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Constrained Bayesian Optimization and Applications

Abstract

Bayesian optimization is an approach for globally optimizing black-box functions that are expen-

sive to evaluate, non-convex, and possibly noisy. Recently, Bayesian optimization has been used

with great effectiveness for applications like tuning the hyperparameters of machine learning

algorithms and automatic A/B testing for websites. This thesis considers Bayesian optimiza-

tion in the presence of black-box constraints. Prior work on constrained Bayesian optimization

consists of a variety of methods that can be used with some efficacy in specific contexts. Here,

by forming a connection with multi-task Bayesian optimization, we formulate a more general

class of constrained Bayesian optimization problems that we call Bayesian optimization with

decoupled constraints. In this general framework, the objective and constraint functions are

divided into tasks that can be evaluated independently of each other, and resources with which

these tasks can be performed. We then present two methods for solving problems in this general

class. The first method, an extension to a constrained variant of expected improvement, is fast

and straightforward to implement but performs poorly in some circumstances and is not suffi-

ciently flexible to address all varieties of decoupled problems. The second method, Predictive

Entropy Search with Constraints (PESC), is highly effective and sufficiently flexible to address

all problems in the general class of decoupled problems without any ad hoc modifications. The

two weaknesses of PESC are its implementation difficulty and slow execution time. We address

these issues by, respectively, providing a publicly available implementation within the popular

Bayesian optimization software Spearmint, and developing an extension to PESC that achieves

greater speed without significant performance losses. We demonstrate the effectiveness of these

methods on real-world machine learning meta-optimization problems.
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my collaborators José Miguel Hernández-Lobato, Jasper Snoek, and Oren Rippel, as well as

Brandon Reagen and Sophia Shao from the Harvard Architecture, Circuits and Compilers group.

This dissertation would not have been possible without the guidance, great ideas, and, most of

all, contagious enthusiasm of my advisor Ryan Adams. I also thank my committee members

David Parkes, Tirthankar Dasgupta, Yaron Singer, and Finale Doshi-Velez. In addition to my

research activities, I have had the privilege of teaching alongside Harry Lewis and John Girash,

both of whom have been thoughtful mentors to me. Finally, I thank my friends across the globe,

my wife Adriana, my parents Dan and Daphne Gelbart, and the rest of my family in British

Columbia. You have all been amazing supporters.

xi



Notation and Terminology

The term Bayesian optimization is slightly unfortunate. Another name, which I prefer, is model-

based optimization. This name captures the distinguishing feature of these methods, namely that

they rely on a model of the unknown objective function to reason about future data collection.

Bayesian optimization is the specific case of model-based optimization in which the model is

Bayesian. This means that one begins with a prior distribution over functions and a likelihood

function, and combine them using Bayes’ theorem to form a posterior distribution over unknown

functions given the data. Much of the work presented in this thesis applies beyond the realm of

Bayesian optimization to any model-based optimization method. However, at the cost of being

less precise, I will use the term Bayesian optimization to be consistent with conventional naming

practices in this field. Because the model of the objective function can be referred to as a response

surface, surrogate model, or meta-model, Bayesian optimization may also be called response-

surface optimization, surrogate-based optimization, or meta-modeling optimization. A specific

modeling approach, called the Gaussian process regression in some fields and kriging in other

fields, leads to the names Gaussian process optimization and sequential kriging optimization.

Another term used to refer to Bayesian optimization is efficient global optimization; this refers

a particular algorithm from Jones et al. (1998) that uses Expected Improvement.

In this thesis the term recommendation refers to the best solution found by a Bayesian op-

timization method. In other words, this is the solution the algorithm is recommending that

you use, once optimization is completed. I will use the term suggestion to mean the suggested

location of the next function evaluation during Bayesian optimization. Thus, a Bayesian opti-

mization method makes a suggestion at every iteration, and may also make a recommendation

at each iteration, but certainly makes a recommendation when it terminates.

I will use x̂ to denote a suggestion and x? to denote the random variable associated with the

(unknown) true solution to the optimization problem. I occasionally also use x? to refer to a

recommendation or the true solution itself. I use α(x) to denote an acquisition function, H[X]

to denote the entropy of the random variable X, and N to denote the Gaussian (normal) distri-

bution. I also use the terms function evaluation, query, observation, experiment and job more

or less interchangeably. The term task has a similar but more precise meaning; see Sections 2.8

xii



and 5.3. I use the terms input, location, and parameters, and the symbol x, to refer to a setting

of the variables over which we are optimizing. I refer to the space over which we are optimizing

as the domain, search space, input space, or design space, and use the symbol X .

Another case of contentious terminology lies in the problem of exploration vs. exploitation

(sometimes also called learning vs. earning in financial settings). I define exploration as per-

forming an action expected to produce lower immediate reward in hopes of learning about the

system and thus attaining greater future reward. Exploitation, on the other hand, is greedy

behavior aimed to produce the highest possible immediate reward. Confusingly, the terms ex-

ploration and exploitation are often used to describe methods like Expected Improvement (EI,

Section 2.4.1). In fact, by the definition above, EI is a method that always exploits, since it

always maximizes expected immediate reward; even when EI selects a location with high vari-

ance rather than low mean, it does so because of the possibility of immediately unveiling a good

solution, rather than as a strategy to learn about the function for future gains. In other words,

myopic methods like EI seek actions that are sensible if they were the last action to be taken,

whereas exploration is defined precisely as non-myopic behavior. To make this distinction clear,

I will use the terms local search and global search where the terms exploitation and exploration

are often used. Local search refers to searching in regions with high expected reward (i.e., low

expected function value), and global search refers to searching in regions with high variance.

Finally, the optimization literature is split between works that consider maximization and

those that consider minimization. In this thesis, I use the minimization convention. For the

sake of consistency, I describe other work in terms of minimization even when the original paper

describes a method for maximization, making the appropriate changes in the descriptions as

needed. Similarly, inequality constraints can be written either as c(x) ≤ 0 or c(x) ≥ 0. In this

thesis I take all inequality constraints to be of the latter form, namely c(x) ≥ 0. Note that

any inequality constraint c(x) ≤ c0 or c(x) ≥ c1 can be represented this way by transforming

to a new variable ĉ(x) ≡ c0 − c(x) ≥ 0 or ĉ(x) ≡ c(x)− c1 ≥ 0, respectively, so I only consider

inequality constraints of the form c(x) ≥ 0 without loss of generality.
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Chapter 1

Introduction

Consider a food company that is trying to design a low-calorie variant of its most popular

cookie. The design space of possible recipes might include parameters such as quantities of

various ingredients, cookie size, baking times, etc. For any proposed recipe, the company can

create a batch of cookies and measure the calorie content. The minimization of the calorie count

as a function of the recipe parameters is an optimization problem:

min
x

f(x) ,

where x is a vector representing a cookie recipe and f(x) denotes the number of calories per

cookie created with recipe x. The field of optimization spans problems of many varieties. This

thesis is about Bayesian optimization (Mockus et al., 1978), which is a method for solving

optimization problems like the one described above, and, more concretely, optimization problems

with the following challenging properties:

(A) Black-box: the function f can only be evaluated point-wise. For example, we do not have

access to its derivatives, although we may assume that it is differentiable.

(B) Expensive evaluations: querying f is expensive, by which we typically mean that comput-

ing f(x) for any x takes a long time.

(C) Noisy evaluations: when we evaluate the function f , we may only be able to observe its

1



true value corrupted with some zero-mean noise.

(D) Global and non-convex: we are searching for a global minimum of a non-convex function

within a bounded domain X .

High-dimensional problems with these properties are extremely hard to solve. Therefore, Bayesian

optimization methods are typically only applied to low-dimensional settings, i.e., when the num-

ber of parameters is well below 100 (but see Section 2.10 for recent advances in this area).

Property (B) precludes the use of simplistic methods like grid search or random search.

Even in D = 10 dimensions we suffer the curse of dimensionality and grid search could take an

extremely (i.e, exponential in D) long time to find a good solution. Unlike grid search or random

search, Bayesian optimization learns from past experience to make better decisions about future

function evaluations. Because it seeks a global optimum, Bayesian optimization methods must

automatically manage the trade-off between global search (exploring the entire domain) and

local search (refining potential solutions).

We now address another aspect of complexity in our example: in addition to being low-

calorie, the food company must also ensure that the new cookie is tasty. Therefore, for each

proposed recipe, they perform a taste test with a group of customers and require that at least

95% of test subjects like the new cookie. We now have a constrained optimization problem:

min
x

f(x) s.t. c(x) ≥ c0 , (1.1)

where c(x) is the true fraction of the population that likes recipe x and c0 in this case is 0.95.

This problem has the properties enumerated above. The functions f and c are black-boxes

(property (A)) in the sense that we do not know their mathematical form. They are expensive

(property (B)) because significant resources are required to evaluate them (especially c) for a

particular x. The function c is noisy (property (C)) because the fraction of human test subjects

in a particular group that like a cookie is only a noisy estimate of the true fraction of the

population that likes the cookie x. Finally, we are interested in a global solution (property (D))

within a bounded domain.
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The goal of this thesis is to study and propose methods for solving this type of constrained

optimization problem using Bayesian optimization. More precisely, we seek to solve problems

with K inequality constraints of the form

min
x

f(x) s.t. ∀k ∈ {1, . . . ,K}, ck(x) ≥ 0 , (1.2)

possessing some or all of properties (A) to (D) discussed above. One can imagine many variants

on the cookie problem that take the form of Eq. (1.2). For example, the company may intro-

duce additional constraints like the cost of ingredients. Or, perhaps the calorie content can be

computed cheaply using a simple calculation rather than requiring the cookie to be made. Or,

perhaps the company wishes to flip the objective and the constraint, maximizing the tastiness

while keeping the calorie count below some threshold. The goal of this thesis is to present

methods that solve a wide variety of problems of these types.

1.1 Motivation

A vast diversity of constrained optimization problems take the form described above. Examples

include minimizing the cost of materials for a new bridge, subject to the constraint that all safety

margins are met; or, maximizing profit at a store by varying prices and adding promotions; or,

maximizing the expected return of a financial portfolio while keeping the risk of default below

some threshold. Of particular interest are software optimization problems, also called computer

experiments. Many software systems, including machine learning algorithms, contain parameters

whose values are both crucial to the effectiveness of the system and yet also difficult to set. For

example, we may wish to tune the parameters of a phone or tablet speech recognition system

to maximize performance such that the user’s speech is transcribed within some acceptable

time limit. Both the performance and speed of the speech recognition system are black-box

functions, whose dependence on the system’s parameters may be poorly understood. Many

machine learning systems can be viewed as black-box functions whose parameters can be tuned

to increase performance. Bayesian optimization has recently been used successfully in this area;

see Snoek et al. (2012); Bergstra et al. (2011).
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Another use of constraints arises when the search space is known a priori but occupies a

complicated volume that cannot be expressed as simple coordinate-wise bounds on the search

variables. For example, in a chemical synthesis experiment, it may be known that certain

combinations of reagents cause an explosion to occur. This constraint is not unknown in the

sense of being a discovered property of the environment as in the examples above—we do not

want to discover the constraint boundary by trial and error explosions of our laboratory. Rather,

we would like to specify this constraint using a Boolean noise-free oracle function that declares

input vectors as valid or invalid. Constrained Bayesian optimization naturally encapsulates such

constraints.

1.2 Outline

This thesis is structured as follows. Chapter 2 introduces the background material and prior work

upon which this work builds. Chapter 3 builds upon an existing constrained Bayesian optimiza-

tion method, Expected Improvement with Constraints (EIC), by resolving some inconsistencies

and then extending EIC to decoupled problems, in which the objective and constraint(s) can

be evaluated independently of each other. Chapter 4 presents predictive entropy search with

constraints (PESC), an improved method with an appealing theoretical motivation that out-

performs EIC and other methods in experiments. We also explain why PESC is a much more

natural approach than EIC when solving decoupled problems, and present a modification to

PESC called PESC-F that significantly speeds up the method. Chapter 5 presents a general

framework for Bayesian optimization with decoupled constraints, along with a taxonomy of dif-

ferent types of decoupling. Chapter 6 provides empirical analyses that (1) demonstrate the need

for constrained Bayesian optimization methods in the first place, (2) examine the performance

of EIC and PESC relative to each other and to other methods, (3) demonstrate the need for

methods that harness the special structure of decoupled problems, (4) provide intuition for how

these methods operate and why they are effective, and (5) solve challenging machine learning

problems. Finally, Chapter 7 concludes this thesis with a discussion of future work.
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1.3 Summary of contributions

The main contribution of this thesis is to characterize a general class of constrained optimization

problems to which Bayesian optimization might be applied, and then to introduce methods for

solving such problems. In particular, the general class of problems is described by considering

decoupled constraints, with the coupled case considered by previous work being a special case of

this more general framework. The main method is PESC, an acquisition function that provides

the separate contributions to the expected information gain from each of the possible black-

box functions that we might evaluate, thus enabling its application to all varieties of decoupled

problems. Other contributions include formulating constrained Bayesian optimization problems

with probabilistic constraints, defining the behavior of EIC when no feasible region has been

found, extending EIC to the decoupled scenario, extending PESC to the bounded rationality

setting, and providing empirical evaluations of these methods.

1.4 Relationship to published work

Chapter 3 and Section 6.1 of this thesis approximately correspond to the following publication:

Michael A. Gelbart, Jasper Snoek, Ryan P. Adams. Bayesian Optimization with Unknown

Constraints. In Uncertainty in Artificial Intelligence, pages 250-259, 2014.

Sections 4.1 and 6.2 of this thesis approximately correspond to the following publication:

José Miguel Hernndez-Lobato1, Michael A. Gelbart1, Matthew W. Hoffman, Ryan P. Adams,

Zoubin Ghahramani. Predictive Entropy Search for Bayesian Optimization with Unknown Con-

straints. In International Conference on Machine Learning, 2015.

1Authors contributed equally.
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Chapter 2

Background and Related Work

This chapter describes the background and related work on which this thesis builds. Section 2.1

gives an overview of Bayesian optimization. Section 2.2 introduces the primary modeling tool

used in this thesis, the Gaussian process. Section 2.3 discusses modeling issues that arise in

the presence of black-box constraints. Section 2.4 introduces some popular acquisition func-

tions for unconstrained Bayesian optimization. Section 2.5 discusses some meta-approaches

from non-Bayesian optimization for applying unconstrained methods to constrained problems.

Existing acquisition functions for constrained Bayesian optimization are reviewed in Section 2.6.

Sections 2.7 and 2.8 discuss two extensions to Bayesian optimization, namely Bayesian opti-

mization with parallel function evaluations and Bayesian optimization with multiple objectives

or tasks, respectively. Section 2.9 introduces related research areas in other fields, many of

which contain methods similar in spirit to Bayesian optimization. Section 2.10 discusses some

limitations of Bayesian optimization. Finally, Section 2.11 provides a list of some open-source

Bayesian optimization software.

2.1 Overview of Bayesian optimization

Bayesian optimization is a method for performing global optimization of black-box objective

functions that are expensive to evaluate and possibly noisy. Bayesian optimization proceeds by

iteratively developing a global statistical model of the objective function. We begin with a prior
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Algorithm 1 Bayesian optimization for unconstrained problems.

1: Inputs: objective f , acquisition function α, search space X , model M, initial design D
2: repeat
3: Fit the model M to the data D
4: Maximize the acquisition function: x̂ = arg maxx∈X α(x,M)
5: Evaluate the function: ŷ = f(x̂)
6: Add the new data to the data set: D = D ∪ {(x̂, ŷ)}
7: until termination condition is met
8: Output: the recommendation x? = arg minx∈X EM [f(x)]

distribution over objective functions and a likelihood function which encodes our assumptions

about the noise present in our observations of the objective function. Then, at each iteration, a

posterior distribution is computed by conditioning on the previous evaluations of the objective

function, treating them as observations in a Bayesian nonlinear regression. This is often achieved

with Gaussian processes, which are described in Section 2.2. An acquisition function is then used

to map beliefs about the objective function to a measure of how promising each location in the

input space is, if it were to be evaluated next. The goal is then to find the input that maximizes

the acquisition function, and select it for function evaluation. Once the function evaluation is

complete, the new observation (a single value in the unconstrained case) is added to the data

set and we begin the next iteration. The termination condition is often a maximum elapsed

time for the entire optimization procedure, or a maximum number of function evaluations.

This procedure is illustrated in Algorithm 1. Additional reference material and perspectives on

Bayesian optimization can be found in, for example, Brochu et al. (2010b) and Lizotte (2008).

One important class of acquisition functions is myopic acquisition functions. A myopic

acquisition function considers the current action to be the final action; it makes no provisions

for the future. One could also call this a greedy acquisition function. An example of a myopic

acquisition function is Expected Improvement (Section 2.4.1). Some work has been done on non-

myopic acquisition functions (e.g., Ginsbourger and Riche, 2010a), but in general this problem is

extremely difficult. Chapter 5 will introduce another category of acquisition functions, separable

acquisition functions. In some literature, acquisition functions are called infill sampling criteria.

Maximizing the acquisition function is itself an optimization problem, but typically it is one

that does not possess the challenging properties (A) to (C) discussed in Chapter 1. The main
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challenge of maximizing the acquisition function is that it is still a global optimization problem

(property (D)). Loosely speaking, Bayesian optimization methods are well-suited to a problem

only if optimizing the acquisition function is much easier than the original optimization problem

of interest, since we must optimize the acquisition function many times as we solve the original

problem.

2.2 Modeling: Gaussian processes

Gaussian processes (GPs) are often used to model the unknown objective function (and, when

present, constraint functions) in Bayesian optimization. A GP is a generalization of the multi-

variate normal distribution to infinite length vectors or functions, and is specified by its positive

definite covariance kernel function κ(x,x′) and, optionally, a mean function µ0(x). By com-

bining the GP, a prior over unknown objective functions, with a likelihood function, we can

compute a posterior distribution over unknown objective functions. Computing a normalized

posterior requires integrating over all possible functions; amazingly, this can be done tractably

with a GP for Gaussian likelihood functions. Thus, GPs allow us to condition on observed data

and tractably compute the posterior distribution of the model for any finite number of query

points. In particular, if X is the design matrix containing the locations of N collected data, y is

a vector of the corresponding N observations, X ′ is a matrix containing test points, K(X,X ′)

is a matrix containing the kernel function κ applied to the pairs of inputs in X and X ′, and

we assume µ0(x) = 0 for simplicity, then the predictive distribution at any finite set of test

points X ′ follows a multivariate normal distribution with mean µ and covariance matrix Σ given

by

µ(X ′) = K(X ′, X)
[
K(X,X) + ν2I

]−1
y

Σ(X ′) = K(X ′, X ′)−K(X ′, X)
[
K(X,X) + ν2I

]−1
K(X,X ′) (2.1)

where ν2 is the variance of the i.i.d. Gaussian noise.

