominal model of the system, then it is a valid
CBF for the uncertain system.

In Taylor et al. [26], trajectory data are collected in discrete time steps following the episodic learning

framework. Let D =
{(

(xi,ui) , ḣi

)}N
i=1

denote the collected data from all trajectories, where ḣ is
approximated by taking the discrete time approximation of the true CBF values. The authors then
formulate the learning of residual dynamics as an empirical risk minimization (ERM) problem:

min
a∈Ha,b∈Hb

1

N

N∑
i=1

L
(̂̇
h(xi,ui) + a(xi)

>ui + b(xi), ḣi

)
.

After learning the unmodeled dynamics, a new controller can be synthesized by making use of the
updated estimate of the CBF time derivatives using CBF-QP.

2.2 Gaussian Processes
In this section, we provide a review of the basic background concepts of Gaussian processes necessary
for the discussion of our proposed ProBF approach described in Section 3

Given a mean function µ(x) and a positive-definite covariance function k(x,x′) with x,x′ ∈ X , a
Gaussian processes defines a distribution over functions f : X → R:

f(x) ∼ GP (µ(·), k (·, ·)) , µ(x) = E[f(x)], k (x,x′) = Cov (f(x), f(x′))

For any finite set of points in X , X := {x1, . . . ,xN}, the corresponding function values f :=
(f(x1), · · · , f(xN ))> follow a multivariate Gaussian distribution: f ∼ N (µ,KXX), where [µ]i =
µ(xi) and [KXX]ij = k(xi,xj). For a training dataset D = {(xi, yi)}Ni=1, each yi is com-
monly assumed to be observed with an additional i.i.d. zero-mean Gaussian noise to f(xi),
i.e., yi = f(xi) + εi, where εi ∼ N (0, σ2

ε). Denote y := [y1, · · · , yN ]> ∈ RN×1. For new data
input X̃ := {x̃1, . . . , x̃N ′} of size N ′, the Gaussianity of the prior and likelihoods make it possible
to compute the predictive distribution in closed form:

f̃ |X̃,D ∼ N
(
µ̃,Kf̃

)
,

µ̃ = KX̃X

(
KXX + σ2

εI
)−1

y,

Kf̃ = KX̃X̃−KX̃X

(
KXX+σ2

εI
)−1

KXX̃,

where KXX̃ ∈ RN×N ′
with [KXX̃]

ij
= k(xi, x̃j).

The kernel function is chosen to reflect various model assumptions, e.g., smoothness, periodicity, etc.
(See Chapter 4 of Rasmussen and Williams [24] for an extensive discussion.) It is also common for
the kernel function to have so-called hyperparameters θ that govern its specific structure, and the
parameterized kernel function is written as kθ(·, ·). These hyperparameters are most commonly deter-
mined via maximizing the log marginal likelihood (evidence) with respect to the hyperparameter θ
using empirical Bayes [4, 19]. The log MLL for observed data {X,y} is given by:

log p(y|X, θ) = −1

2
y>
(
KXX(θ) + σ2

εI
)−1

y − 1

2
log
∣∣KXX(θ) + σ2

εI
∣∣− N

2
log 2π , (5)

where we write KXX(θ) to indicate the dependence of KXX on the hyperparameters.
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3 Probabilistic Safety Certificate with Control Barrier Function
3.1 Probabilistic Modeling of Residual Dynamics
Instead of modeling the residual dynamics as deterministic functions, we place Gaussian process [23]
priors on a(x) and b(x). Using the distribution over the residual dynamics, we use the confidence
estimate to provide robust safety on regions of the state space where the estimates are not accurate.
In particular, b(x) ∼ GP(0, kb(·, ·)) is modeled as a single-output GP and a(x) is modeled as a
multi-output GP with aj(x) ∼ GP(0, ka,j(·, ·)), where kb and ka,j are the covariance functions.
aj(x)’s are independent of each other if we assume all entries of A(x) are independent. As a result,

d(x,u) := h(x,u)− ˆ̇
h(x,u) = a(x)>u+b(x) will be a GP with zero mean and covariance function

kd given in closed form:

d(x,u) ∼ GP(µ(·), kd(·, ·)),
µd(x,u) = 0,

kd((x,u), (x′,u′)) =

m∑
j=1

ka,j(x,x
′)uju

′
j + kb(x,x

′).

Assume we are given the training dataset Dtrain in the form of collected trajectories Xtrain :=
((x1,u1), . . . , (xN ,uN )) and Ytrain := [d1, . . . , dN ]> ∈ RN . We denote Xtrain := [x1, . . . ,xN ] ∈
Rs×N and Utrain := [u1, . . . ,uN ] ∈ Rm×N . Let Ktrain ∈ RN×N be the covariance matrix on Xtrain
evaluated using kd(·, ·).

The posterior distribution of a new test point d(x∗,u∗) is given by:

d(x∗,u∗)|Dtrain = N
(
µd(x

∗,u∗), σ2
d(x∗,u∗)

)
, (6)

µd(x
∗,u∗) = ā(x∗)>u∗ + b̄(x∗), (7)

σ2
d(x∗,u∗) = u∗>Σa(x∗)u∗ + 2Σa,b(x

∗)>u∗ + σb(x
∗)2, (8)

where ā(x), b̄(x) represents the posterior mean of a(x), b(x) and Σa(x), σ2
b (x),Σa,b(x) represents

the posterior covariance of a(x), b(x). It is worth noting that although a(x) is independent of b(x),
the posterior variance does not simply decompose into the variances induced by a(x)>u and b(x).
For the closed forms of posterior mean and covariance and their derivations, we refer readers to
Appendix A.

3.2 Projection to Probabilistic Safety
The posterior distribution provided by the GP characterizes the uncertainty of the CBF dynamics.
The GP posterior is expected to be more confident (i.e. with smaller variance) about its predictions in
regions with more data available, and less confident (i.e. with larger variance) in regions with less
data. Given the posterior distribution from the GP, we find actions that guarantee safety with high
probability by solving the following probabilistic-safety projection problem:

min
u
‖u− ud‖2 (9)

s.t. Pr
(∂h
∂x

(x)
(
f̂(x) + ĝ(x)u

)
+ α(h(x)) + d(x,u) > 0

)
≥ 1− ε. (10)

Since d(x,u) is Gaussian from (6), the probabilistic safety constraint in (10) is equivalent to:

(ā(x) + ca(x))
>

u + b̄(x) + cb(x)− δ
√

u>Σa(x)u + 2Σa,b(x)>u + σb(x)2 ≥ 0, (11)

for a corresponding δ calculated from ε, where ca =
(
∂h
∂x (x)ĝ(x)

)>
and cb = ∂h

∂x (x)f̂(x)+α(h(x))
are the constant terms obtained from the known nominal dynamics. Note that if we set δ = 0, this
reduces back to the LCBF-QP [26] formulation as a special case of our method by only using the
mean predictions from the GP.

The constraint in (11) is non-convex, but it is possible to transform it to a convex one.

Theorem 2. Convex Projection to Probabilistic Safety: The non-convex probabilistic safety projec-
tion optimization problem in (9) can be transformed to a convex optimization problem.
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Here we give a brief outline of the proof. For details, please refer to Appendix B.

Proof Sketch. We can first transform this problem into a quadratically constrained quadratic program
(QCQP) by introducing an auxiliary variable s:

min
u,s

‖u− ud‖2 (12)

s.t. (ā(x) + ca(x))
>

u + b̄(x) + cb(x)− δs ≥ 0 (13)

u>Σa(x)u + 2Σa,b(x)>u + σb(x)2 ≤ s2 (14)
s ≥ 0 (15)

Then, by defining ū = [u t s]
> ∈ Rm+2, we can rewrite the non-convex quadratic constraint

in (14) as ‖Σū‖ ≤ c>ū with t = 1, Σ =

√√√√√
 Σa(x) Σa,b(x) 0

Σa,b(x) σb(x)2 0
0 0 0

 and c =

[
0
0
1

]
. Now, we can

rewrite the non-convex QCQP as a convex program:

min
ū

ū>Qū

s.t. ‖Σū‖ ≤ c>ū, C>ū + d ≤ 0, D>ū + f = 0

with the matrices Q < 0, C, D, d, f defined properly to enforce constraints (12), (13) and (15). The
equality constraint t = 1 is enforced by:

D =

[
0
1
0

]
, f =

[
0
−1
0

]
. (16)

The remaining inequality constraints can be enforced with:

C =

[
− (ā(x) + ca(x))

> −(b̄(x) + cb(x)) δ
0 0 −1

]
,d = 0. (17)

Finally, the matrix in the objective function Q can be defined as:

Q =

 I −ud 0
−u>d u>d ud 0

0 0 0

 . (18)

We can then solve this convex program using standard convex optimization solver such as
CVXPY [12].