Eq. (2.1) has a number of interesting properties. One is that the posterior predictive covari-

ance matrix Σ does not depend on the observation values y. Intuitively, this means that one’s
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posterior uncertainty depends only on where one has collected data, not on the actual observa-

tion values. Another interesting property is that the computation in Eq. (2.1) involves inverting

the N×N matrix K(X,X)+ν2I. Because matrix inversion (or computing the Cholesky decom-

position) requires O(N3) operations, this step is the computational bottleneck of GP regression

as N grows large. This issue is discussed further in Section 7.2.1. Thirdly, a consequence of the

multivariate normal posterior predictive distribution is that the marginal distribution at any

single point is a univariate Gaussian whose mean and variance can be computed using Eq. (2.1).

This property often leads to efficient acquisition function computations in Bayesian optimiza-

tion, such as a closed form expression for Expected Improvement (Section 2.4.1). Gaussian

process regression is also called kriging. For an in-depth treatment of GPs for machine learning,

see Rasmussen and Williams (2006).

2.2.1 GP kernels

The assumptions encoded in the GP prior depend on the kernel function κ. The kernel function

is a positive definite function of two inputs and, intuitively, tells us how the correlation of the

function value at two inputs x and x′ depend on x and x′. Often, we restrict ourselves to

the class of stationary kernels. A stationary kernel is one whose value depends on x and x′

only through their difference x − x′. Intuitively, this means that the structure of the function

is translation invariant. For recent work on modeling non-stationary functions with GPs for

Bayesian optimization, see Snoek et al. (2014).

Two popular kernels that we will focus on here are the squared exponential kernel and the

Matérn 5/2 kernel. The squared exponential kernel corresponds to the assumption that the

function being modeled is infinitely differentiable, and takes the form

κSE(x,x′) = σ2 exp

(
−1

2
r2(x,x′)

)
(2.2)

where r2(x,x′) = ‖M(x− x′)‖22, M = diag(1/`1, . . . , 1/`D) for some length scale parameters {`d},

and σ is an amplitude parameter. The Matérn 5/2 kernel corresponds to the assumption that
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the function being modeled is twice differentiable, and takes the form

κM52(x,x′) = σ2

(
1 +

√
5r2(x,x′) +

5

3
r2(x,x′)

)
exp

(
−
√

5r2(x,x′)
)

(2.3)

where r and σ are defined as above.

One may also wish to define kernels over categorical or integer inputs for Bayesian optimiza-

tion. This is a relatively unexplored area for GP-based Bayesian optimization. However, other

models such as random forests for Bayesian optimization (Hutter et al., 2011) can naturally

handle such parameters.

2.2.2 Learning the kernel hyperparameters

This kernels above have D + 1 hyperparameters in D dimensions: one characteristic length scale

per dimension, and an overall amplitude σ. One can take a variety of approaches to learning

these hyperparameters. The simplest method is to fix the hyperparamters a priori. The problem

with this approach is that a mismatch of hyperparameters and the data can lead to very poor

performance. For example, if the length scales are set much too large, then the GP prior will

overlook the higher frequency variations in the true function; on the other hand, if the length

scales are too small, the GP will fail to generalize across meaningful distances.

A more sophisticated approach is to learn the kernel hyperparamters from the data. This can

be achieved by maximizing the marginal likelihood of the GP given the kernel hyperparameters.

The marginal likelihood of a GP is given by

log p(y|X, θ, ν) = −1

2
y>
[
κθ(X,X) + ν2I

]−1
y − 1

2
log det

[
κθ(X,X) + ν2I

]
− N

2
log 2π (2.4)

where θ is a vector containing the kernel hyperparameters and we show the explicit dependence of

κ on θ by writing it as κθ. One can then perform maximum likelihood estimation by maximizing

this quantity with respect to the hyperparameters θ. This is typically an optimization problem

with linear constraints since, for example, the length scales and amplitude parameter must

be non-negative. It is possible to analytically compute the gradient of Eq. (2.4) and use a

gradient-based optimization scheme, although this is not always necessary for good performance
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(Martinez-Cantin, 2014).

An even more sophisticated approach is a fully Bayesian treatment of the kernel hyper-

paramters. This is achieved by placing a prior on these hyperparameters and marginalizing

them out. This marginalization can be performed using Markov chain Monte Carlo (MCMC)

methods such as slice sampling (Neal, 2000); this is the approach taken in Snoek et al. (2012).

2.3 Modeling: Constraints

This thesis focuses exclusively on optimization problems with inequality constraints (Eq. (1.2)).

However, constraint observations can arise in several different forms. In some problems, con-

straint function evaluations return a continuous value that is well modeled by a Gaussian likeli-

hood. In these cases, we can model the constraint with an independent GP in the same manner

as the objective. Below we describe two more complicated cases of constraint observations

through two examples.

2.3.1 Output transformations for constraint function observations

Consider optimizing some property of a computer program such that its running time τ(x) must

not exceed some maximum value τmax. Because τ(x) is a measure of time, it is nonnegative for

all x and thus not well-modeled by a GP prior. A reasonable solution is to model time in

logarithmic units. In particular, we can define c(x) = log τmax − log τ(x), so that the condition

c(x) ≥ 0 corresponds to our constraint condition τ(x) ≤ τmax. We can then place a GP prior

on c(x), and use a Gaussian likelihood for observations of c(x). In this way, we retain the

closed-form inference procedures described in Section 2.2. For every problem, a transformation

of the output space implies particular assumptions about the original variables. For example,

the choice to model observation noise in c(x) with a Gaussian distribution implies that we are

assuming a log-normal noise distribution for the original variable τ .

11



2.3.2 Boolean observations and Gaussian process classification

Another common case is that in which the black-box constraint function only returns a Boolean

value indicating whether or not the constraint was satisfied. This type of observation is less

informative than the continuous type discussed above, because the observations do not provide

a clue about how close to the constraint boundary one is. For this reason, it is important not to

artificially threshold a continuous constraint observation to a Boolean one; in fact, this makes

both modeling and optimization more difficult.

As an example, consider the problem discussed in Snoek (2013) of optimizing the hyper-

parameters of a neural network, subject to the difficulty that for certain hyperparameters the

training will diverge and no objective value can be reported. The notion of whether or not train-

ing diverged for a particular input x can be captured with a Boolean value. Clearly, Boolean

values are not well described by a Gaussian likelihood, and therefore the standard GP machinery

of Section 2.2 cannot be used. In order to model this type of constraint with a GP, we introduce

a real-valued latent function c(x) as in Section 2.3.1, and place a GP prior on c(x). However,

unlike in Section 2.3.1, in the Boolean case we cannot meaningfully map the domain {0, 1} to R

and use a Gaussian likelihood in the transformed space. Instead, we can work with, for ex-

ample, the binomial likelihood function to compute the posterior distribution over c(x). Upon

doing so, the closed form posterior predictive equations (Section 2.2) can not longer be applied.

Approximate inference methods such as variational methods, Expectation Propagation, or sam-

pling can instead be used to approximate the posterior; this is called GP classification. GP

classification has been used for constraint modeling in Bayesian optimization in e.g., Gramacy

and Lee (2011); Tesch et al. (2013); Snoek (2013). See Rasmussen and Williams (2006, §3) for

an in-depth treatment of GP classification.

2.3.3 Hidden constraints

In the above neural network example, the constraint is not an explicit part of the problem

formulation but arises when the objective cannot be evaluated. Such constraints are called

hidden constraints (Conn et al., 2009). Some black-box constrained optimization problems

possess hidden constraints; in other cases, the objective function values are available regardless
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of whether or not the constraints are satisfied. The methods presented in this thesis can be

applied in both of these scenarios.

2.4 Unconstrained acquisition functions

This section describes acquisition functions for unconstrained Bayesian optimization that are

relevant to this thesis.

2.4.1 Expected improvement

The Expected Improvement (EI) (Mockus et al., 1978; Jones et al., 1998) acquisition function

measures the expected amount by which observing f(x) leads to improvement over some target η:

αEI(x) = Ey[max(0, η − y)] =

∫ ∞
−∞

max(0, η − y)p(y |x) dy (2.5)

where p(y |x) is the posterior predictive marginal distribution of the objective function at x.

EI manages the local vs. global search trade-off because it can be made large both by high

variance (global search) or low mean (local search). Typically, the target η is set to be the

current recommendation or incumbent ; hence, the name Expected Improvement refers literally

to the amount by which one expects to improve over the function value at the current best

solution. In unconstrained Bayesian optimization, η may be defined as the minimum over

previous observations, the minimum of the expected value of the objective under the model,

or some biased version thereof; see Lizotte (2008, §3.2) for further discussion.

When the predictive distribution under the model is Gaussian, EI has a closed-form expres-

sion (Jones, 2001):

αEI(x) = σ(x) (z(x)Φ (z(x)) + φ (z(x))) (2.6)

where z(x) ≡ η−µ(x)
σ(x) , µ(x) is the posterior predictive mean at x, σ2(x) is the posterior predictive

marginal variance at x, Φ(·) is the standard normal cumulative distribution function (CDF), and

φ(·) is the standard normal probability density function (PDF). Eq. (2.6) is differentiable and
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fast to compute, and can therefore be maximized with standard gradient-based optimizers. EI is

a popular method backed both by theoretical guarantees (Bull, 2011) and by proven effectiveness

in practice (e.g., Snoek et al., 2012).

Bull (2011) studies the theoretical properties of EI. Bull shows that when the GP kernel

hyperparameters are estimated from data via maximum likelihood, EI may not converge. He

then proposes a method of estimating the kernel hyperparameters that is guaranteed to converge.

Non-convergence can also be circumvented by using a so-called ε-greedy meta-strategy (Sutton

and Barto, 1998). In an ε-greedy approach, one takes an action based on a strategy of choice

(such as EI) with probability 1− ε and selects an action at random with probability ε. Thus, for

any ε > 0, the algorithm is guaranteed to eventually converge (Bull, 2011), but if ε is sufficiently

small then performance is not significantly hindered by the random actions.

EI has also been extended to the generalized EI (Schonlau et al., 1998), as follows:

αEI-g(x) = E [max(0, η − y)g] =

∫ ∞
−∞

max(0, η − y)gp(y |x) dy (2.7)

The new parameter g ∈ Z+ controls the tradeoff between global search and local search: the

larger g is, the more the algorithm is biased towards global search. Interestingly, setting g = 0

returns the Probability of Improvement (PI) acquisition function, which is simply

αPI(x) = Pr(y < η|x) = Φ(z(x)) (2.8)

for the definition of z(x) given above. It is well-known that the PI algorithm tends too much

towards local search (Brochu et al., 2010a; Lizotte, 2008). This is consistent with the fact that

PI is a special case of generalized EI with g = 0. Schonlau et al. (1998) also derive a closed-form

expression for the generalized EI.
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2.4.2 GP-UCB

The Gaussian Process Upper Confidence Bound (GP-UCB) acquisition function (Srinivas et al.,

2010) is defined as

αUCB(x) = −µ(x) + β1/2
n σ(x) , (2.9)

where µ and σ2 are the posterior predictive marginal GP mean and variance, respectively, and

βn is a constant. GP-UCB explicitly balances local and global search by favoring regions with

low posterior mean and high posterior variance. Srinivas et al. (2010) show that, assuming the

true function is a sample from a GP with known kernel hyperparameters, or the function has low

complexity as measured under a reproducing kernel Hilbert space norm, the GP-UCB algorithm

achieves sublinear regret for an appropriate choice of βn. de Freitas et al. (2012) build on this

work and show that in the deterministic (noise-free) case, even faster convergence rates can be

achieved.

2.4.3 Thompson Sampling

Thompson sampling (TS) (Thompson, 1933), also known as probability matching, is a random-

ized acquisition strategy in which the probability that x̂ is chosen for the next evaluation is

proportional to the probability (according to the model) that x̂ is the utility-maximizing action.

However, instead of marginalizing out the uncertainty, TS works by randomly sampling the

unknown quantities and then maximizing the utility given this sample. In the bandit setting

(Section 2.9.3), this corresponds to sampling the unknown rewards from their probability distri-

butions and then selecting the arm with the largest sampled reward. In the context of GP-based

Bayesian optimization, TS corresponds to sampling the objective function from the GP posterior

and then minimizing this sample (one could also think of this procedure as randomly sampling

the acquisition function from the GP posterior predictive distribution, multiplying it by −1,

and then maximizing it). TS has been shown to work well in practice (Chapelle and Li, 2011)

and is simple to implement. TS is related to PES (Section 2.4.7) and PESC (Chapter 4); this

relationship is explored in Section 4.3.4.
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2.4.4 The information-based acquisition function

The goal of the information-based acquisition function is to, at each iteration, maximize the ex-

pected information gain about the solution to the optimization problem. This goal is achieved

by considering the distribution over the location of the solution given the data, namely p(x? | D).

This is a D-dimensional probability distribution when the search space has D dimensions. As a

proxy for solving the optimization problem minx f(x), one can consider minimizing the differ-

ential entropy of this distribution, H [x? | D]. As the entropy decreases, our uncertainty about

the location of the minimizer x? decreases.

Here we restrict ourselves to greedy information-based acquisition functions, also called step-

wise uncertainty reduction (SUR) (Geman and Jedynak, 1996) methods, which aim to, at each

iteration, reduce the entropy H [x? | D] as much as possible in expectation. In symbols,

αSUR(x) = H [x? | D]− Ey | D,x [H [x? | D ∪ {(x, y)}]] . (2.10)

In practice, the first term in Eq. (2.10) can be ignored because it does not depend on x and

therefore will not affect the suggestion x̂ = arg maxx αSUR(x).

There are two major challenges of computing αSUR. The first is computing the entropy

H [x? | D ∪ {(x, y)}], which requires computing p(x? | D ∪ {(x, y)}) as an intermediate step. The

second is computing the expectation of this entropy over p(y |x). The following sections intro-

duce three different methods for approximating Eq. (2.10).

2.4.5 Information-based acquisition functions: IAGO

Villemonteix et al. (2009) address the challenges described above using Monte Carlo sampling. In

particular, the expectation in Eq. (2.10) is computed by Monte Carlo sampling of y from p(y |x),

which is a univariate Gaussian distribution with known mean and variance when the underlying

model is a GP. Next, given x and a Monte Carlo sample of y, p(x? | D∪{(x, y)}) is estimated by

Monte Carlo on a grid. In particular, we first draw function samples f ∼ p(f | D ∪ {(x, y)}) on

the grid and, for each sample, we note its minimum. A histogram of these minima then forms

the estimate of p(x? | D ∪ {(x, y)}). Finally, the (discrete) entropy of this empirical distribution
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Algorithm 2 The IAGO algorithm (Villemonteix et al., 2009), conceptual implementation

1: Inputs: data set D, candidate x, # of y samples N1, # of f samples N2, grid size N3

2: for i = 1 to N1 do
3: sample yi ∼ p(y|x,D)
4: initialize pempirical = 0 on grid of size N3

5: for j = 1 to N2 do
6: sample fj ∼ p(f | D ∪ {(x, yi)}) on grid (multivariate normal)
7: compute the grid index of the minimizer: k = arg min fj
8: record the result: pempirical[k] = pempirical[k] + 1
9: end for

10: normalize the empirical distribution: pempirical[k] = pempirical[k]/N2 for k = 1, . . . , N3

11: compute the entropy Hi = −
∑N3

k=1 pempirical[k] log pempirical[k]
12: end for
13: compute the average entropy H = 1

N1

∑N1
i=1 Hi

14: Output: αSUR(x) = −H

is computed; this is an approximation of the differential entropy that appears in Eq. (2.10).

This procedure is illustrated in Algorithm 2. Villemonteix et al. (2009) dub this method the

Informational Approach to Global Optimization (IAGO) algorithm. Note that computing the

suggestion x̂ requires maximizing the acquisition function over x and thus performing the entire

computation in Algorithm 2 for many values of x.

Algorithm 2 is a conceptual illustration of IAGO. The computational cost of this method

is O(N3
3 + N1N2N

2
3 ), where N1 is the number of samples of y, N2 is the number of samples

of f in estimating p(x? | D ∪ {(x, y)}), and N3 is the size of the grid on which samples of f are

drawn. This running time is dominated by the O(N2
3 ) matrix-vector product at line 6, which

is repeated N1N2 times, plus the O(N3
3 ) required to compute the Cholesky decomposition of

an N3 ×N3 kernel matrix. However, this method can be sped up to O(N3
3 +N2N

2
3 +N1N2N3)

using a series of tricks described in Appendix B.11. In practice, the fast implementation can be

an order of magnitude faster or more.

2.4.6 Information-based acquisition functions: entropy search

Entropy Search (ES) (Hennig and Schuler, 2012) is a method for approximating the SUR acqui-

sition function that uses Expectation Propagation (EP) (Minka, 2001a) (Appendix A.1) instead

of Monte Carlo to approximate the entropy in Eq. (2.10). Like IAGO, this approach also relies on
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a grid but, unlike IAGO, the EP approximation in ES results in a differentiable acquisition func-

tion; this makes maximizing the acquisition function easier. Rather than using a fixed uniform

or space-filling grid, Hennig and Schuler (2012) use shrinking rank slice sampling (Thompson

and Neal, 2010) to sample the grid from the EI function, treating it as an unnormalized prob-

ability distribution. This heuristic tends to lead to a higher density of grid points in areas

where p(x?) is higher, which is a desirable property when estimating the entropy of p(x?) on

a grid. Hennig and Schuler (2012) show performance gains compared to EI and other meth-

ods on two-dimensional problems, but conjecture that IAGO may perform better than ES in

higher-dimensional settings.

2.4.7 Information-based acquisition functions: predictive entropy search

Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014) is another method for ap-

proximating the uncertainty reduction acquisition function in Eq. (2.10). A key insight is that

we can rewrite Eq. (2.10) by noting that it is a mutual information. The mutual information

between the random variables A and B, denoted I(A;B), is symmetric in its arguments and is

given by

I(A;B) = I(B;A) = H(A)− EB [H(A |B)] (2.11)

where H(A |B) is entropy of the conditional probability distribution p(A = a |B = b). Using

this definition, we can rewrite Eq. (2.10) as

αPES(x) = αSUR(x) = I (x?; y | D,x) . (2.12)

Because the mutual information is symmetric in its arguments, we can now apply Eq. (2.11)

again, but with the arguments flipped:

αPES(x) = H [y | D,x]− Ex? |x,D [H [y | D,x,x?]] . (2.13)
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Hernández-Lobato et al. (2014) argue that Eq. (2.13) is easier to approximate than Eq. (2.10)

because it only involves entropies of the one-dimensional random variable y rather than the D-

dimensional random variable x?. Indeed, because the posterior predictive marginal distribution

of a GP is univariate Gaussian, the left-hand term is simply the differential entropy of a Gaussian

distribution with variance s2, namely

H
[
N (µ, s2)

]
=

1

2
log(2πes2) . (2.14)

The core of the PES method is an approximation to the right-hand term in Eq. (2.13). The

expectation over x? is handled with Monte Carlo sampling of the global optimizer x?. As in

IAGO, this is achieved by sampling the unknown function f and then numerically finding the

optimum. However, unlike in IAGO, Hernández-Lobato et al. (2014) do not sample x? on a

grid. Rather, the GP kernel is approximated with a finite basis function approximation (Rahimi

and Recht, 2007), yielding a linear approximation to the GP sample that can be computed with

running time that is independent of the number of collected data. This significant speedup

enables practical numerical optimization of the sample to find its minimizer with high accuracy,

not constrained to a grid.

Given a sample of x? obtained in this manner, it remains to approximate the conditional

entropy H [y | D,x,x?]. This is achieved with EP. Here, we are interested in the distribution

p(y | D,x,x?); in words, we want to reason about the distribution over y given that we know

the global minimizer of f is x?. The conditioning on x? is handled approximately by enforcing

the following weaker conditions: that x? is a a local minimum (i.e., ∇f(x?) = 0 and ∇2f(x?)

is negative definite), and that f(x?) is smaller than f(x) and all past observations. These

conditions are encoded as factors and incorporated into EP, yielding a Gaussian approximation

to p (y | D,x,x?). One can then apply Eq. (2.14) to compute the approximate entropy.

Hernández-Lobato et al. (2014) show that PES is a better approximation to Eq. (2.10) than

ES, and also that PES outperforms both ES and EI in several experiments. One advantage of

PES over ES is that one can jointly average over the GP hyperparameter samples and the x?

samples. Thus, one can marginalize out the GP hyperparameters without significant additional
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cost. By comparison, the entire ES approximation must be performed again for each sample of

the GP hyperparameters, causing GP hyperparameter marginalization with ES to be extremely

expensive (Hennig and Schuler, 2012).

2.4.8 Discussion on information-based acquisition functions

Because information-based methods are based on the minimizer location x? (Eq. (2.10)), they

are in a sense blind to the output units of the optimization problem. This does not mean

that they are entirely unaffected by any monotonic transformation of the output space, but

nonetheless this notion may be worrying from a philosophical perspective since the units of the

output space are meant to represent the user’s utility (see Section 7.2.5). When making this

criticism of information-based acquisition functions, it is important to note that while EI is a

principled acquisition function at the last iteration, it is myopic is not necessarily well-motivated

across many iterations. Thus, short of solving an infinite POMDP and forming a policy covering

the entire optimization, all methods discussed here are heuristics.

2.5 Unconstrained methods for constrained optimization

Before discussing acquisition functions for constrained Bayesian optimization, here we introduce

three meta-methods from classical (non-Bayesian) optimization for transforming unconstrained

methods to constrained methods.

2.5.1 Barrier methods

In barrier methods, the iterates are prevented from leaving the feasible region by the addition

of a barrier function to the objective. The barrier function causes the objective to grow to

infinity at the boundary of the feasible region. For example, adding −λ log c(x) to the objective

function for some constant λ ≥ 0 causes the objective to tend towards positive infinity when c(x)

approaches zero from the right, thus enforcing the constraint c(x) ≥ 0. As λ approaches zero,

the solution to the barrier problem should approach the solution to the constrained problem,

because the barrier will only have an effect exactly at the constraint boundary.
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2.5.2 Penalty methods

Penalty methods also involve adding an extra term to the objective, but, in contrast to barrier

methods, penalty methods allow the iterates to leave the feasible region. However, as opti-

mization proceeds, the penalty is increased to infinity so that the iterates become feasible. A

popular penalty function is the quadratic penalty 1
2ρ min(0, c(x))2 for some penalty parame-

ter ρ > 0. When c(x) ≥ 0 (i.e., when the constraint is satisfied), the penalty function is zero and

does not affect the objective. When c(x) < 0 (i.e., when the constraint is violated), a positive

penalty is added to the objective. As ρ approaches zero, the solution to the penalty problem

should approach the solution to the constrained problem. Typically, the overall problem is solved

by iteratively solving the unconstrained problem and then decreasing ρ towards zero by some

constant factor such as 1
2 . Because the purpose of the penalty is to ensure feasibility, one may

wish to only update the penalty parameter if the current iterate x(n) is infeasible. Concretely,

the new penalty parameter ρ(n+1) is given by:

ρ(n+1) =


ρ(n), if x(n) is feasible

1
2ρ

(n), otherwise

. (2.15)

Under certain assumptions and penalty functions, the penalty parameter need not be increased

to infinity, but only to some threshold, in order to guarantee convergence (Friedlander and

Tseng, 2007). The penalty method can be applied to Bayesian optimization in several ways.

Sasena et al. (2002) use the penalty method to directly penalize the acquisition function where

the space is thought to be infeasible. Parr et al. (2010) add a penalty to the model, which

indirectly influences the acquisition function.

2.5.3 Augmented Lagrangian methods

The augmented Lagrangian (AL) (Rockafellar, 1974) method is similar to the penalty method,

but with the addition of one extra term into the objective. In AL, we convert a constrained
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problem with objective f(x) and constraints {ck(x)} to the following unconstrained problem:

min
x

f(x) +

K∑
k=1

[
1

2ρ
min(0, ck(x))2 − λkck(x)

]
(2.16)

where ρ > 0 is a penalty parameter and the λk ≥ 0 are approximate Lagrange multipliers. The

first and third term represent the Lagrange multiplier formulation, and they are augmented by

the second term, which is the quadratic penalty. Let x(n) be the solution at iteration n with

parameters ρ(n) and λ
(n)
k . Then, AL works by iteratively solving the unconstrained problem and

updating the approximate Lagrange multipliers by

λ
(n+1)
k = max

(
0, λ

(n)
k −

ck(x
(n))

ρ(n)

)
for k = 1, . . . ,K (2.17)

and updating the penalty parameter ρ as in Eq. (2.15). See Bertsekas (1996); Nocedal and

Wright (2006) for an in-depth discussion of these methods.

2.6 Constrained acquisition functions

Below we discuss previous approaches to Bayesian optimization with black-box constraints,

many of which are variants of EI. Note that Azimi et al. (2010b); Azimi (2012) study Bayesian

optimization with “constrained experiments” but use this phrase to mean something different

from the meaning here: in their set-up, the term “constrained” refers to the fact that one cannot

specify an exact x at which the evaluate the function, but rather a region in which the evaluation

will take place.

2.6.1 Expected improvement with constraints

An intuitive extension to EI in the presence of constraints is to define improvement as only

occurring when the constraints are satisfied. Because we are uncertain about the values of the

constraints, we must extend our expectation to include this uncertainty. This results in what
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we call Expected Improvement with Constraints (EIC):

αEIC = αEI(x)
K∏
k=1

Pr(ck(x) ≥ 0) , (2.18)

where we can separate the constraint satisfaction probabilities due to assumed independence.

Because each probability Pr(ck(x) ≥ 0) is simply a Gaussian CDF, EIC has a closed form

expression that is very similar to the closed form for EI given in Eq. (2.6):

αEI(x) = σf (x) (zf (x)Φ (zf (x)) + φ (zf (x)))
K∏
k=1

Φ

(
µk(x)

σk(x)

)
, (2.19)

where µk and σ2
k are the posterior predictive mean and variance for constraint k, µf and σ2

f are

the same for the objective, and zf (x) is defined as z(x) in Section 2.4.1, namely zf (x) ≡ η−µf (x)
σf (x) .

In the constrained case the incumbent η depends on the constraints. For example, it can be

defined as the best observation in which all constraints are observed to be satisfied, or the

minimum of the posterior mean such that all constraints are satisfied. The issue of setting η in

the presence of constraints is discussed in more detail in Chapter 3.

EIC was initially introduced by Schonlau et al. (1998, §4) and has been revisited by Snoek

(2013) and Gardner et al. (2014). Chapter 3 of this thesis extends this work to more general

and complete EIC methods. Note that Snoek (2013) refers to EIC as a constraint weighted

acquisition function. This should not be confused with the weighted expected improvement

acquisition function introduced in Sobester et al. (2005), which is not related to constrained

optimization. EIC is also called constrained expected improvement by Forrester et al. (2008).

2.6.2 Integrated expected conditional improvement

Gramacy and Lee (2011) propose an acquisition function called the integrated expected condi-

tional improvement (IECI), defined as

αIECI(x) =

∫
X

[
αEI(x

′)− αEI(x
′|x)
]
h(x′)dx′ . (2.20)

Here, αEI(x
′) is the expected improvement at x′, αEI(x

′|x) is the expected improvement at x′
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given that the objective has been observed at x (but without making any assumptions about the

observed value), and h(x′) is an arbitrary density over x′. In words, the IECI at x is the expected

reduction in EI at x′, under the density h(x′), caused by observing the objective at x. Gramacy

and Lee use IECI for constrained Bayesian optimization by setting h(x′) to the probability of

satisfying the constraint. This formulation encourages evaluations that inform the model in

places that are likely to satisfy the constraint. The motivation for IECI is that evaluating at

an infeasible location may also provide useful information, and therefore one should consider

improvement over the whole optimization domain.

2.6.3 Expected volume minimization

Picheny (2014) proposes to sequentially explore the location that most decreases the expected

volume of the feasible region below the best feasible objective value η found so far. This quantity

is given by integrating the product of the probability of improvement and the probability of

feasibility. That is,

αEEV(x) =

∫
p[f(x′) ≤ η]h(x′)dx′ −

∫
p[f(x′) ≤ min(η, f(x))]h(x′)dx′ , (2.21)

where, as in IECI, h(x′) is the probability that the constraints are satisfied at x′, and, as in

IAGO (Section 2.4.5), we can ignore the first term on the right-hand side because it does not

depend on x. This method is limited by having to compute the integral in Eq. (2.21) over

the entire domain, which is done numerically over a grid on x′ (Picheny, 2014). The resulting

acquisition function must then be globally optimized, which also requires a grid on x. This is

also the case for IECI.

2.6.4 Modeling an augmented Lagrangian

Gramacy et al. (2014) propose a combination of EI (Section 2.4.1) and the augmented Lagrangian

method (Section 2.5.3) for constrained black-box optimization. In their method, Bayesian op-

timization is used to solve the unconstrained inner loop of the AL optimization. The authors

point out that directly modeling the AL (Eq. (2.16)) leads to modeling difficulties because the
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penalty may be very large and the max function can introduce kinks into the AL. Instead, they

model the objective and constraints with independent GPs as in Snoek (2013); Gramacy and

Lee (2011), and many other works including this thesis. They then consider two acquisition

functions: the (negative) predictive mean, and EI. They derive closed-form expressions for the

former. For the latter, they propose Monte Carlo sampling and also derive an analytic approx-

imation to the true EI of the AL in the case of a single constraint by dropping the max in

Eq. (2.16). Dropping the max is tantamount to penalizing both c(x) > 0 and c(x) < 0, forcing

the iterates towards the constraint boundary. If the solution is known to be on the constraint

boundary, this may be a reasonable approach. This method assumes that the evaluations of the

constraints c1, . . . , ck are noise-free and focuses on the case in which the objective f is known;

suggestions for extending to unknown f are provided.

2.7 Parallel Bayesian optimization

When doing Bayesian optimization one often wishes to run multiple function evaluations in

parallel. This may be done either by submitting queries in batches, or by submitting them

asynchronously. In the batch case, the goal is to select q queries for simultaneous evaluation;

this requires optimizing a multipoints (Ginsbourger et al., 2010) acquisition function in (q×D)

dimensions. In the asynchronous case, at each iteration we maximize the acquisition function to

yield one suggestion x̂ given a set of pending queries {xpend
j }. Schonlau (1997, §5.3); Schonlau

et al. (1998, §5) propose applying asynchronous methods to the batch case to avoid the (q×D)-

dimensional optimization, by iteratively selecting points and then assuming they have been

submitted even if, in reality, they will all be submitted as a batch once all points are chosen.

One may question why any specialized method for parallel evaluations is needed at all. The

reason is that, if no modifications are made to the acquisition function after a query is submitted,

then maximizing the acquisition function will repeatedly return the same suggestion, and the

same query will be redundantly performed. Therefore, the acquisition strategy must take into

account the fact that some queries are pending. An exception to this is for non-deterministic

acquisition strategies, for which making no modifications and relying on the stochasticity of the
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algorithm may work sufficiently well (Bergstra et al., 2011). One such stochastic acquisition

strategy is discussed in Section 2.4.3.

Ginsbourger et al. (2010) develop the multipoints (batch) EI, denoted q-EI, that is alluded

to in Schonlau (1997). They develop an analytical form for 2-EI, and suggest an asynchronous

approach with Monte Carlo sampling for q > 2. They also discuss two heuristic approaches

for asynchronous parallel Bayesian optimization, the kriging believer and constant liar. These

approaches fill in the missing (pending) observation values with the posterior predictive GP

mean, or a constant value, respectively. The data set is then augmented with these “dummy”

values for the purpose of choosing the next query location. Doing so decreases the variance at

these locations and thus prevents redundant experiments from being performed. The kriging

believer approach is used for GP-based Bayesian optimization in e.g., Bergstra et al. (2011, §6.1)

and also in this thesis. Note that the kriging believer can be implemented efficiently because

conditioning on an observation equal to the GP posterior predictive mean does not change this

mean for any x, and the covariance matrix can be updated with a rank-one update to the

Cholesky decomposition of the kernel matrix (Appendix B.10.1).

Ginsbourger and Riche (2010b) introduce another approach, Expected EI (EEI). The double

expectation in EEI comes from integrating out both the unknown query value yquery (as in

regular EI) and also the unknown pending observation values {ypend
j }. The authors propose to

compute the expectation over the pending values using Monte Carlo samples of {ypend
j }. This

approach was independently proposed in Snoek et al. (2012). Note that EEI is not that same

as the kriging believer because the improvement function is nonlinear and therefore

EpendEquery | pend max (0, η − yquery) 6= Equery max (0, η − Epend[yquery]) ,

where the left-hand side is EEI and the right-hand side is the kriging believer. In game theory,

a similar notion to EEI exists called expected expected utility, in which the former expecta-

tion is over the uncertainty about one’s utility function, and the latter expectation is over the

uncertainty in the outcomes of particular actions (Boutilier, 2001).

Janusevskis et al. (2012) unify the batch (e.g., q-EI) and asynchronous (e.g., EEI) meth-
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ods by considering the case of batch size λ with µ jobs currently pending; they name their

method EI(µ,λ). The EI(µ,λ) acquisition function is a generalization of previous methods and,

for example, reduces to standard EI when λ = 1 and µ = 0. They point out that if the black-

box function evaluations are fast compared to the optimization steps then pending queries are

unimportant (µ = 0), whereas if function evaluations are very slow then one can take an asyn-

chronous approach (λ = 1), and that intermediate cases may call for intermediate (λ, µ) values.

The authors also suggest a method for online tuning of the number of Monte Carlo samples of

{ypend
j }.

Clark (2012) considers an alternative approach to q-EI by pointing out that to maximize

q-EI one only needs the gradient of q-EI, rather q-EI itself. By switching the expectation and

gradient operators, they enable the sampling of stochastic gradient estimates of q-EI, leading

to a multistart stochastic gradient ascent approach for maximizing the acquisition function.

Finally, a promising fast method for computing q-EI approximately but accurately is introduced

in Chevalier and Ginsbourger (2013).

Generally speaking, parallel Bayesian optimization methods are better than sequential meth-

ods in terms of wall-clock time (because they can do more queries per unit time) but worse than

sequential methods in terms of total evaluations (because they must make decisions with less

information at hand). Given this trade-off, Azimi et al. (2010a) try to find the batch policy that,

in expectation, best matches a (more informed) sequential policy. They do this by actually simu-

lating sequential policies where the experiment outcomes are Monte Carlo samples from the GP

posterior predictive distribution. They then minimize a nearest neighbor objective between the

batch and the sampled sequential policies, which is achieved by solving a k-means or k-mediod

problem. Building on this work, Azimi et al. (2011, 2012) propose a method to dynamically

increase the batch size if the next suggestion x̂ is determined to be mostly independent of the

outcome of the current experiment. By doing this, they achieve significant gains with respect

to wall-clock time without significantly compromising performance with respect to the number

of function evaluations.
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2.8 Bayesian optimization with multiple tasks or objectives

At each iteration of Bayesian optimization a suggestion x̂ must be selected from the continuous

decision space X . In some problems, there is an additional component to the decision space

because there are multiple tasks to choose from. If the objective and constraints are decoupled

(Chapter 5), then at each iteration one must choose both a location x ∈ X and a task t ∈ T ,

where T is the discrete set of possible tasks {f, c1, . . . , cK}. More generally, a task could contain

one or more objective functions, one or more constraint functions, or, in some cases, functions

whose values do not contribute to the overall utility function at all but provide indirect infor-

mation about the other functions. Multi-task Bayesian optimization is introduced in Swersky

et al. (2013), with motivating examples such as minimizing k-fold cross-validation error of a

machine learning model. Instead of evaluating all k folds at a given x, the authors reformulate

the problem as a multi-task problem in which each of the k folds is treated as its own task

that can be evaluated independently. A multi-task GP is used to model the unknown objective

function surface for each task, but also the correlations between tasks. Upon discovering that

one of the k folds is more informative about the overall objective (the average of the k folds)

than the others, one can increase efficiency by evaluating this fold more frequently. Multi-task

Bayesian optimization is highly related to the work in this thesis because constraint decoupling

(Chapter 5) is a case of multi-task optimization.

Zuluaga et al. (2013) propose the Pareto Active Learning (PAL) method for finding Pareto-

optimal solutions when multiple objective functions are present and the input space is a discrete

set. Their algorithm classifies each design candidate as either Pareto-optimal or not, and pro-

ceeds iteratively until all inputs are classified. The user may specify a confidence parameter

determining the trade-off between the number of function evaluations and prediction accuracy.

Constrained optimization and multi-objective optimization are highly related. In particular,

constrained optimization can be considered a special case of multi-objective optimization in

which the user’s utility function for the constraint functions is an infinite step function: constant

over the feasible region and negative infinity elsewhere.
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2.9 Related research areas

This section described some areas of research in other fields that are related to Bayesian opti-

mization.