4 Numerical Results
4.1 Segway
We test our approach on a simulated Segway platform [26]. The control barrier function is designed
to keep the Segway from flipping over while not exceeding an angular velocity threshold: h(θ, θ̇) =

θ2m − θ̇2 − (θ − θe)2, with θm = 0.2617, θe = 0.1383. The stabilizing controller is a proportional-
derivative (PD) controller designed to reach the goal state. The model uncertainty comes from the
nominal system parameters being inaccurate. Due to the residual dynamics, the PD controller with
the CBF-QP escapes out of the safe region. We learn the residuals with a GP using an episodic
learning framework similar to Taylor et al. [26]. We use Matérn 5/2 kernels for ka,j and kb with
individual lengthscales for each dimension. The Matérn 5/2 kernel is chosen because it better reflects
the smoothness assumption of the residuals to be learned. The lengthscales are set by maximizing
marginal likelihood on the training data. The ProBF safety projection is solved with an initially
chosen δ = 1.0 until any time step when the convex program becomes infeasible. After this point, δ
is reduced to ensure feasibility and used for the rest of the episode.

In Figure 1, we depict the advantage of using our approach (ProBF) compared to the learned CBF
with a neural network (LCBF-QP) [26]. We train both the GP and NN using the same set of initial
points randomly drawn from a fixed region of the state space for 5 episodes. In Figure 1a, we test the
trained models from the center of the region. Both the GP and NN can give rise to a safe controller

5
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(b) Starting from closer to the boundary of the
region used for training.

Figure 1: Segway: Comparing the learned controller with ProBF and LCBF-QP. For ProBF, we use
different δ’s that correspond to different level of probabilistic safety. δS is the boundary of safety set.

but the safety margin can be controlled using δ. In Figure 1b, we test from a point closer to the
boundary. In this case, the NN and GP without variance (δ = 0) marginally violate safety. However,
solving the ProBF safety filtering optimization with the variance can ensure safety.

We repeat the same episodic learning procedure 10 times for both methods with the different sets of
initial points and compare the number of safety violations by testing on 10 new random initial points.
In each run, both methods are trained for 5 episodes. Across the 10 runs, we observe that ProBF
violates safety on 24± 22.7% of the testing trials, while LCBF-QP violates 47± 30.6% of the time.
Further, most of the safety violations do not result in total catastrophe and are minor deviations out of
the safe set. With the help of uncertainty estimates, ProBF is able to reduce the average violations
by 50% and has a lower variance. (See Appendix C for plots of trajectories.) Further, ProBF also
gives early warning of safety violations when the uncertainty is too big such that there is no feasible
solution to ProBF.

4.2 Planar Quadrotor with Gravity
We also test our probabilistic approach on a 2D quadrotor example with gravity in one of the directions.
An extension technique [1] is used to design a feedback-linearization stabilizing controller with 2
controls for the quadrotor. The two control inputs to the drone are the thrust force and the torque about
the center of mass. The stabilizing controller will steer the quadrotor to the origin from the region
surrounding [2.0, 2.0]. We define an unsafe region as a circle around the point (1.85, 0.6) in the 2D
space. Hence, we define the control barrier function as h(x, y) = (x− 1.85)2 + (y − 0.6)2 − 0.28.
The true parameters of the quadrotor are: m = 1.8, J = 1.1, while the nominal estimates are
m = 1.5, J = 1.3. An higher order CBF-QP (fourth order) is solved using a technique similar to [28].
This requires us to compute fourth derivatives of the barrier function leading to spiky residuals. With
just the nominal model, the stabilizing controller with the CBF-QP cannot prevent entry into the
unsafe region. This shows a clear need to learn the residual terms to improve safety. We count a
safety violation whenever h < −0.05 anywhere in the trajectory.