2.9.1 Derivative-free optimization

The field of Bayesian optimization often takes a machine learning perspective. In this section

we describe some methods related in the area of derivative-free optimization (DFO), which lies

within the field of optimization. While its name suggests that DFO methods are intended for

problems in which the function derivatives are unknown (Chapter 1, property (A)), they may

also apply to problems with any or all of the properties (B) to (D) depending on the particular

method. DFO methods are an alternative to Bayesian optimization and can often be applied

to the same problems. Loosely speaking, the focus of DFO tends to be more on theoretical

soundness and less on efficiency in the case of very expensive functions. See Conn et al. (2009)

for an introduction to DFO. As discussed in Conn et al. (2009), the field of DFO for constrained

optimization remains relatively unexplored. Below we discuss two DFO methods which can be

used for difficult black-box global optimization problems.

Evolution strategies and CMA-ES. One class of DFO methods is the evolution strategy.

In evolution strategies, a set of candidate solutions is maintained, and better solutions survive

through a process of artificial natural selection (no irony intended). A popular evolution strategy

is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier,

1996). In CMA-ES, at each iteration, the candidate solutions are sampled from a multivariate

normal distribution whose mean and covariance are estimated incrementally as optimization

proceeds. The unknown function is evaluated at each of these candidate solutions. Then, the

solutions are sorted and a fixed proportion of the best solutions are kept (this is the selection

step). Finally, these chosen solutions are used to update the estimates of the mean and covariance

matrix and optimization proceeds. CMA-ES has been extended to handle noisy function (Hansen

et al., 2009) and some evolutionary algorithms have also been extended to handle unknown

constraints with Boolean oracles (see e.g., Kramer, 2010; Arnold and Hansen, 2012).
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DIRECT. Another global DFO method is the method of DIviding RECTangles (DIRECT)

(Jones et al., 1993). DIRECT works by iteratively dividing the search domain into hyper-

rectangles and evaluating the unknown function at particular locations within the hyper-rectangles.

The goal is to find a hyper-rectangle that contains the solution. Hyper-rectangles are divided

further if they are deemed likely to contain the solution, or if they are large; these criteria al-

low the method to perform both local and global search, respectively. DIRECT has also been

extended to address noisy functions (Deng and Ferris, 2007).

Local methods for global optimization Other DFO methods, such as the Nelder-Mead

method (Nelder and Mead, 1965), are derivative-free but perform local optimization. A local

optimization method may be turned into a global method by randomly restarting the optimiza-

tion from different locations. However, when function evaluations are expensive such approaches

are inefficient in general as information is not shared between these independent runs. On the

other hand, if function evaluations are not expensive, the meta-method of random restarts may

be appealing. One advantage of the meta-method of random restarts is that it is naturally

parallelizable.

2.9.2 Optimal experimental design and active learning

The field of statistics contains the area of optimal experimental design, also called the design

of experiments (DOE). A simple intuitive example is the following: imagine one is trying to fit

a line in the unit interval [0, 1] to data that are drawn from the true unknown line plus i.i.d.

Gaussian noise. One can only query two points in the interval. Which two points should one

query to best determine the line? The answer is that one should query the two endpoints of the

interval.

A real-world application of DOE is in geophysics: one must decide on the placement of

a limited number of sensors to best understand the properties of the earth, or, similarly, the

placement of a limited number of sources whose seismic wave reflections inform us about the

properties of the earth. Recent work (Krause, 2008) shows that if the objective function is

submodular, a greedy approach performs near-optimally.
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The field of active learning is highly related to DOE. In active learning, the goal is typically

to learn a model or classifier as well as possible through limited sequential queries. Information-

based acquisition functions, described in Section 2.4.4, are an interesting class of methods that

bridge the gap between active learning / DOE and Bayesian optimization. In information-

based methods, the goal is to construct the best estimator of the global minimizer x?. Thus,

an estimation problem is turned into an optimization problem. In fact, the information-based

approach was originally used in the active learning literature, by MacKay (1992). In the field of

operations research, this is also called optimal learning (see, e.g., Powell and Ryzhov, 2012).

2.9.3 Bandits

The term bandit comes from the multi-armed bandit problem, in which one is faced with a

number of slot machines, each machine possessing an arm that one can pull. In the bandit setting,

one typically searches for an algorithm that minimizes the regret, which is the difference between

one’s reward and the best possible reward at iteration n. Two types of regret are cumulative

regret and simple regret. The cumulative regret RN is the average of the instantaneous regrets rn

incurred from the start to iteration N , i.e., RN = 1
N

∑N
t=0 rn. Simple regret, on the other hand,

is the regret at the final iteration, namely rN . In the bandit setting, one often seeks to devise a

no-regret algorithm, i.e., an algorithm for which limN→∞RN = 0. Methods that aim to minimize

cumulative regret must balance the tradeoff between exploration (sacrificing immediate reward

for future gains) and exploitation (greedy behavior). For example, one must decide whether to

try a new, unknown, possibly bad slot machine (exploration), or continue playing the best slot

machine found so far (exploitation). The notion of simple regret better captures the goal of

Bayesian optimization. In Bayesian optimization, we are not penalized for observing very poor

function values during the optimization process. Rather, the goal is to find the x with the lowest

function value when optimization terminates.

The bandit setting differs from Bayesian optimization in that set of possible actions is typ-

ically discrete, and the goal is often to minimize cumulative regret. Furthermore, the bandit

literature places a greater emphasis on theory and comparing convergence rates of different al-

gorithms. However, the two fields are very closely related, and there is a large body of work
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spanning the two fields. Contextual bandits refer to problems in which each arm of a multi-armed

bandit has an associated feature vector or context. Over time, one learns to predict the reward as

a function of these contexts. This is very similar to the role of the GP in Bayesian optimization:

if we think of the input space X as an continuum of infinitely many arms, each x is the context

and the GP allows us to generalize across contexts and learn global properties of the system.

Another bridge between Bayesian optimization and bandits is the GP-UCB acquisition function

(Section 2.4.2). GP-UCB has strong theoretical guarantees from the bandit perspective but also

works well in practice. This connection is also explored in Bubeck et al. (2009).

2.10 Limitations of Bayesian optimization

Bayesian optimization methods have several limitations and challenges. One challenge is that

Bayesian optimization methods typically only work well in low-dimensional search spaces be-

cause, in general, the difficulty of the problem can grow exponentially with the dimensionality

D of the search space. However, there have been some recent advances in this area. The general

approach taken is to assume that the function lies on a lower-dimensional manifold; in other

words, that it has an intrinsic dimensionality much smaller than the dimensionality of the search

space. Wang et al. (2013) exploit this property by using random linear projections onto a lower-

dimensional subspace. Djolonga et al. (2013) attempt to approximate this lower-dimensional

subspace and provide sub-exponential regret rates even in the presence of noise. Kandasamy

et al. (2015) assume the true function is a sum of lower-dimensional components and introduce

the Add-GP-UCB algorithm. They provide convergence rates and show that the method works

in practice even when the additivity assumption is violated.

Another challenge is that, due to the cubic scaling of Gaussian processes with respect to the

data set size (see Section 2.2), Bayesian optimization can become intractably slow once more

than a few hundred data are collected. Recent work on using random forests (Hutter et al., 2011)

and neural networks (Snoek et al., 2015) instead of Gaussian processes to model the unknown

function is a highly promising step in overcoming this limitation.

Another limitation of Bayesian optimization is that it operates under the assumption that
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function evaluations are very slow. If the function evaluations turn out to be fast, too much time

is wasted on the optimization steps themselves. In unconstrained optimization problems this

issue can be avoided by simply using another approach in place of Bayesian optimization. How-

ever, in multi-task problems (Section 2.8) or constrained problems with decoupled constraints

(Chapter 5), we may be faced with one or more fast functions (e.g., the objective) and one or

more slow functions (e.g., a constraint). In this case, neither methods for fast functions (like

those discussed in Section 2.9.1) nor methods for slow functions (like Bayesian optimization) are

suited to the problem. In Section 4.2 we address this issue for decoupled constraints by intro-

ducing a method that can perform both fast and slow optimization steps, adaptively switching

between them given the relative speeds of the optimization steps and the function evaluations.

2.11 Bayesian optimization software

Recently there has been a proliferation of publicly available software for Bayesian optimization.

The following non-exhaustive list of software may be useful to the reader:

• Spearmint (Snoek et al., 2012). https://github.com/HIPS/Spearmint/

• SMAC (Hutter et al., 2011). URL: http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

• Auto-WEKA (Thornton et al., 2013). http://www.cs.ubc.ca/labs/beta/Projects/

autoweka/

• Hyperopt (Bergstra et al., 2011). URL: http://jaberg.github.com/hyperopt/

• MOE (Yelp, Inc.). URL: http://yelp.github.io/MOE/

• pybo (Hoffman and Shahriari, 2014). URL: https://github.com/mwhoffman/pybo/

• BayesOpt (Martinez-Cantin, 2014). URL: http://rmcantin.bitbucket.org/html/

• DiceOptim (Roustant et al., 2012). URL: http://cran.r-project.org/web/packages/

DiceOptim/index.html

The methods described in this thesis are available as part of the Spearmint package.
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Chapter 3

Extensions to Expected

Improvement with Constraints

This chapter presents extensions to the Expected Improvement with Constraints (EIC) acquisi-

tion function described in Section 2.6.1. This work is motivated by the fact that prior descriptions

of EIC are inconsistent in two ways: the solution to the problem is not well-defined when con-

straints are noisy, and EIC is not defined when no feasible point has been found. Furthermore,

this chapter presents an extension to EIC in the presence of decoupled constraints.

3.1 Probabilistic constraints

In Bayesian optimization, the objective and constraint functions are in general unknown for

two reasons. First, the functions have not been observed everywhere, and therefore we must

interpolate or extrapolate their values to new inputs. Second, our observations may be noisy:

even after multiple observations at x, we do not necessarily know the true function value at x

with certainty. Therefore, it is impossible to be certain that a constraint ck(x) ≥ 0 is satisfied

for any x, even if we have already observed ck many times at x. As a result, when constraint

observations are noisy, it does not make sense to formulate the problem as in Eq. (1.2), since,

after any finite number of observations (assuming Gaussian noise), it is impossible to conclude

that the problem has been solved. A new formulation is needed.
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Optimization problems in which the objective and/or constraints contain uncertain quanti-

ties whose probability distributions are known or can be estimated are referred to as stochastic

programming problems (see e.g., Shapiro et al., 2009). A natural formulation of these problems

is to minimize the objective function in expectation, while satisfying the constraints with high

probability. The condition that the constraint be satisfied with high probability is called a prob-

abilistic constraint or chance constraint (Shapiro et al., 2009). We denote the kth probabilistic

constraint as the Boolean function Ck(x) and the conjunction of all K probabilistic constraints

as C(x) with no subscript. Then,

Ck(x) ⇐⇒ Pr(ck(x) ≥ 0) ≥ 1− δk

C(x) ⇐⇒ ∀k, Ck(x) , (3.1)

for some confidence thresholds {δk}. In Eq. (3.1), C(x) is the Boolean function that must be

satisfied at the solution to the optimization problem.

This formulation is based on K individual probabilistic constraints, one per original con-

straint. Another reasonable formulation requires that the joint probability of all constraints

being satisfied at x must be above some single threshold δ:

C(x) ⇐⇒ Pr (∀k, ck(x) ≥ 0) ≥ 1− δ . (3.2)

Here we have overloaded the notation C(x) with no subscript to mean both the conjunction

of K individual probabilistic constraints (Eq. (3.1)) or this second type of probabilistic con-

straint based on a joint probability (Eq. (3.2)). This notation is convenient because we can now

use the notation C(x) to refer to the Boolean function that encapsulates all constraints, without

committing to which type of probabilistic constraint is being used. Note that the two formula-

tions are the same if K = 1. The two formulations in Eqs. (3.1) and (3.2) both address the issue

of constraint uncertainty and yield a coherent problem formulation: while the model cannot

definitively report that the original constraints ck(x) ≥ 0 are satisfied at x, it can definitively

report whether or not it believes that the probabilistic constraint(s) are satisfied.
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Given these definitions, we can formulate constrained Bayesian optimization problems as,

min
x∈X

E[f(x)] s.t. C(x) . (3.3)

For the remainder of this thesis, we will consider Eq. (3.3) rather than Eq. (1.2) as the problem

formulation that we wish to solve, regardless of whether or not the constraints are noisy. In the

noise-free case, setting δk = 0 for all k (or δ = 0) corresponds to demanding that we be completely

certain of the constraint satisfaction, which is typically only possible at the observation locations;

thus, Eq. (3.3) gracefully reduces to Eq. (1.2). The practical effect of using Eq. (3.3) lies in

making recommendations, which is line 8 of Algorithm 1. With probabilistic constraints, the

recommendation step is precisely Eq. (3.3):

x? = arg min
x∈X

E[f(x)] s.t. C(x) . (3.4)

When using the EIC acquisition function, we also use Eq. (3.3) as the incumbent η.

Fig. 3.1 illustrates probabilistic constraints on the Branin-Hoo function, a 2D function with

three global minima (Fig. 3.1(a)). We add to this problem the disk constraint

c(x) = 50− (x1 − 2.5)2 + (x2 − 7.5)2 ,

shown in Fig. 3.1(b). This constraint eliminates the upper-left and lower-right solutions, leav-

ing a unique global minimum at x? = (π, 2.275) indicated by the orange star in Fig. 3.1(a).

Fig. 3.1(e) shows the probability of constraint satisfaction given the 17 observations of the con-

straint function. The probabilistic constraint C(x), which is simply this probability surface

thresholded at 1− δ = 0.99, is shown in Fig. 3.1(f).

3.2 Finding the feasible region

The EIC acquisition function presented in prior work (Section 2.6.1, Fig. 3.1(g)) relies on com-

puting improvement over the target or incumbent η. However, if no feasible solution has been

found (i.e., ¬∃x, C(x)), then η does not exist and EIC is not defined. In this case we propose
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Figure 3.1: Constrained Bayesian optimization on the 2D Branin-Hoo function with a disk
constraint, after 50 iterations (33 objective evaluations and 17 constraint evaluations). (a)
Branin-Hoo function, (b) true constraint, (c) mean of objective function GP, (d) variance of
objective function GP, (e) probability of constraint satisfaction, (f) probabilistic constraint with
δ = 0.01, (g) EIC acquisition function, and (h) probability distribution over the location of the
minimum, p(x?). Lighter colors indicate lower values. Colorbar in (e) applies to (b), (e), (f), (h);
units in (a), (c), (d), (g) are arbitrary. Objective function observations are indicated with black
circles in (c) and (d). Constraint observations are indicated with black ×’s (violations) and o’s
(satisfactions) in (e). Orange stars: (a) unique true minimum of the constrained problem, (c)
best solution found by Bayesian optimization, (g) input chosen for the next evaluation.

that the acquisition function include only the constraint factors, so that the whole acquisition

function is defined as

αEIC(x) =


∏K
k=1 Pr(ck(x) ≥ 0)αEI(x), if ∃x, C(x)∏K
k=1 Pr(ck(x) ≥ 0), otherwise

(3.5)

Intuitively, if the probabilistic constraint is violated everywhere, this acquisition function ignores

the objective function f and focuses only on searching for a feasible region. This feasibility search

is purely exploitative: it searches where the probability of satisfying the constraints is highest.

This is possible because the true probability of constraint satisfaction is either zero or one.

Therefore, as the algorithm continues to probe a particular region, it will either discover that

the region is feasible, or the probability of feasibility will eventually drop and it will move on to

a more promising region.
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3.3 EIC with decoupled observations

In some problems, the objective and constraint functions may be evaluated independently. We

call this property the decoupling of the objective and constraint functions (see Section 2.8

and Chapter 5). In decoupled problems, we must choose to evaluate a subset of the tasks

(for example, either the objective function or one of the constraint functions) at each iteration

of Bayesian optimization. It is important to identify problems with this decoupled structure,

because often some of the functions are much more expensive to evaluate than others. In there

situations, it is much more efficient to evaluate the cheap function first and then evaluate the

expensive function only in those regions that are promising.

One possible acquisition function for decoupled constraints is the expected improvement

of individually evaluating each task. However, the myopic nature of the EI criterion causes a

pathology in this formulation that prevents exploration of the design space. Consider a situation,

with a single constraint, in which some feasible region has been identified and thus the incumbent

is defined, but a large unexplored region remains. Evaluating only the objective in this region

could not cause improvement as our belief about Pr(c(x) ≥ 0) will follow the prior and not exceed

the threshold 1− δ. Likewise, evaluating only the constraint would not cause improvement

because our belief about the objective will follow the prior and is unlikely to become the new

best. This is a chicken-and-egg pathology: we must learn that both the objective and the

constraint are favorable for improvement to occur, but this is not possible when only a single

task is observed. This difficulty suggests a non-myopic acquisition function which assesses the

improvement after a sequence of objective and constraint observations. However, such a multi-

step acquisition function is intractable in general (Ginsbourger and Riche, 2010a).

Instead, to address this pathology, we propose to use the coupled acquisition function

(Eq. (3.5)) to select an input x for evaluation, followed by a second step to determine which

task will be evaluated at x. Following Swersky et al. (2013), we select a task with the SUR

criterion (Villemonteix et al., 2009, Section 2.4.5 and Eq. (2.10)), but extended to constrained
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optimization. Our decision criterion is then

t̂ = arg max
t∈T
−Ey | D,x,t [H [x? | D ∪ {(x, y)}]] , (3.6)

where t is one of the functions in T = {f, c1, . . . , cK}, t̂ is the suggested task, H(·) is the

differential entropy functional, y is the unknown function value obtained by observing task t at x,

and we have omitted the current entropy term since it does not affect t̂. This approach avoids

the pathology described above because the choice of x takes into account both the objective

and the constraints and then, given x, the most informative task is selected. We call this two-

stage method EIC for decoupled constraints or EIC-D. This method can be implemented using

IAGO (Section 2.4.5 and Appendix B.11) where we now generate Monte Carlo samples of the

constraint functions in addition to the objective. A general treatment of decoupling is given is

Chapter 5.

3.4 Discussion

3.4.1 Interpretation of EIC when using probabilistic constraints

When combined with probabilistic constraints, EIC loses its intuitive definition as the expected

improvement of the best feasible solution. This is clear because the EIC does not depend on δ,

whereas the incumbent η does. One may then ask why the true EI is not used. The answer lies in

the following pathology: a single noisy observation of constraint satisfaction may be insufficient

to push the overall posterior probability of satisfaction above 1− δ. Consider, for example, the

case of noisy Boolean constraint observations. Observing the constraint at x, the best value one

could observe is a Boolean “1” indicating constraint satisfaction. This observation increases our

posterior probability that the constraint is satisfied at x, but because these Boolean values are

noisy, the probability will not be increased all the way to 1. If the probability is not increased

above 1 − δ, then x is not considered feasible according to the probabilistic constraint even

after the best possible observation. Thus, no matter the outcome, observing the constraint at x

cannot cause x to become the new incumbent, and therefore the expected improvement is zero.
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This pathology is rooted in the fact that EI is a myopic strategy; indeed, assuming x really

is feasible, then after many evaluations of this noisy Boolean constraint at x the probabilistic

constraint will eventually be satisfied.

3.4.2 Potential inefficiency of EIC

EIC as defined in Eq. (3.5) can become very inefficient when searching for the feasible region.

Consider the case of a single constraint with continuous-valued observations and very high noise.

Imagine that the initial design points include several points at which the constraint is clearly

violated, and one point, x, at which the true constraint value is just over zero, say 0.001. By

Eq. (3.5), EIC will continue evaluating the constraint at x because its probability of satisfaction

is slightly higher than the prior value of 0.5. As we continue to repeatedly evaluate the constraint

at x, we will eventually satisfy the probabilistic constraint, but this will require many evaluations

because the signal-to-noise ratio is very low. These evaluations are wasteful if the true solution is

not nearby; and, indeed, there is no particular reason why it should be nearby. This pathology

is due to the fact that Eq. (3.5) does not consider the sensitivity of the constraint to a new

observation, but rather only its current probability of satisfying the constraints.

3.4.3 Knowledge use in EIC-D

The EIC-D scheme for decoupled constraints avoids the chicken-and-egg pathology but is un-

satisfying because of its two-stage nature. By choosing x without considering the task, we

make a sub-optimal choice of x. In the decoupled scenario, our decision space is the product

space T ⊗ X . Thus, a more satisfying method would jointly maximize its acquisition function

over T ⊗ X , since maximizing first over x and then over t does not in general yield the joint

maximizer. In a sense, then, EIC-D does not make full use of all the information or knowledge

available to it. We will address this issue in Chapters 4 and 5.
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Chapter 4

Predictive Entropy Search with

Constraints

This chapter extends predictive entropy search (PES) (Section 2.4.7, Hernández-Lobato et al.,

2014) to solve constrained problems, an approach that I call predictive entropy search with

constraints (PESC). The extension of information-based methods to constrained problems is

natural because the influence of the constraints is entirely accounted for in p(x?); the SUR

acquisition function in Eq. (2.10) remains unchanged.

PESC does not suffer from the difficulties underlying EIC discussed in Chapter 3. First,

the PESC acquisition function does not depend on the current best feasible solution, so it can

operate coherently even when there is not yet a feasible solution. Second, PESC naturally

separates the contributions of each task (objective or constraint) in its acquisition function. As

a result, no pathology arises in the decoupled case and, thus, no ad hoc modifications to the

acquisition function are required. This allows us to apply PESC to problems such as those

discussed in Chapter 1, namely minimizing the number of calories in a cookie recipe such that

it still tastes good, or optimizing the performance of a speech recognition system such that

it makes predictions within a prescribed time limit. Furthermore, in addition to its increased

generality, our experiments show that PESC performs better than EIC even in the basic setting

of joint evaluations to which EIC is most suited (Chapter 6).
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4.1 Deriving the PESC acquisition function

Here, as in PES, we commit to zero-mean GP priors on the unknown functions, with i.i.d.

Gaussian zero-mean observation noise. PESC is an approximation to the same key quantity as

in IAGO, ES and PES, namely Eq. (2.10). We now extend this equation to the setting in which

we are optimizing an objective function f subject to K inequality constraints, such that instead

of observing one output y we now observe K + 1 outputs yf , y1, . . . , yK :

αPESC(x) = H
[
x? | Df ,D1, . . . ,DK

]
− Ep(yf ,y1,...,yK | Df ,D1,...,DK ,x)

[
H
[
x? | Df ∪ {(x, yf )},D1 ∪ {(x, y1)}, . . . ,DK ∪ {(x, yK)}

] ]
, (4.1)

where Df is the data set for the objective function, Dk is the data set for constraint k. As in

PES, we then flip this equation using Eq. (2.11), and arrive at a constrained version of Eq. (2.13):

αPESC(x) = H
[
yf , y1, . . . , yK | Df ,D1, . . . ,DK ,x

]
−

Ep(x? | Df ,D1,...,DK)

[
H
[
yf , y1, . . . , yK | Df ,D1, . . . ,DK ,x,x?

] ]
(4.2)

As in PES, the rationale for flipping Eq. (4.1) to Eq. (4.2) is that the predictive entropies in

Eq. (4.2) are easier to approximate than the entropies of x? in Eq. (4.1).

As mentioned in Section 2.4.7, the first term on the right-hand side of Eq. (4.2) is straight-

forward to compute because p(yf , y1, . . . , yK | Df ,D1, . . . ,DK ,x) is a product of independent

Gaussians. By Eq. (2.14), the entropy is given by

H
[
yf , y1, . . . , yK | Df ,D1, . . . ,DK ,x

]
=

1

2
log(σ2

f (x) + ν2
f ) +

1

2

(
K∑
k=1

log(σ2
k(x) + ν2

k)

)
+
K + 1

2
log(2πe) , (4.3)

where σ2
f is the posterior predictive marginal variance of the objective at x, ν2

f is the noise

variance for the objective, σ2
k is the posterior predictive marginal variance of constraint k at x,

and ν2
k is the noise variance for constraint k. However, the second term on the right-hand side
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of Eq. (4.2), which we call the expected conditioned predictive entropy, has to be approximated.

This approximation is described below. For brevity, in the following we use D as shorthand

for Df ,D1, . . . ,DK .

4.1.1 Strategy for approximating the conditioned predictive entropy

The expected conditioned predictive entropy in Eq. (4.2) can be broken down into two parts: the

expectation over x? and the predictive entropy conditioned on x?. As in PES, we approximate

the expectation in Eq. (4.2) by averaging over samples of x? drawn approximately from p(x? | D).

To sample x?, we first approximately draw f and c1, . . . , cK from their GP posteriors using a

finite basis function approximation to the GP kernel (Rahimi and Recht, 2007). This yields a

representation of the sample that can be evaluated at any x with speed that is independent

of the data set size and linear in the number of basis features used. We then solve a global

constrained optimization problem using the sampled functions. The solution to this problem is

the sample of x?. This is analogous the approach taken in Hernández-Lobato et al. (2014), but

extended to the constrained setting. See Hernández-Lobato et al. (2014, Appendix A) for the

derivation of this approximation, and Appendix B.9 for implementation details. This sampling

procedure is illustrated in 1-D in Figs. 4.1(a) and 4.1(f).

For each sample of the global minimum, we must compute the entropy of the conditioned

predictive distribution (CPD), p(yf , y1, . . . , yK | D,x,x?). Figures 4.1(b) and 4.1(g) show the pre-

dictive distributions for 1-D objective and constraint functions, and Figs. 4.1(c) and 4.1(h) show

these same predictive distributions conditioned on a particular value of the global minimizer x?.

Conditioning on the location of the global minimizer x? pushes the posterior predictions for f

down at locations around x? and up in regions away from x?. This only occurs in regions where

the constraints c1, . . . , cK are likely to be positive; conditioning on x? has little or no effect

on f in regions where c1, . . . , cK are presumed to be negative. Furthermore, conditioning on x?

pushes the posterior distribution of c1, . . . , cK up near x? because the constraints need to be

satisfied at the solution.

Our approach to computing the conditioned predictive entropy is to create a Gaussian ap-

proximation to the CPD, and then apply Eq. (2.14) to compute the entropy. Figures 4.1(d)
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(a) f ∼ p(f | D) (b) p(f | D) (c) p(f | D,x?) (d) αf
PESC(x |x?) (e) αf

PESC(x)

(f) c ∼ p(c | D) (g) p(c | D) (h) p(c | D,x?) (i) αc
PESC(x |x?) (j) αf

PESC(x)

Figure 4.1: Visualization of PESC in a problem with one constraint. The top row represents the
objective function f and the bottom row the constraint function c. 1st column: a single sample
from the finite basis function approximation of the GP, with the constrained minimum x? marked
with an orange circle. 2nd column: the posterior predictive distribution with the mean shown
in red, the data as blue circles, the standard deviation with shaded blue, and the sampled x?
in orange. 3rd column: the approximated CPD. 4th column: the partial acquisition functions
for the objective and the constraint, given the single sample of x?. 5th column: the partial
acquisition functions for the objective and the constraint, averaged over 100 samples of x?. In
all columns, the sampled x? is shown in orange.

and 4.1(i) show the PESC acquisition function computed in this manner for one particular sam-

ple of x?, while Figs. 4.1(e) and 4.1(j) show the PESC acquisition function averaged over 100

samples of x?.

4.1.2 Constructing the NFCPD

Let y = [yf , y1, . . . , yK ]> denote the vector of random variables associated with objective and

constraint observation values at x and let z = [f(x), c1(x), . . . , cK(x)]> denote the vector of

the latent objective and constraint functions at x, such that the entries of y correspond to the
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entries of z corrupted with observation noise. Then, we can write the CPD as p(y | D,x,x?). We

approximate the CPD by first approximating the posterior predictive distribution p(z | D,x,x?),

which we call the noise-free conditioned predictive distribution (NFCPD), and then convolving

that approximation with additive Gaussian noise of variance ν2
0 , . . . , ν

2
K to form an approximation

of the CPD.

We first consider the distribution p(x? | f, c1, . . . , cK), which is the distribution of x? given the

infinite-dimensional latent objective and constraint functions f, c1, . . . , cK . The global minimizer

is in fact a deterministic function of f, c1, . . . , cK . In particular, x? is the global minimizer if

and only if the following two conditions are met:

(i) all constraints are satisfied at x?: ∀k, ck(x?) ≥ 0

(ii) f(x?) is the smallest feasible value: ∀x′ ∈ X , either f(x′) ≥ f(x?) or ∃k, ck(x′) < 0

We can informally translate these deterministic conditions into a conditional probability:

p(x? | f, c1, . . . , cK ,D) =

[
K∏
k=1

Θ [ck(x?)]

] ∏
x′∈X

Ψ(x′,x?, f, c1, . . . , cK) , (4.4)

where

Ψ(x′,x?, f, c1, . . . , cK) =

{
K∏
k=1

Θ
[
ck(x

′)
]}

Θ[f(x′)− f(x?)] +

{
1−

K∏
k=1

Θ
[
ck(x

′)
]}

, (4.5)

the symbol Θ denotes the Heaviside step function with the convention that Θ(0) = 1, and

we use the fact that x? is conditionally independent of D given f, c1, . . . , cK to unnecessarily

condition on D. The first product in Eq. (4.4) encodes property (i) and the infinite product

over Ψ(x′,x?, f, c1, . . . , cK) encodes property (ii). Here, we are being slightly informal in the use

of infinite products and infinite dimensional vectors; see Hennig and Schuler (2012) for further

discussion of this issue.
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Next, we use Bayes’ theorem to flip this conditional distribution:

p(f, c1, . . . , cK |x?,D) ∝ p(f, c1, . . . , cK | D)×[
K∏
k=1

Θ [ck(x?)]

][∏
x′

Ψ(x′,x?, f, c1, . . . , cK)

]
. (4.6)

The infinite-dimensional vectors f, c1, . . . , cK are drawn from p(f, c1, . . . , cK | D), given as infinite-

dimensional multivariate Gaussian distributions (i.e., the GPs).

We now return to z in order to construct the NFCPD. Because z is simply a vector containing

the values of f, c1, . . . , cK at x, z is also a deterministic function of f, c1, . . . , cK and we can

write p(z | f, c1, . . . , cK ,x) using Dirac delta functions (denoted δ, not to be confused with the

probabilistic constraint confidence threshold, also denoted δ in other contexts) to pick out the

values at x:

p(z | f, c1, . . . , cK ,x,x?,D) = δ[z0 − f(x)]

[
K∏
k=1

δ[zk − ck(x)]

]
. (4.7)

In Eq. (4.7) we have used the fact that z is conditionally independent of x? and D given

f, c1, . . . , cK to unnecessarily condition on x? and D.

We can now construct the NFCPD p(z | D,x,x?) by using the identity for conditional prob-

abilities,

p(z |x?,x,D) =

∫
p(z | f, c1, . . . , cK ,x?,x,D) p(f, c1, . . . , cK |x?,x,D) df dc1 · · · dcK , (4.8)

to combine Eqs. (4.6) and (4.7) and marginalize out the infinite-dimensional quantities f, c1, . . . , cK

which encode the objective and the constraint functions:

p(z | D,x,x?) ∝
∫
p(f, c1, . . . , cK | D) δ[z0 − f(x)]

[
K∏
k=1

δ[zk − ck(x)]

]
×[

K∏
k=1

Θ[ck(x?)]

][∏
x′

Ψ(x′,x?, f, c1, . . . , cK)

]
df dc1 · · · dcK . (4.9)

We now find a Gaussian approximation to Eq. (4.9) in several steps. The overall approach is
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to split Eq. (4.9) into the parts that depend on x and the parts that do not depend on x. The

parts of the computation that depend on x must be performed repeatedly for each new x as we

maximize the acquisition function. On the other hand, the parts of the approximation that do

not depend on x can be done once, cached, and reused as we maximize the acquisition function.

As we will see, most of the factors do not depend on x, leading to crucial speedups over a naive

approach that approximates the full Eq. (4.9) for each x.

Because the infinite product over all x′ ∈ X in Eq. (4.9) includes x itself, we first split this

product into these two cases, and reorder the factors:

p(z | D,x,x?) ∝
∫
p(f, c1, . . . , cK | D)

[
K∏
k=1

Θ[ck(x?)]

]∏
x′ 6=x

Ψ(x′,x?, f, c1, . . . , cK)

×
δ[z0 − f(x)]

[
K∏
k=1

δ[zk − ck(x)]

]
Ψ(x,x?, f, c1, . . . , cK) df dc1 · · · dcK . (4.10)

In Eq. (4.10), the factors on the first line do not depend on x, whereas the factors on the second

line do depend on x. We now proceed with the approximation, addressing the first and second

lines of Eq. (4.10) separately.

4.1.3 Finite-product approximation to the NFCPD

Following Hernández-Lobato et al. (2014), we approximate the infinite product in Eq. (4.10) with

one that contains only finitely many factors, in particular only those corresponding to locations

where the objective function has been observed and x?. We first define the (N + 1)−dimensional

vectors f , c1, . . . , cK as the the concatenation of random variables representing the latent func-

tions at all observed locations, plus x?. In symbols,

f = [f(x1), . . . , f(xN ), f(x?)]

ck = [ck(x1), . . . , ck(xN ), ck(x?)] for k = 1, . . . ,K . (4.11)

Our strategy will be to change the integration variables in Eq. (4.10) from the infinite-dimensional

vectors f, c1, . . . , cK to these finite-dimensional f , c1, . . . , cK and make the associated approxi-
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mations to the integrand.

Our approximation to the first line of Eq. (4.10), which we denote q(f , c1, . . . , cK), is given

by

q(f , c1, . . . , cK) ∝ p(f , c1, . . . , cK | D)

[
K∏
k=1

Θ[ck,N+1]

][
N∏
n=1

Ψ(xn,x?, f , c1, . . . , cK)

]
, (4.12)

where p(f , c1, . . . , cK | D) is the GP predictive distribution for objective and constraint values,

which factors into p(f | Df )
∏K
k=1 p(ck | Dk) by the assumed independence of the objective and

constraints, and the other factors in Eq. (4.12) are simply the same as in Eq. (4.10) but only

enforced at the finitely many points given by the collected data and x?. Note that we have

written Ψ(x′,x?, f, c1, . . . , cK) as Ψ(xn,x?, f , c1, . . . , cK) to emphasize that the condition Ψ is

only enforced at the xn, and thus we do not rely on values of f, c1, . . . , cK outside of those in

f , c1, . . . , cK .

We then approximate the second line (not including the differentials) of Eq. (4.10) by

p(z | f , c1, . . . , cK ,x)Ψ(z, fN+1) . (4.13)

While z is a deterministic function of f, c1, . . . , cK (in fact it is just their values at x), it is

not a deterministic function of f , c1, . . . , cK . Therefore, in Eq. (4.13), we have approximated

the deterministic relationship given by the Dirac deltas with the (K + 1)-dimensional Gaussian

conditional distribution p(z | f , c1, . . . , cK ,x) given by the K + 1 GPs. In Eq. (4.13) we have

also rewritten Ψ(x,x?, f, c1, . . . , cK) as Ψ(z, fN+1) to emphasize that it only depends on z and

fN+1. This can be observed by recalling the definition of Ψ (Eq. (4.5)) and observing that

Ψ(x,x?, f, c1, . . . , cK) only depends on f, c1, . . . , cK through their values at x (this is z) plus

f(x?) = fN+1.

Combining our approximations to the first and second lines of Eq. (4.10), given by Eqs. (4.12)

and (4.13) respectively, we obtain the following approximation to the NFCPD:

p(z | D,x,x?) ≈
1

Z1

∫
q(f , c1, . . . , cK)p(z | f , c1, . . . , cK ,x)Ψ(z, fN+1) df dc1 · · · dcK , (4.14)
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where Z1 is a normalization constant. We call this the finite-dimensional approximation to the

NFCPD. In the next section we proceed with a Gaussian approximation to Eq. (4.14).

4.1.4 Gaussian approximation to the finite-dimensional NFCPD

Because the integrand in Eq. (4.14) is not tractable, we form a Gaussian approximation using

EP. Again, we separately address the parts that do and do not depend on x. We begin with

q(f , c1, . . . , cK), the part of the NFCPD that does not depend on x. We use EP to find a

Gaussian approximation to q(f , c1, . . . , cK), which we denote q̃(f , c1, . . . , cK), of the form

q̃(f , c1, . . . , cK) = N (f |mf ,Vf )
K∏
k=1

N (ck |mck ,Vck) , (4.15)

where (mk,Vk) for k = 0, . . . ,K are the mean and covariance terms determined by EP. The

EP update rules for determining these parameters are given in Appendix A.3. This iterative

EP procedure is performed only once per iteration of Bayesian optimization because it does not

depend on x.

Substituting Eq. (4.15) into Eq. (4.14), our approximation to the NFCPD is now

p(z | D,x,x?) ≈
1

Z0

∫
N (f |m0,V

f )

[
K∏
k=1

N (ck |mck ,Vck)

]
×

p(z0 | f ,x)

[
K∏
k=1

p(zk | ck,x)

]
Ψ(z, fN+1) df dc1 · · · dcK , (4.16)

where Z0 is a normalization constant and we have split up p(z | f , c1, . . . , cK ,x) into the product

of independent Gaussians by the assumed independence of the objective and constraints.