In Figure 1, we compare ProBF with LCBF-QP [26] for quadrotor safety. We train both the GP and
NN using the same set of initial points randomly drawn from a fixed region of the state space for 10
episodes. In Figure 2a, we test the trained models from the left-bottom of the initial region. Both the
GP and NN can give rise to a safe controller but the safety margin can be controlled using δ. In Figure
2b, we test from a point from the top-right of the initial region. In this case, the NN performs poorly
and the quadrotor passes right into the unsafe region. However, solving the ProBF safety filtering
optimization with the variance can ensure safety. We repeat the same episodic learning procedure
10 times for both methods with the different sets of initial points and compare the number of safety
violations by testing on 10 new random initial points. In each run, both methods are trained for 10
episodes. For both LCBF-NN and ProBF, the training diverged for one seed without any further
tuning of the hyperparameters. Across the 9 remaining runs, we observe that ProBF violates safety on
11.1± 11.9% of the testing trials, while LCBF-QP violates 38.8± 21.3% of the time. Again, ProBF
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Figure 2: Quadrotor: Comparing the learned controller with ProBF and LCBF-QP. For ProBF, we
use different δ’s that correspond to different level of probabilistic safety.

is able to significantly reduce the average violations (by more than 70%) and has a lower variance.
(See Appendix C for plots of trajectories.)

5 Related Work
5.1 Control Barrier Functions
Control barrier function [2, 3] is a tool to provide safety filters with guarantees. Robust CBFs
[22, 14] can be used to provide robust safety but the uncertainty of the given system is assumed to be
worst-case from a bounded set leading to unnecessary conservatism. The safety filtering optimization
using robust CBFs can only be solved approximately by making polytopic over-approximations of the
safety constraint set. Similar idea is exploited in Luo et al. [18] for multi-robot collision avoidance
under uncertainty by assuming bounded uniform random noise in the system dynamics. The controls
are solved via approximate projection onto the probabilistic collision free sufficiency conditions.
Instead of assuming worst case uncertainty, Taylor et al. [26] learns a safe controller by episodically
learning the residuals in the barrier certificate dynamics with a neural network.

In Choi et al. [11], a reinforcement learning approach is taken to learn the residuals terms in CLF
and CBF. However, the function approximator is still parametric. Cheng et al. [9] use CBF’s to
incorporate safety constraints into model-free reinforcement learning. In contrast, our work is directed
towards the model-based setting where an approximate model is given and the unmodeled dynamics
are learned with a Bayesian model.

5.2 Gaussian Processes for Learning Dynamics
Several previous works have proposed to use GP for modelling dynamics [6, 13, 29]. In Berkenkamp
et al. [6], the authors propose to use GP for modelling the transition dynamics in model-based
reinforcement learning. In Fisac et al. [13], GP is used to model the disturbance term in the dynamical
system for safe learning-based control.

The most relevant works to ours are Wang et al. [29] and Khojasteh et al. [15]. Wang et al. [29] uses
GP to model the residual control-independent dynamics for safe learning of quadrotors with CBFs.
Using a similar idea, Cheng et al. [10] models the residual control-independent dynamics using GP
and constructs an uncertainty polytope given a desired confidence level. Robust CBF [22, 14] is then
applied on the uncertainty polytope for multi-agent collision avoidance. In Khojasteh et al. [15],
system dynamics is modeled with GPs and a probabilistic safety constrained non-convex QCQP
is solved. In comparison, we model residual dynamics directly on the time derivative of CBF
unlike Khojasteh et al. [15]. In contrast to Wang et al. [29], our approach places probabilistic models
on both the control-independent dynamics and the control-dependent dynamics. We additionally
derive a novel probabilistic safety-filtering optimization formulation by reformulating the non-convex
optimization problem as a convex one. This result can be of independent interest for solving any
probabilistic safety projection problems where dynamics are Gaussian-distributed.
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While preparing the camera ready manuscript, we discovered a line of recent work [7, 8] that studies
modeling residual dynamics of control Lyapunov functions (CLFs) and control Barrier functions
(CBFs) with GPs. This line of work solves the chance-constrained optimization by transforming
it to a convex one with a similar technique [17] to ours. While our work shares the same spirit of
using probabilistic CLF/CBFs and applies similar techniques to transform the non-convex QCQP
into a convex one, we focus on achieving safety with a given stabilizing controller and extend it
to higher-order CBF constraints for the planar quadrotor. Further, we validate the effectiveness of
probabilistic modeling over deterministic modeling by comparing statistics of safety violations over
multiple random seeds for both training and testing on two different examples.