The integral in Eq. (4.16) can be split up into a product of integrals given its special structure:

p(z | D,x,x?) ≈
1

Z0

[
K∏
k=1

∫
p(zk | ck,x)N (ck |mck ,Vck) dck

]
×∫ [∫

p(z0 | f ,x)N (f |m0,V
f ) df1 · · · dfN

]
Ψ(z, fN+1) dfN+1 . (4.17)

We first treat each of the K integrals in the product on the first line of Eq. (4.17). The
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distribution p(zk | ck,x) is a Gaussian marginal distribution at x given by the GP conditioned

on the data ck at the locations x1, . . . ,xN , which is given by Eq. (2.1). This distribution has

the special property that its variance only depends on the locations x1, . . . ,xN , and does not

depend on the ck. Furthermore, Eq. (2.1) shows that the mean of this distribution depends

linearly on ck. And, combining the facts that ck follows a Gaussian distribution, and that a

linear function of a Gaussian random variable is another Gaussian random variable, we have

that the mean of p(zk | ck,x) also follows a Gaussian distribution. To recap, we can think of each

integral in the top line of Eq. (4.10) as the distribution of zk, a Gaussian random variable with

fixed variance whose mean is also Gaussian. This is a familiar situation: after marginalizing

out the random Gaussian mean, we are left with yet another Gaussian distribution. Thus, the

variable ck is integrated out analytically. The mean and variance of the resulting univariate

Gaussian distribution in zk, which we call m′k and v′k respectively, are given in Appendix A.4.

We now turn our attention to the inner integral in the lower line of Eq. (4.10). The situation

is precisely analogous to the above, except that we do not integrate out one of the variables,

namely fN+1. In integrating out the variables f1, . . . , fN we are left with a Gaussian distribution

with fixed variance and mean given by a linear function of the Gaussian random variable fN+1.

The joint distribution p([z0, fN+1] |x) is then a bivariate Gaussian, with mean and variance m′f

and V′f given in Appendix A.4. We are now left with:

p(z | D,x,x?) ≈
1

Z

[
K∏
k=1

N
(
zk |m′k, v′k

)] ∫
N
(
[z0, fN+1] |m′f ,V′f

)
Ψ(z, fN+1) dfN+1 , (4.18)

where Z is a normalization constant. Note that the means and variances of the Gaussians in

Eq. (4.18) do depend on x. Thus the computations leading from Eq. (4.16) to Eq. (4.18), and

all that follow, must be done for every x, whereas the EP approximation to q(f , c1, . . . , cK) need

only be performed once per iteration of Bayesian optimization.

We now make the final approximation, which is to approximate the right-hand side of

Eq. (4.18) with a product of independent Gaussians:

p(z | D,x,x?) ≈ N
(
z0 |µNFCPD

f (x), vNFCPD
f (x)

) K∏
k=1

N
(
zk |µNFCPD

k (x), vNFCPD
k (x)

)
, (4.19)
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where µNFCPD
f (x) and vNFCPD

f (x) are the approximate mean and variance of z0 = f(x) and

µNFCPD
k (x) and vNFCPD

k (x) are the approximate mean and variance of zk = ck(x); the corre-

sponding expressions are given in Appendix A.5. Finding these parameters is equivalent to

performing one final iteration of EP for a single non-Gaussian factor Ψ(z, fN+1), which we must

do for every x. Note: it is also possible to compute the full covariance matrix of the right-hand

size of Eq. (4.18) and thus approximate the NFCPD with a multivariate Gaussian, but we elect

to approximate Eq. (4.18) with a product of independent Gaussians. This way, the PESC ac-

quisition function is easily decomposed into the separate contributions of the different functions

(see Chapter 5).

4.1.5 The PESC acquisition function

We have now approximated the NFCPD with independent Gaussians and are almost ready to

compute its entropy with Eq. (2.14). The last step is to translate our approximate NFCPD

into an approximate CPD. Since our approximation to the NFCPD is Gaussian and the noise is

i.i.d. Gaussian, our approximation to the CPD is also a product of independent Gaussians with

means µCPD
f , µCPD

1 , . . . , µCPD
K and variances vCPD

f , vCPD
1 , . . . , vCPD

K given by

vCPD
f = vNFCPD

f + ν0

vCPD
k = vNFCPD

k + νk for k = 1, . . . ,K .

The PESC acquisition function, which approximates Eq. (4.1), is then

αPESC(x) =

{
log vPD

f (x) +

K∑
k=1

log vPD
k (x)

}
−

1

M

M∑
m=1

{
log vCPD

f

(
x |x(m)

?

)
+

K∑
k=1

log vCPD
k

(
x |x(m)

?

)}
, (4.20)

where M is the number of samples drawn from p(x? | D), x
(m)
? is the mth of these samples, vPD

f (x)

and vPD
k (x) are the predictive variances for the noisy evaluations of f and ck at x, respectively,

and vCPD
f

(
x |x(m)

?

)
and vCPD

k

(
x |x(m)

?

)
are the approximated variances of the CPD for the

51



noisy evaluations of f and ck at x given that x
(m)
? is the global minimizer. In Eq. (4.20) we have

neglected the constant factor of (K+1)
2 log(2πe) and the multiplicative factor of 1

2 for simplicity,

since these do not affect the maximizer of the acquisition function.

4.1.6 Summary of approximations made in PESC

To recap, the following approximations were made in going from Eq. (4.1) to Eq. (4.20):

1. The expectation over x? is approximated with Monte Carlo sampling.

2. The Monte Carlo samples of x? are drawn approximately using a finite basis function

approximation to the GP kernels.

3. We approximate the NFCPD by replacing the infinite-dimensional integration variables

f, c1, . . . , cK with the finite-dimensional integration variables f , c1, . . . , cK , and making

the corresponding changes to the integrand (Eqs. (4.12) and (4.13)).

4. We further approximate this finite-dimensional approximation to the NFCPD with a prod-

uct of Gaussians using EP. This is done by first approximating the factors that do not

depend on x and then, for each x, performing the final iteration of the approximation.

In Section 6.2.1, we assess the accuracy of these approximations and show that PESC performs

almost as well as a ground-truth method based on rejection sampling in one dimension.

4.1.7 Efficient marginalization of the GP hyperparamters

Marginalization of Eq. (4.20) over the GP hyper-parameters can be done efficiently as in Hernández-

Lobato et al. (2014). In particular, one can rewrite Eq. (4.20) with the sum overm on the outside,

and showing explicit dependence on the GP hyperparameters θ:

αPESC(x) =
1

M

M∑
m=1

[{
log vPD

f

(
x | θ(m)

)
+

K∑
k=1

log vPD
k

(
x | θ(m)

)}
−{

log vCPD
f

(
x |x(m)

? , θ(m)
)

+

K∑
k=1

log vCPD
k

(
x |x(m)

? , θ(m)
)}]

(4.21)
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where θ(m) is the mth sample of the GP hyperparameters. Since m is now an index over joint

states of the GP hyperparameters and x?, we can marginalize over GP hyperparameters without

adding additional complexity (in contrast with, for example, ES (Section 2.4.6)).

4.2 PESC for fast black-box functions

One disadvantage of using PESC is that sampling x? and computing the EP approximations can

be slow. If PESC is slow compared to the black-box function(s) of interest, the entire Bayesian

optimization procedure may be inefficient because too much time is spent in the optimizer

and thus too few function evaluations are performed. While this issue can be circumvented

in the coupled case by, for example, switching to a faster method like EIC or abandoning

Bayesian optimization entirely, it becomes essential the cast of decoupled tasks with varying

speeds because we require a method that can straddle this gap: the method must sparingly

evaluate the slow task(s) is in standard Bayesian optimization, while also making use of the

speed of the fast tasks to evaluate them many times. To address this issue we introduce an

(even more) approximate but very fast version of PESC, which we call PESC-F. The two main

challenges are then how to make one iteration of PESC faster, and how, at each iteration, to

decide which (the slow or the fast) method should be used. The following two subsections

address these two issues, respectively.

4.2.1 PESC-F: an even more approximate, but fast, version of PESC

The main operations at each iteration of Bayesian optimization (when using PESC) are

1. Sampling GP hyperparameters and inverting the kernel matrix

2. Sampling x? and performing EP

3. Maximizing the acquisition function

We propose ways to shorten each of these steps. We shorten step 1 by skipping the GP hyperpa-

rameter sampling. Rather, we average the acquisition function over the hyperparameter samples

already obtained at an earlier iteration (doing this allows for additional speedups using rank-one
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updates to the Cholesky decomposition of the kernel matrix; see Appendix B.10.1). Similarly,

we shorten step 2 by skipping the sampling of x? and instead using previously obtained samples.

We also reuse a previously computed EP approximation instead of recomputing it. In particular,

we reuse the approximations h̃n and g̃k in Eq. (A.9) and then recompute the approximation to

q(f , c1, . . . , cK) (Eq. (4.12)) using Eq. (A.11). This allows us to skip all the computations in

Appendix A.3. We then perform the remaining calculations given in Section 4.1 in the usual

way. Since computing the EP approximation to q(f , c1, . . . , cK) is much more expensive than

the ensuing computations, this caching strategy leads to a significant speedup. Finally, we

shorten step 3 by using a coarser termination condition tolerance when maximizing the acqui-

sition function, so that optimization converges faster but with reduced precision. Furthermore,

if the acquisition function is maximized using a local optimizer with random restarts and/or a

grid initialization, we can shorten the computation further by reducing the number of restarts

and/or grid size.

4.2.2 Choosing whether to run the full or approximate PESC

The motivation for PESC-F is that optimizer time should be small compared to the time spent

evaluating the function(s). Given this, our approach to switching between the full and fast

acquisition function is to hold approximately constant the fraction of total wall-clock time spent

in the optimizer. To achieve this, at each iteration of Bayesian optimization, we do a full update

if and only if

τcurrent − τlast-full

τfull
> γ , (4.22)

where τcurrent is the current time, τlast-full is the time since the last full update, τfull is the duration

of the last full update (this includes fitting the model and any other extra overhead, i.e., all of

lines 3-4 in Algorithm 1), and γ > 0 is some constant, which we call the rationality level because,

the larger the value of γ, the more time spent in rational decision making (i.e., optimizer time).

This scheme is illustrated in Algorithm 3.

One could also imagine replacing τfull with an average over the durations of past full updates.

54



Algorithm 3 Constrained Bayesian optimization for possibly fast tasks with PESC-F.

1: Inputs: black-box functions f, c1, . . . , cK , model M, initial design D, rationality level γ
2: initialize τlast-full = τfull = 0
3: repeat
4: set τcurrent to the current time
5: if (τcurrent − τlast-full)/τfull > γ then
6: sample GP hyperparameters θ
7: fit GP to the data D
8: sample x? and perform EP
9: set τfull to the current time minus τcurrent (the elapsed time since executing line 4)

10: set τlast-full to the current time
11: else
12: fit GP to the data D
13: perform fast update to Gaussian NFCPD approximation as described in Section 4.2.1
14: end if
15: maximize the acquisition function: x̂ = arg maxx αPESC(x |M)
16: evaluate the function: ŷ = f(x̂)
17: add the new data to the data set: D = D ∪ {(x̂, ŷ)}
18: until termination condition is met
19: Output: the recommendation x? = arg minx∈X EM[f(x)] s.t. C(x)

While this approach is less noisy, we opt for using only the duration of the most recent full update

since these durations may exhibit deterministic trends. For example, the modeling time tends to

increase at each iteration due to the increase in data set size. If indeed the full update duration

increases monotonically, then the duration of the most recent update would be a more accurate

estimate of the next full update duration than the average duration of all past updates.

PESC-F can be used as a generalization of PESC, since it reduces to PESC in the case of

sufficiently slow function evaluations. To see this, we observe that if the black-box function is in

fact very slow, then τcurrent − τlast-full > γτfull will be satisfied at every iteration for a reasonable

choice of γ. Thus, the method will always perform the full updates as we would hope. On

the other hand, if the black-box function is very fast, this method will mainly perform fast

updates but will still occasionally perform full updates occasionally, with a frequency roughly

proportional to the function evaluation duration.

55



4.2.3 Setting the rationality level in PESC-F

Loosely speaking, this algorithm is devised such that the ratio of optimizer time to function

evaluation time is at most γ. This notion is approximate because, for example, the time spent

in function evaluations actually includes the time spent in fast updates. The ideal setting of

γ may depend on the problem, but we propose values on the order of γ = 0.1 to 1, which

correspond to spending roughly 50−90% of the total time performing function evaluations. It is

possible that the ideal setting of γ changes as optimization proceeds and it is very likely that it is

very problem-dependent; this is a subject for future research. The notion considering the value

of computation is called bounded rationality and has its roots in the traditional AI literature;

for example, in Russell et al. (1991) computation is treated as a possible action that consumes

time but increases the expected utility of future actions.

4.3 Discussion

4.3.1 Separability of the acquisition function

The PESC acquisition function is additive in the expected amount of information that is ob-

tained from the evaluation of each function (objective or constraint). For example, the expected

information gain obtained from evaluating f(x) is given by the term

log vPD
f (x)− 1

M

M∑
m=1

log vCPD
f

(
x |x(m)

?

)

in Eq. (4.20). The other K terms in Eq. (4.20) measure the corresponding contributions from

evaluating each of the constraints. This allows PESC to easily address the decoupled scenario

when one can independently evaluate the different functions at different locations (Chapter 5).

In other words, Eq. (4.20) is a sum of individual acquisition functions, one for each function

that we can evaluate. Existing methods for Bayesian optimization with unknown constraints

do not possess this desirable separability property. Note: the key property of the PESC acqui-

sition function, from the perspective of decoupled constraints, is that it decomposes into the

contributions for each task; the fact that this decomposition is additive is only incidental.
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4.3.2 Computational complexity

The complexity of PESC is O(MKN3) in the coupled setting, where M is the number of x?

samples, K is the number of constraints, and N is the number of collected data for each task.

Assuming M is also the number of GP hyperparameter samples, this is the same computational

complexity as EIC because the bottleneck is the same O(N3) matrix inversion; however, in

practice PESC is slower. In the decoupled setting this becomesO(M
∑K

k=0(N0 +Nk)
3) whereN0

is the number of evaluations of the objective and Nk is the number of evaluations for constraint

constraint k.

4.3.3 Relationship to PES

If one applies the PESC method described in this Chapter but without constraints (i.e., setting

K = 0), one is left with a method that is very similar to PES (Section 2.4.7) but not exactly

identical. In PES, Hernández-Lobato et al. (2014) introduce additional factors into their approx-

imation to p(f |x?) in order to enforce the conditions that ∇f = 0 at x? and that the Hessian is

positive definite at x?. We do not enforce these conditions since the global optimum may be on

the boundary of the feasible region, in which case these conditions do not necessarily hold (in

fact, even in PES this issue arises because the optimum may be on the boundary of the domain

X ). Furthermore, in PESC we condition on the entire functions f, c1, . . . , cK and impose the

condition that all feasible values must be above the global minimum. In contrast, in PES this

conditioning on f is avoided by instead using the following approximate condition: we take the

best observed value and the impose a soft condition (to account for noise in the observation)

that this must be above f(x?). This amounts to changing a step function Θ to a Gaussian CDF

Φ because the noise is Gaussian.

4.3.4 Relationship to Thompson Sampling

In Fig. 4.1, and in particular Figs. 4.1(d) and 4.1(i), the maximizer of the PESC acquisition

function is quite close to the sampled x
(m)
? . Is PESC then simply a more complicated version

of Thompson sampling (TS) (Section 2.4.3)? In fact, PESC (and PES) are related to TS, but

we argue that, computational cost aside, they are better methods. PES/PESC can be seen as
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less noisy versions of TS since they average the contributions of M samples of x?, whereas TS

relies on a single sample and offers no simple way to perform averaging. Furthermore, even

with M = 1 the global maximum of αPESC is not necessarily near x?, since conditioning on

x? makes global changes to the predictive distribution as shown in Fig. 4.1; in other words,

evaluating where p(x?) is low may still be informative, depending on the correlation structure of

the problem. Finally, PESC allows us to separate the contributions of evaluating the objective

and constraint(s), whereas TS does not offer this benefit.

4.3.5 PESC and probabilistic constraints

PESC can be used in combination with probabilistic constraints (Section 3.1). Like EIC, the

PESC acquisition function does not depend on the confidence threshold(s) associated with the

probabilistic constraints; rather, these thresholds only apply when making recommendations.

4.3.6 Bridging the gap between fast and slow

Section 4.2 introduces the PESC-F method that can switch between fast, yet inaccurate, and

accurate, but slow, optimizer steps. Of course, if the objective function is extremely fast then

Bayesian optimization may not be a good method at all. The goal of PESC-F is to keep the

ratio of time spent in the optimization steps to time spent in function evaluations below a user-

specified value. However, if the function evaluation is so fast that the time spent in the fast

updates becomes significant or even the dominant factor, then this assumption will be violated.

We have already defined τfull as the duration of a full update. Let us also define τfast as the

duration of a fast update and τfunc as the duration of a fast update. Therefore, we can say

that the PESC-F method is most useful when τfast < τfunc < τfull. When τfunc > τfull, PESC-F

also works well because it automatically reverts to standard PESC with full updates at every

iteration.

Many aspects of this method are not specific to PESC and could easily be adapted to other

acquisition functions like EIC or even unconstrained acquisition functions like PES and EI. In

particular, lines 8 and 13 of Algorithm 3 are specific to PESC, whereas all other speedup methods

are general. For example, when using vanilla unconstrained EI, the computational bottleneck
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is likely to be sampling the GP hyperparameters (Algorithm 3, line 6) and maximizing the

acquisition function (Algorithm 3, line 15). The ideas presented above, namely to skip GP

hyperparameter sampling and to optimize the acquisition function with a smaller grid and/or

coarser tolerances, are applicable in this situation and might be useful in the case of a fairly fast

objective function.

In the τfunc < τfast case, model-based methods are likely not to be the best approach; a

methods like CMA-ES (Section 2.9.1) is likely to work better because it will perform many

more function evaluations in a fixed time. However, the user may not know these relative time

scales a priori and thus may not know which algorithm to use. Furthermore, in a decoupled or

multi-task scenario, the user might be faced with some very slow tasks and some very fast tasks.

In this case, neither a slow model-based method nor a fast method like CMA-ES are well-suited

to the entire problem, and thus the problem is more that just a matter of choosing the right

algorithm. Given this, an interesting duration of future research is to create algorithms that

bridge the gap between fast and slow function evaluations, doing something reasonable in either

case.
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Chapter 5

Decoupled Constraints and Resource

Allocation

5.1 Motivation

Consider the problem discussed in Section 1.1 of optimizing the performance of a speech recog-

nition system such that it must perform its functionality within a specified time limit. The

system may be implemented, for example, as a neural network with hyperparameters such as

the number of hidden units, learning rate, etc. The objective function is classification error on

a validation data set and there is a single constraint imposing a maximum runtime. Prior work

on constrained Bayesian optimization (Section 2.6) focuses on the coupled scenario, in which the

objective and constraint(s) must be evaluated jointly; in other words, in the coupled scenario

one cannot evaluate one function without evaluating the other(s). Here we introduce Bayesian

optimization with decoupling, in which these different tasks (objective and constraints) need not

be jointly evaluated. The neural network example is naturally decoupled, because the running

time (constraint) can presumably be evaluated without training the network, which must be

done to evaluate the objective.

Some problems exhibit decoupling while others do not. An example of a coupled problem is a

financial simulation that draws many samples from the distribution of possible outcomes. If the

objective function is the expected profit and the constraint is a maximum tolerable probability
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of default, then these two functions are computed jointly by the same simulation and are thus

coupled to each other. Another example of decoupling is the cookie optimization discussed in

Chapter 1: determining the tastiness of a cookie recipe requires a taste test with a group of

participants, whereas computing the number of calories can be done independently without such

a group.

As discussed in Section 3.3, most existing constrained Bayesian optimization methods, which

are based on EI, are not easily extended to decoupled problems. Then, a natural question to ask

is, why worry about decoupling? Can we not simply treat decoupled problems as coupled, by

always evaluating all tasks at the same locations, thus enabling us to leverage existing methods?

We address this question with a thought experiment here, and with empirical evaluations in

Chapter 6.

Returning to our time-limited neural network example, let us consider the expense of evalu-

ating each of the two tasks. Evaluating the objective (the classification error on a validation set)

requires training the neural network, and perhaps consumes minutes to hours of compute time.

On the other hand, evaluating the constraint (running time) requires only to make predictions

with the network using random weights, since this will give the same results as with the trained

weights. Measuring the running time takes perhaps a few seconds; in short, it is orders of mag-

nitude faster than evaluating the objective. Imagine evaluating both tasks at some x only to

discover immediately that the run time is extremely slow, and thus the run time constraint is

violated. To continue training the neural network is then extremely wasteful, because x (and the

nearby region of input space) has already been ruled out. In a decoupled framework, one could

first measure the run time at many locations, gaining a sense of the constraint surface. Only

then would we incur the significant expense of objective function evaluations, heavily biasing

our search towards locations that are deemed probably feasible. The larger the cost differential

between the two tasks, the more wasteful it becomes to treat the problem as coupled, potentially

incurring enormous expense for values of x that could immediately be ruled out by a decoupled

optimization algorithm.

In other problems, it may be the constraint that is slow and the objective that is fast. Or, we

may have multiple tasks, all of which are slow, but some of which are much more informative than
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others (an example of a less informative task is a constraint that is satisfied almost everywhere,

including at the true solution). In this chapter we aim to build a general framework of Bayesian

optimization that encompasses all of these cases.

5.2 Competitive vs. non-competitive decoupling

I divide the class of decoupled problems into two sub-classes, which I call competitive decoupling

(CD) and non-competitive decoupling (NCD). CD is the form of decoupling considered in Sec-

tion 3.3, in which two or more tasks compete for the same resource. In our example, the resource

is the CPU being used to perform the optimization. On the other hand, NCD refers to the case

in which the different tasks can be evaluated independently, but using different resources. For

example, consider the case in which the data used to evaluate our objective function are highly

private, and thus the objective function evaluation can only be performed on a particular ma-

chine with access to these data. On the other hand, if the constraint evaluation does not require

this data set, it could be performed on any machine, or perhaps even in parallel on a large

number of available CPUs. In this case the objective and constraint are still decoupled in the

sense that they need not be evaluated jointly, but they do not compete for the same resource

(CPU) and thus can be run asynchronously but in parallel.

Section 2.7 discusses Bayesian optimization in which multiple function evaluations can be

performed in parallel. NCD is a generalization of this notion. With NCD, one can run multiple

experiments in parallel, and furthermore these experiments may be of incompatible types that

must be run on different resources. Single-task parallel Bayesian optimization can thus be

thought of as a specific case of NCD in which there is only one resource, with some capacity

given by the maximum number of concurrent experiments. NCD is in particular related to the

asynchronous parallel Bayesian optimization methods discussed in Section 2.7. In asynchronous

parallelism, jobs are submitted asynchronously, and we must make further suggestions using the

information that some experiments are pending. This is precisely the case in NCD, except that

the pending experiments are not necessarily the same tasks as that the of next suggestion.
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Figure 5.1: Schematic comparing the coupled, parallel, non-competitive decoupled (NCD), and
competitive decoupled (CD) scenarios for a problem with a single constraint c1. In each of the
three cases, the mapping between tasks and resources (the right-hand portion of the figure) is
the bipartite graph G.

5.3 Formalization

In this section we formalize a general scenario in which the functions {f, c1, . . . , cK} in our

optimization problem may exhibit a combination of coupling and decoupling. Let F be the

set of functions {f, c1, . . . , cK} and let the set of tasks T be a partition of F indicating which

functions are coupled (i.e. must be jointly evaluated). Let R = {r1, . . . , r|R|} be the set of

resources available to solve this problem. Then, we encode the relationship between tasks and

resources using a bipartite graph G = (V, E) with node set V = T ∪ R and edges {t ∼ r} ∈ E

such that t ∈ T and r ∈ R. The interpretation of an edge {t ∼ r} is that task t can be performed

on resource r. Note that this framework does not encompass the case in which a task requires

multiple resources to be executed; we leave this to future work.
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In addition to this basic framework, we also introduce a capacity ωmax for each resource r.

The capacity ωmax(r) ∈ Z+ represents how many tasks may be simultaneously executed on

resource r; for example, if r represents a cluster of CPUs, ωmax(r) would be the number of

CPUs in the cluster. Introducing the notion of capacity is simply a matter of convenience; in

fact, it is equivalent to setting all capacities to one and replicating each resource node in G

according to its capacity.

We now possess a formalism to describe coupling as well as NCD and CD. In particular,

coupling describes two functions f1 and f2 that belong to the same task t; if this task can be

performed on multiple resources (or one resource with ωmax > 1), then this is parallel Bayesian

optimization. NCD describes two functions f1 and f2 that belong to different tasks t1 and t2,

which themselves require different resources r1 and r2 (i.e. t1 ∼ r1 and t2 ∼ r2). CD describes

two functions f1 and f2 that belong to different tasks t1 and t2 (decoupled) requiring the same

resource r (competitive). These descriptions correspond to the visual representation in Fig. 5.1.

These definitions can be trivially extended to the case of more than two functions. The most

general case is an arbitrary task-resource graph G encoding a combination of these situations.

5.4 Algorithm for decoupled optimization

In competitive decoupling, the acquisition function must be capable of comparing the relative

benefits of evaluating different tasks. As discussed in Section 4.3.1, the PESC acquisition func-

tion conveniently yields the contribution of each function; these are then added to yield the

contribution of the task as a whole. On the other hand, the EIC-D method introduced in

Section 3.3 is not separable as discussed in Section 3.4.3.

Algorithm 4 is a general algorithm for Bayesian optimization given a set of functions F ,

tasks T , resources R, and a task-resource graph G. In line 3, we loop through all resources r

that are not already at capacity; i.e., those resource whose number of currently running jobs ω(r)

is less than its capacity ωmax(r). In line 4, we loop through all tasks in T that can be run on

resource r, as dictated by G. At line 6, the acquisition function αt(x) is maximized over x

for a particular task t. The input x∗t is the suggested evaluation location assuming we will
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Algorithm 4 A generalized Bayesian optimization framework.

1: Input: functions F , tasks T , resources R, task-resource graph G, acquisition function α,
search space X , model M, initial data set D, resource query functions ω, ωmax

2: repeat
3: for r ∈ R s.t. ω(r) < ωmax(r) do
4: for t ∈ T s.t. t ∼ r ∈ G do
5: Fit the model M to the data D
6: Maximize the acquisition function: α∗t = maxx∈X αt(x), x∗t = arg maxx∈X αt(x)
7: end for
8: t∗ = arg maxt α

∗
t

9: Submit task t∗ at input x∗t∗ for evaluation on resource r
10: end for
11: until termination condition is met
12: Output: the recommendation x? = arg minx∈X EM[f(x)] s.t. C(x)

perform task t, and α∗t is the associated acquisition function value. At line 8, we then maximize

over tasks, selecting the task t∗ for which α∗t is largest. Upon doing so, the pair (t∗,x∗t∗) now

represents the experiment with the highest acquisition function value over all possible (t,x) pairs

in the decision space T ⊗ X that can be run on resource r. At line 9 we then begin this task

and repeat this process until the termination condition is met.

I now describe how the algorithm above encompasses the coupled, non-competitive decou-

pled, and competitive decoupled cases. In the case of a single coupled task running on a single

resource, the loops at lines 3 and 4 are both over a single element. At each iteration we simply

maximize the acquisition function over x ∈ X at line 6; the maximization over tasks at line 8 is

a trivial maximization over only one task (in other words, we recover Algorithm 1). NCD is the

same except that we loop over multiple elements at line 3. Finally, in CD the tasks “compete”

at line 8 and the task t∗ yielding the highest acquisition function is ultimately selected, along

with its best location x∗t∗ . It is straightforward to apply the fast method PESC-F (Section 4.2)

by combining Algorithms 3 and 4. Algorithm 4 is not specific to PESC but can be applied with

any separable acquisition function.

5.5 Incorporating cost information

The PESC acquisition function measures the number of bits of information about the location

of the solution x? gained by evaluating task t at location x. However, external considerations
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may render evaluation of one task more desirable than another, given equal information content.

The most salient of these factors is the running time or duration of an experiment. Snoek et al.

(2012) consider this issue by automatically measuring the duration of function evaluations and

modeling the duration as a function of x with an independent Gaussian process. Swersky et al.

(2013) extend this concept over multiple tasks, so that for each task t an independent GP is used

to model the unknown duration as a function of x. This approach can be applied in Algorithm 4

by scaling the acquisition function for task t by the expected duration of t. In particular, we

change line 8 to:

t∗ = arg max
t

α∗t
ζt
, (5.1)

where ζt is the expected cost associated with task t. When using an information-based acquisition

function such as PESC, this yields an acquisition function in the units of bits per second. When

modeling task durations, the total number of models is the number of functions plus the number

of tasks, i.e. |F|+ |T |. Alternatively, one could fix the relative costs a priori instead of modeling

the function evaluation durations. This is especially useful if there are costs other than time

present.

In the above discussion we have associated a cost ζt to each task t. An even more general

approach is to associate a cost to each task-resource allocation, or in other words to each edge

of G. If each task is only connected to a single resource in G, these two formulations are the

same. However, the weighting by costs need not only apply to selecting one task versus another;

rather, we may be selecting one of several possible resources for the same task. This could occur,

for example, because a neural network can be trained on either a CPU or GPU, with the former

being much slower than the latter. The neural network task is then connected to two different

resources (CPU and GPU) with different edge weights representing the different expected run

times (either learned or set a priori).
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5.6 Discussion

In the age of parallel computing, parallel Bayesian optimization algorithms are becoming in-

creasingly important. In this chapter I generalized the notion of parallel Bayesian optimization

by introducing the notion of non-competitive decoupling (NCD). We also introduced competi-

tive decoupling (CD), a more complicated variant of decoupling in which multiple tasks must

compete for the same resource. I then presented Algorithm 4, which can be used to optimize

problems with an arbitrary combination of CD and NCD whose structure is represented by a

bipartite graph G. Taking advantage decoupling requires a separable acquisition function. PESC

is one such separable acquisition function that performs well in practice. As new acquisition

functions are developed in the future, they will hopefully be developed with separability in mind

as an important and desirable property.
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Chapter 6

Empirical Analyses

This chapter presents empirical analyses of the methods covered in Chapters 3 to 5. The

implementation specifications for the experiments in this chapter are given in Appendix B.

6.1 Comparing EIC with an unconstrained baseline

This section examines the need for constrained Bayesian optimization methods in the first place,

by comparing EIC (Chapter 3) to a naive baseline in which constraint violations are set to

some large penalty value and unconstrained Bayesian optimization is used as the optimizer.

Naively applying unconstrained Bayesian optimization to problems with unknown constraints is

problematic because the GP is easily confused by the sharp discontinuities that are artificially

introduced into the penalized objective. Figure 6.1 illustrates this issue. The objective and

constraint are shown in Figs. 6.1(a) and 6.1(b) respectively. When conditioned on “observations”

of the penalized objective, the GP learns an artificially short length scale and thus loses its ability

to generalize (Fig. 6.1(c)). The following subsections provide a quantitative comparison of EIC

and this unconstrained baseline on three machine learning problems.

6.1.1 LDA with sparse topics

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a popular model for learning topics, which

are distributions over words, given a corpus of documents. In order for topics to have meaningful
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Figure 6.1: Using a simple penalty to augment the objective function in one dimension. (a)
The GP marginals (black line and gray fill) conditioned on 5 observations (black dots) of an
objective function f(x). (b) A Boolean constraint function Θ(c(x)) that is violated in the
middle and satisfied on the two sides (here, Θ denotes the Heaviside step function). (c) The GP
marginals (black line and gray fill) when conditioned on the penalized objective, f(x)+λΘ(c(x))
with λ = 5 (black dots). The learned length scales are 0.09 in (a) and 0.006 in (c).

semantic interpretations, it is desirable for the word distributions to exhibit sparsity. Therefore

this experiment considers optimizing the hyperparameters of LDA to minimize the perplexity

of held out data subject to the constraint that the entropy of the per-topic word distribution

averaged over topics is less than some threshold. This experiment considers LDA with stochastic

variational inference (Hoffman et al., 2010) trained with the vowpal wabbit (Agarwal et al., 2014)

package on 250,000 documents from Wikipedia, with a total vocabulary size of 10,473. The

constraint threshold is set to log2 200 bits. This is achieved, for example, by allocating uniform

density over 200 words. The search space consists of five hyperparameters corresponding to the

number of topics (from 2 to 100), two Dirichlet distribution prior base measures (from 0 to 2),

and two learning rate parameters (rate from 0.1 to 1, decay from 10−5 to 1). Figure 6.2(a)

compares EIC to the unconstrained baseline on this task. In the baseline, the objective is set to

the highest achievable objective function value when the constraint is violated.
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Figure 6.2: Empirical performance of EIC. (a) Comparing EIC (blue), IECI (purple, Sec-
tion 2.6.2, Gramacy and Lee (2011)), and the unconstrained baseline (red) on tuning LDA
with stochastic variational inference subject to topic sparsity. (b) Comparing EIC-D (blue, Sec-
tion 3.3) with the unconstrained baseline (red) on tuning a deep neural network subject to a
memory constraint. Errors bars indicate standard error from 5 independent runs.

6.1.2 Memory-limited neural net

This experiment considers optimizing the following 11 hyperparameters of a deep neural network

on the MNIST handwritten digit classification task: 1 learning rate, 2 momentum parameters

(initial and final, with linear interpolation), the number of hidden units per layer (2 layers),

the maximum norm on model weights (for 3 sets of weights), and the dropout regularization

probabilities (for the inputs and 2 hidden layers). The classification error on the standard

validation set is minimized under the constraint that the total number of weights in the network

must not exceed 106. This constraint is decoupled from the objective because the number of

weights can be calculated without training the network. The neural network is trained using

momentum-based stochastic gradient descent which is notoriously difficult to tune as training can

diverge under various combinations of the momentum and learning rate. When training diverges,

the objective function cannot be measured. This is treated as a hidden constraint (Section 2.3.3)

with noisy observations. The network is trained for 25,000 weight updates with the deepnet

package (https://github.com/nitishsrivastava/deepnet). Fig. 6.2(b) compares EIC with

the unconstrained baseline on this task. Only the objective evaluations are presented, since

constraint evaluations are extremely inexpensive compared to an entire training run. In the

baseline, constraint violations are set to random performance (90% classification error).
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6.2 Analysis of PESC with coupled constraints

I evaluate the performance of PESC through experiments with synthetic functions sampled

from the GP prior distribution, analytic benchmark problems previously used in the literature

on Bayesian optimization with unknown constraints, and meta-optimization of machine learning

algorithms with unknown constraints.

For first case listed above, the synthetic functions sampled from the GP prior are generated

following the same experimental set up in Hennig and Schuler (2012); Hernández-Lobato et al.

(2014). The search space is the unit hypercube of dimension D, and the ground truth objective f

is a sample from a zero-mean GP with a squared exponential covariance function of unit ampli-

tude and length scale ` = 0.1 in each dimension. The function f is represented by first sampling

from the GP prior on a grid of 1000 points generated using a Halton sequence (see Leobacher

and Pillichshammer, 2014) and then defining f as the resulting GP posterior mean. I use a single

constraint function c1 whose ground truth is sampled in the same way as f . The evaluations

for f and c1 are contaminated with i.i.d. Gaussian noise with variance ν2
f = ν2

1 = 0.01.

6.2.1 Accuracy of the PESC approximation

I first analyze the accuracy of the approximation to Eq. (4.1) generated by PESC. I compare

the PESC approximation with a ground truth for Eq. (4.1) obtained by rejection sampling (RS).

The RS method works by discretizing the search space using a uniform grid. The expectation

with respect to p(x? | D) in Eq. (2.13) is then approximated by Monte Carlo. To achieve this,

f, c1, . . . , cK are sampled on the grid and the grid cell with non-negative c1, . . . , cK (feasibil-

ity) and the lowest value of f (optimality) is selected. For each sample of x? generated by

this procedure, H
[
yf , y1, . . . , yK | D,x,x?

]
is approximated by rejection sampling: I sample the

functions f, c1, . . . , cK and select those samples whose corresponding feasible optimal solution

is the sampled x? and reject the other samples. I then assume that the selected samples for

f, c1, . . . , cK are independent and have Gaussian marginal distributions. Under this assumption,

H
[
yf , y1, . . . , yK | D,x,x?

]
can be approximated using Eq. (2.14), with the variance parameters

in this formula being equal to the empirical marginal variances of the selected samples of f and
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Figure 6.3: Assessing the accuracy of the PESC approximation. (a) Marginal posterior predictive
distributions for the objective and constraint given some collected data denoted by ×’s. (b)
PESC and RS acquisition functions given the data in (a). (c) Median utility gap for PESC, RS
and RSDG in the experiments with synthetic functions sampled from the GP prior with D = 1.

c1, . . . , cK at x plus the corresponding noise variances ν2
f and ν2

1 , . . . , ν
2
K .