6 Conclusions and Future Work
Probabilistic modeling is crucial for incorporating learning methods in safety-critical control. Learn-
ing residual models that can provide epistemic uncertainty can help the controller take conservative
actions for safety in regions where its estimates are bad. In this work, we learn the residuals of barrier
dynamics using a GP. We incorporate the uncertainty estimates from the GP into a probabilistic
constraint. This non-convex program is transformed into a convex program that can optimally project
the control actions to the safe set of actions. We provide numerical experiments on a Segway and
Quadrotor to validate the efficacy of our method. As future work, extending this approach for safe
exploration and providing robust mechanisms to prevent infeasibility of the convex program would
be interesting.
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A Posterior Mean and Variance Decomposition
The posterior mean at a given state-control pair (x∗,u∗) can be further reduced to a linear function
of u∗:

E [d(x∗,u∗)|Dtrain] = K∗,Xtrain

(
KXtrain,Xtrain + σ2

εI
)−1

ytrain (19)

=

s∑
i=1

αikd((x
∗,u∗), (xi,ui)) (20)

=

s∑
i=1

αi

m∑
j=1

ka,j(x
∗,xi)ui,ju∗,j +

s∑
i=1

αikb(x
∗,xi) (21)

= ā(x∗)>u∗ + b̄(x∗), (22)

where α =
(
KXtrain,Xtrain + σ2

εI
)−1

ytrain.

Similarly, we derive posterior variance. Since control u is deterministic, we will be directly calculate
the posterior covariance of a(x) ∈ Rm and b(x) ∈ R:

Cov

([
a(x∗)
b(x∗)

] ∣∣∣Ytrain

)
= (23)

Cov

([
a(x∗)
b(x∗)

])
− Cov

([
a(x∗)
b(x∗)

]
,Ytrain

)(
KXtrain,Xtrain + σ2

εI
)−1

Cov

(
Ytrain,

[
a(x∗)
b(x∗)

])
(24)

Cov

([
a(x∗)
b(x∗)

])
=

[
diag(Var(a(x∗)1, · · · ,Var(a(x∗)m))) 0

0 Var(b(x∗))

]
(25)

Cov

([
a(x∗)
b(x∗)

]
,Ytrain

)
= Cov

([
a(x∗)
b(x∗)

]
,
[
a(x1)>u1 + b(x1), · · · ,a(xs)

>us + b(xs)
]>)

(26)

=

[
K̃a(x∗,xtrain)

K̃b(x
∗,xtrain)>

]
, (27)

where K̃a(x∗,Xtrain)j,i = ka,j(x
∗,xi)ui,j and k̃b(x

∗,Xtrain)i = kb(x
∗,xi).

Now we can give the posterior covariance in closed form:

σb(x
∗)2 = Var[b(x∗)|Ytrain] = kb(x

∗,x∗)− k̃b(x
∗,Xtrain)>

(
KXtrain,Xtrain + σ2

εI
)−1

k̃b(x
∗,Xtrain)

Σa(x∗) = Var[a(x∗)j |Ytrain] = ka,j(x
∗,x∗)− K̃a(x∗,Xtrain)j,∗

(
KXtrain,Xtrain + σ2

εI
)−1

K̃a(x∗,Xtrain)>j,∗

Cov [a(x∗)j , b(x
∗)|Ytrain] = −K̃a(x∗,Xtrain)j,∗

(
KXtrain,Xtrain + σ2

εI
)−1

k̃b(x
∗,Xtrain)

Cov [a(x∗)j ,a(x∗)k|Ytrain] = −K̃a(x∗,Xtrain)j,∗
(
KXtrain,Xtrain + σ2

εI
)−1

K̃a(x∗,Xtrain)>k,∗

Let’s define:

Cov

([
a(x∗)
b(x∗)

] ∣∣∣Ytrain

)
=

[
Σa(x∗) Σa,b(x

∗)
Σa,b(x

∗)> σb(x
∗)2

]
. (28)

The posterior distribution of d(x∗,u∗) is given by:

d(x∗,u∗)|Ytrain = N
(
ā(x∗)>u∗ + b̄(x∗), u∗>Σa(x∗)u∗ + 2Σa,b(x

∗)>u∗ + σb(x
∗)2
)
.

B Proof of Theorem 2: Probabilistic Safety Projection Optimization
The probabilistic safety projection problem of interest is:

min
u

‖u− ud‖2 (29)

s.t. (ā(x) + ca(x))
>

u + b̄(x) + cb(x)− δ
√

u>Σa(x)u + 2Σa,b(x)>u + σb(x)2 ≥ 0.
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We can first transform this problem into a quadratically constrained quadratic program (QCQP) by
introducing an auxiliary variable s:

min
u,s

‖u− ud‖2 (30)

s.t. (ā(x) + ca(x))
>

u + b̄(x) + cb(x)− δs ≥ 0 (31)

u>Σa(x)u + 2Σa,b(x)>u + σb(x)2 ≤ s2 (32)
s ≥ 0 (33)

The above program is a non-convex QCQP.

Then, by defining ū = [u t s]
> ∈ Rm+2, we can write the non-convex quadratic constraint in

(32) as ‖Σū‖ ≤ c>ū with t = 1, Σ =

√√√√√
 Σa(x) Σa,b(x) 0

Σa,b(x) σb(x)2 0
0 0 0

 and c =

[
0
0
1

]
. We pose the

QCQP as a convex program:

min
ū

ū>Qū

s.t. ‖Σū‖ ≤ c>ū, C>ū + d ≤ 0, D>ū + f = 0

Note that the constraint:

‖Σū‖ ≤ c>ū

is equivalent to:

‖Σū‖2 ≤ s2

as s ≥ 0. Further:

‖Σū‖2 = u>Σa(x)u + 2tΣa,b(x)>u + t2σb(x)2 (34)

with the additional constraint t = 1. This equality constraint can be enforced by choosing

D =

[
0
1
0

]
, f =

[
0
−1
0

]
. (35)

The remaining inequality constraints can be enforced by choosing C, d as follows:

C =

[
− (ā(x) + ca(x))

> −(b̄(x) + cb(x)) δ
0 0 −1

]
,d = 0. (36)

Finally, Q can be defined to recover the original objective function as:

Q =

 I −ud 0
−u>d u>d ud 0

0 0 0

 . (37)

C Additional Experiment Results
In Figure 3 and 5, we plot the trajectories of the testing runs on the same set of 10 random initial
points (shown as “Learned” in the legend) for one of the training runs for the segway experiment.
LCBF-QP and ProBFare both first trained for 5 episodes using the same initial points for training
trajectories (shown as the transparent trajectories in the plots). Similar plots for Quadrotor are
in Figures 4 and 6. In Figure 7, we plot the predictions of the GP on the residuals of CBF
time derivatives for the Segway experiment. Code and plots of all training runs can be found at:
https://github.com/athindran/ProBF.
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Figure 3: Segway-LCBF-QP with neural network: one random training run, tested on 10 random
initial points
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Figure 4: Quadrotor-LCBF-QP with neural network: one random training run, tested on 10 random
initial points
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Figure 5: Segway-ProBF with GP: one random training run, tested on 10 random initial points
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Figure 6: Quadrotor-ProBF with GP: one random training run, tested on 10 random initial points
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Figure 7: ProBF with GP: residual predictions along the test trajectories

16


	1 Introduction
	2 Background
	2.1 Learning Residual Dynamics for Control Barrier Functions
	2.2 Gaussian Processes

	3 Probabilistic Safety Certificate with Control Barrier Function
	3.1 Probabilistic Modeling of Residual Dynamics
	3.2 Projection to Probabilistic Safety

	4 Numerical Results
	4.1 Segway
	4.2 Planar Quadrotor with Gravity

	5 Related Work
	5.1 Control Barrier Functions
	5.2 Gaussian Processes for Learning Dynamics

	6 Conclusions and Future Work
	7 Acknowledgement
	A Posterior Mean and Variance Decomposition
	B Proof of Theorem 2: Probabilistic Safety Projection Optimization
	C Additional Experiment Results