Figure 6.3(a) shows the posterior distribution for f and c1 given 5 observations sampled

from the GP prior with D = 1. The posterior is computed using the optimal GP hyperparam-

eters. The corresponding approximations to Eq. (4.1) generated by PESC and RS are shown

in Fig. 6.3(b). In the figure, both PESC and RS use a total of 50 samples from p(x? | D) when

approximating the expectation in Eq. (4.1). The PESC approximation is quite accurate, and

importantly its maximum value is very close to the maximum value of the RS approximation.

One disadvantage of the RS method is its high cost, which scales with the size of the grid
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used. This grid has to be large to guarantee good performance, especially when D is large. An

alternative is to use a small dynamic grid that changes as data is collected. Such a grid can

be obtained by sampling from p(x? | D) using the same approach as in PESC to generate these

samples (a similar approach is taken in Hennig and Schuler (2012), in which the dynamic grid is

sampled from the EI acquisition function). The samples obtained then form the dynamic grid,

with the idea that grid points are more concentrated in areas that we expect p(x? | D) to be

high. The resulting method is called Rejection Sampling with a Dynamic Grid (RSDG).

I compare the performance of PESC, RS and RSDG in experiments with synthetic data

corresponding to 500 pairs of f and c1 sampled from the GP prior with D = 1. At each iteration,

RSDG draws the same number of samples of x? as PESC. I fix δ1 = 0.05 and assume that the GP

hyperparameter values are known to each method. For reporting purposes, I set the utility u(x)

of a recommendation x to be f(x) if x satisfies the constraint, and otherwise a penalty value

of the worst (largest) objective function value achievable in the search space. Each method is

initialized with the same three random points drawn with Latin hypercube sampling.

Figure 6.3(c) shows the median of the utility gap (between the recommendation and true

optimum) for each method across the 500 realizations of f and c1. I report the median because

the empirical distribution of the utility gap is heavy-tailed and in this case the median is more

representative of the location of the bulk of the data than the mean. The heavy tails arise

because I am averaging over 500 different optimization problems with very different degrees

of difficulty. In this and all following experiments, unless otherwise specified, error bars are

computed using the bootstrap. The plot shows that PESC and RS are better than RSDG.

Furthermore, PESC is very similar to RS, with PESC even performing slightly better perhaps

because PESC is not confined to a grid as RS is. These results show that PESC yields a very

accurate approximation of the information gain.

6.2.2 Synthetic functions in 2 and 8 input dimensions

I compare the performance of PESC and RSDG with EIC using the same experimental protocol

as in the previous section, but with dimensionalities D = 2 and D = 8. I do not compare with

RS here because its use of grids does not scale to higher dimensions. Fig. 6.4 shows the utility
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Figure 6.4: Optimizing samples from the GP prior with (a) D = 2 and (b) D = 8.

gap for each method across 500 different samples of f and c1 from the GP prior with (a) D = 2

and (b) D = 8. Overall, PESC is the best method, followed by RSDG and EIC. RSDG performs

similarly to PESC when D = 2, but is significantly worse when D = 8. This shows that, when

D is high, grid based approaches (e.g. RSDG) are at a disadvantage with respect to methods

that do not require a grid (e.g. PESC).

6.2.3 A toy problem

Next, I compare PESC with EIC and AL (Gramacy et al. (2014), Section 2.6.4) on the toy

problem described in Gramacy et al. (2014), namely,

min
x∈[0,1]2

f(x) s.t. c1(x) ≥ 0, c2(x) ≥ 0 , (6.1)

where the objective f(x) is given by x1 + x2 and the constraint functions c1 and c2 are given by

c1(x) = 0.5 sin (2π(x2
1 − 2x2)) + x1 + 2x2 − 1.5 ,

c2(x) = −x2
1 − x2

2 + 1.5 .

This optimization problem has two local minimizers and one global minimizer. At the global

solution, which is at x? ≈ [0.1954, 0.4404], only one of the two constraints (c1) is active. Since

the objective is linear and c2 is not active at the solution, learning about c1 is the main challenge

of this problem.
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Figure 6.5: Comparing PESC, AL, and EIC in the toy problem from Gramacy et al. (2014).

In this experiment, the evaluations for f , c1 and c2 are noise-free. For PESC and EIC, I

use δ1 = δ2 = 0.025 and a squared exponential GP kernel. PESC uses 10 samples of x? when

approximating the expectation in Eq. (4.1). I use the AL implementation provided by Gramacy

et al. (2014) in the R package laGP which is based on the squared exponential kernel and

assumes the objective f is known. Thus, in order for this implementation to be used, AL has an

advantage over other methods in that it has access to the true objective function. In all three

methods, the GP hyperparameters are estimated by maximum likelihood.

Fig. 6.5 shows the mean utility gap for each method across 500 independent realizations.

Each realization corresponds to a different initialization of the methods with three data points

selected with Latin hypercube sampling. The results show that PESC is significantly better

than EIC and AL for this problem. EIC is superior to AL, which performs slightly better at the

beginning, possibly because it has access to the ground truth objective f .

6.2.4 Finding a fast neural network

In this experiment, I tune the hyperparamters of a three-hidden-layer neural network subject to

the constraint that the prediction time must not exceed 2 ms on an NVIDIA GeForce GTX 580

GPU (also used for training). The search space consists of 12 parameters: 2 learning rate

parameters (initial and decay rate), 2 momentum parameters (initial and final, with linear

interpolation), 2 dropout parameters (input layer and other layers), 2 other regularization pa-

rameters (weight decay and max weight norm), the number of hidden units in each of the 3
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hidden layers, and the activation function (RELU or sigmoid). The network is trained using

the deepnet package, and the prediction time is computed as the average time of 1000 predic-

tions for minibatches of size 128. The network is trained on the MNIST digit classification task

with momentum-based stochastic gradient descent for 5000 iterations. The objective is reported

as the classification error rate on the standard validation set. For reporting purposes, I treat

constraint violations as the worst possible objective value (a classification error of 1.0).

Figure 6.6(a) shows the results of 50 iterations of Bayesian optimization. In this experiment

and the next, the y-axis represents observed function values and δ = 0.05. Curves are the mean

over 5 independent experiments. PESC performs significantly better than EIC.

When constraints are noisy, reporting the best observation is an overly optimistic metric

(due to “lucky” evaluations); on the other hand, ground-truth is not available. Therefore, to

validate our results further, I used the recommendations made at the final iteration of Bayesian

optimization for each method (EIC and PESC) and evaluated the function with these recom-

mended parameters. I repeated the evaluation 10 times for each of the 5 repeated experiments

to compute a ground-truth score averaged of 50 function evaluations. This procedure yields a

score of 7.0 ± 0.6% for PESC and 49 ± 4% for EIC (as in the figure, constraint violations are

treated as a classification error of 100%). This result is consistent with Fig. 6.6(a) in that PESC

performs significantly better than EIC. This experiment is inspired by a real need for networks

with fast prediction time, especially in computer vision problems in which the abundance of data

can grow faster than a trained network can make predictions (e.g. YouTube, connectomics).

6.2.5 Tuning Markov chain Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) is a popular MCMC sampling technique

that takes advantage of gradient information for rapid mixing. HMC contains several parameters

that require careful tuning. The two basic parameters are the number of leapfrog steps, τ , and

the step size, ε. HMC may also include a mass matrix which introduces O(D2) additional

parameters in D dimensions, although the matrix is often chosen to be diagonal (D parameters)

or a multiple of the identity matrix (1 parameter) (Neal, 2011). In this experiment, I optimize

the performance of HMC using Bayesian optimization. The search space consists of the following
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Figure 6.6: Comparing PESC and EIC on machine learning problems with coupled constraints.
(a) Tuning a neural network subject to the constraint that it makes predictions in under 2 ms.
(b) Tuning Hamiltonian Monte Carlo to maximize the number of effective samples within 5
minutes of compute time, subject to the constraints passing the Geweke and Gelman-Rubin
convergence diagnostics and integrator stability.

parameters: the number of leapfrog steps, τ , the step size, ε, a mass parameter, and the fraction

of the allotted computation time spent burning in the chain.

The objective function is the number of effective samples; this corresponds to finding chains

that minimize estimator variance. For each set of inputs, I compute two chains, each with 5 min-

utes of computation time on a single core of a compute node. I impose the constraints that the

samples must pass the Geweke (Geweke, 1992) and Gelman-Rubin (Gelman and Rubin, 1992)

convergence diagnostics. In particular, I require the worst (largest absolute value) Geweke test

score across all variables and chains to be at most 2.0, and the worst (largest) Gelman-Rubin

score between chains and across all variables to be at most 1.2. I use the coda R package (Plum-

mer et al., 2006) to compute the effective sample size and the Geweke convergence diagnostic,

and the PyMC python package (Patil et al., 2010) to compute the Gelman-Rubin diagnostic

over two independent traces. The HMC integration may also diverge for large values of ε; I

treat this as a hidden constraint, and set δk = 0.05 for all constraints. I optimize HMC sampling

from the posterior of a logistic regression binary classification problem using the German credit

data set from the UCI repository (Frank and Asuncion, 2010). The data set contains 1000 data

points, and is normalized to have unit variance. Each chain is randomly initialized with D = 25
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independent draws from a Gaussian distribution with mean zero and standard deviation 10−3.

Figure 6.6(b) compares EIC and PESC on this task, averaged over 10 independent exper-

iments. As above, I perform a ground-truth assessment of the final recommendations. The

average effective sample size is 3300± 1200 for PESC and 2300± 900 for EIC. Here, the differ-

ence between the two methods is within the margin of error. Also, in light of the ground truth,

we observe that the results in Fig. 6.6(b) are overly optimistic, indicating that this experiment

is very noisy. This noise presumably comes from the randomness in initialization and sampling

which causes the passing or failure of the convergence diagnostics to be highly stochastic.

6.3 Analyses of PESC with decoupled constraints

6.3.1 Accuracy of the PESC approximation with decoupling

Section 6.2.1 assessed the accuracy of the PESC approximation to a ground truth computation

of Eq. (4.1). Here, I assess whether the approximation is accurate for the partial acquisition

functions attributed to each function in decoupled PESC. Figure 6.7 shows the PESC acquisition

function compared to the RS ground truth in a synthetic 1D experiment with an objective and

single constraint drawn from the GP prior. The left and right columns of Fig. 6.7 differ only in

that three additional constraint observations have been collected in the right column (Figs. 6.7(a)

and 6.7(b)). Figures 6.7(c) to 6.7(f) show that the PESC approximation is very accurate even

when decomposed into the partial acquisition functions for the objective and the constraint. In

the left column of Fig. 6.7, the peak of αc(x) at about x = 0.3 is above the peak of αf (x) at

about x = 0.4, which implies that evaluating the constraint is expected to be more valuable

than evaluating the objective at this iteration. Indeed, Fig. 6.7(a) shows that the objective is

low near x = 0.3 but the constraint has not been explored there yet. Figure 6.7(g) shows that

p(x? | D) is high near x = 0.3 but also high near the other peak of αc(x). In the right column of

Fig. 6.7, with three additional constraint observations, we now anticipate a larger information

gain from evaluating the objective rather than the constraint, since the peak in Fig. 6.7(d) is

above the peak in Fig. 6.7(f). Intuitively, as more constraint observations are collected, the

constraint becomes well determined and the optimizer turns its attention to the objective.
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Figure 6.7: Assessing the accuracy of the decoupled PESC approximation for the partial ac-
quisition functions for αf (x) and αc(x). Between the left and right columns, three additional
observations of the constraint have been made.
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6.3.2 Comparing coupled and decoupled PESC

In this section I compare the performance of a coupled and decoupled approach to the same

(decoupled) problem, in order to empirically demonstrate the benefits of treating a decoupled

problem as such. I first consider the toy problem of Section 6.2.3 with δ = 10−4. For the purposes

of this experiment, I assume that I have a resource r with a capacity ωmax = 3 since there are

three tasks (one objective and two constraints). Figure 6.8(a) compares the performance of four

methods on this problem. The black curve is a coupled approach in which, at each iteration, all

three tasks are evaluated together at the same x. The green curve is a NCD approach in which

I assume that in fact there are three resources, one per task, such that at each iteration each

function is evaluated once but not necessarily at the same x. Here and in the experiments that

follow, I use the kriging believer approach (Section 2.7) to condition on pending experiments.

The orange curve is a CD approach in which I allow the tasks to compete, such that at each

iteration three not necessarily unique functions are evaluated at three not necessarily unique

locations. Finally, the blue curve is this same approach but using PESC-F (Section 4.2). Here

I do not use the decision criterion given by Eq. (4.22). Rather, when conditioning on pending

experiments, fast updates are performed. Once all three new data are collected, then a full

update is performed. This is an ideal circumstance for fast updates since, when performing the

fast updates, the GP is only conditioning on additional “dummy” data rather than real function

observations. In Section 6.4, I show that PESC-F is also effective when conditioning on actual

new observations.

I now provide an interpretation of Fig. 6.8(a). The fact that NCD performs about the same

as the coupled approach implies that, in this problem, the benefits of decoupling come from

choosing an unequal distribution of tasks to evaluate, rather than the additional freedom of

evaluating the three tasks at potentially different locations. This hypothesis is corroborated by

Fig. 6.8(b), which shows that the decoupled method chose to evaluate the constraint c1 far more

often than the objective or c2. Recalling that the objective is a linear function and only c1 is

active at the global solution, this makes sense intuitively. Finally, the fact that the blue and

orange curves are very similar implies that, when only conditioning on “dummy” data, PESC-F

incurs no significant performance loss.
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Figure 6.8: Toy problem (Section 6.2.3) with 3 cores and 3 tasks using PESC. (a) Performance
comparison of coupled (black), NCD (green), CD (orange) and fast CD (blue) approaches.
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Figure 6.9: Optimizing samples from the GP in D = 2 with coupled (black), competitive decou-
pled (CD, orange) and parallel CD (blue) PESC. Curves reflect the mean over 500 realizations.

●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

0

30

60

90

120

0 50 100 150 200

Tasks
●

●

constraint
objective

C
u
m

u
la

ti
v
e
 f

u
n
ct

io
n
 e

v
a
lu

a
ti

o
n
s

Iteration

(a) Constraint active at solution

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

0

50

100

150

0 50 100 150 200

Tasks
●

●

constraint
objective

Iteration

(b) Constraint not active at solution

Figure 6.10: Optimizing samples from the GP prior with decoupled PESC in D = 2 (Fig. 6.9).
Cumulative function evaluations of the objective (orange) and constraint (black) when (a) the
constraint is active at the true solution (about 30% of cases) and (b) the constraint is not active
at the true solution (about 70% of cases). Curves reflect the mean over 500 realizations.

81



I now perform another comparison of coupled and decoupled PESC with synthetic data,

in which the objective and single constraint functions are drawn from the GP prior as in Sec-

tion 6.2.2. Here, I assume that I have a computational resource r with capacity ωmax = 2.

Figure 6.9 compares three approaches: coupled PESC (black), sequential PESC with competi-

tive decoupling (orange), and parallel PESC with competitive decoupling. As in the toy problem,

here the decoupled approach outperforms the coupled approach (Fig. 6.9). The sequential strat-

egy is slightly better than the parallel strategy as it has more information on which to make

decisions; however, the difference is very small. As discussed in Section 2.7, sequential methods

are generally better in terms of number of function evaluations, whereas parallel methods are

generally better in terms of wall-clock time.

In the toy problem above, the decoupled approach was effective because it learned that eval-

uating the constraint c1 is much more useful than evaluating the objective f or the constraint c2.

For this experiment with the objective and single constraint drawn from the GP prior I again

plot the cumulative function evaluations of each task (Fig. 6.10). To gain understanding about

the decoupled behavior, I divide the 500 realizations into those cases in which the constraint

is active at the true solution (Fig. 6.10(a)) and those in which the constraint is not active at

the true solution (Fig. 6.10(b)). These figures show that when the constraint is active at the

solution, PESC chooses to evaluate the constraint much more frequently. In contrast, when the

constraint is not active at the solution, the constraint is evaluated much less. Presumably, in

these cases the constraint need only be evaluated until it is determined that it is not active at

the solution; after this point, resolving finer detail is not needed. Thus, the partial acquisition

functions corresponding to different tasks indeed reflect the relative importance of the tasks.

6.4 Evaluating PESC-F with wall-clock time experiments

In this section I evaluate PESC with fast updates (PESC-F, Section 4.2) by comparing the

performance of several PESC-based methods as a function of wall-clock time. I focus on the

toy problem of Section 6.2.3 set up such that evaluating the objective is instantaneous, evaluat-

ing c1 takes 2 seconds, and evaluating c2 takes 1 minute. Figure 6.11(a) compares the following
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(e) Decoupled, γ = 0.1
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(f) Decoupled, γ = 0

Figure 6.11: Comparing five variants of PESC on the 2D toy problem given in Section 6.2.3,
in which objective evaluations are instantaneous, c1 evaluations take 2 sec, c2 evaluations take
1 min, and total experiment time is 15 min. (a) log utility gap versus wall-clock time. (b-
f) Cumulative function evaluations for (b) coupled, (c) decoupled with γ =∞ (no fast updates),
(d) decoupled with γ = 1.0, (e) decoupled with γ = 0.1, and (f) decoupled with γ = 0. Curves
reflect the mean over 100 trials. Error bars in (b-f) are the standard deviation.
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approaches in an experiment limited to 15 minutes of compute time: coupled (blue), and com-

petitive decoupled using PESC-F with rationality levels γ =∞ (green), 1 (red), 0.1 (cyan), and

0 (purple). Note that setting γ = ∞ is simply another way of saying that fast updates are not

used (see Eq. (4.22)). Figure 6.11(a) shows that significant gains are made by using PESC-F be-

cause, intuitively, less time is spent in the optimizer and more time is spent evaluating functions.

This intuition is made concrete through Figures 6.11(b) to 6.11(f) and Table 6.1. I now discuss

these results in turn. Figures 6.11(b) to 6.11(f) show the cumulative number of evaluations of

each task as a function of wall-clock time. In Fig. 6.11(b), the three curves overlap because

the tasks are evaluated together in a coupled fashion. Because c2 is slow, this method is very

inefficient and only evaluates the three tasks 13 times in the allotted 15 minute period. This

accounts for its poor performance. Figures 6.11(c) to 6.11(e) proceed as expected: the task c1

is evaluated most because it is the most informative for this particular problem. Furthermore,

as the rationality level γ is decreased, less time is spent in the optimizer, and thus more func-

tion evaluations are performed. These correspond to increases in performance in Fig. 6.11(a).

However, this trend does not continue indefinitely as γ is decreased. When γ = 0, performance

is significantly diminished (Fig. 6.11(a)). Setting γ = 0 corresponds to never making a full

update after the initial iteration; thus, the algorithm used is, for all intents and purposes, not

computing the PESC acquisition function. Interestingly, Fig. 6.11(f) shows that, even though

the γ = 0 method performs only fast updated, the number of c1 evaluations is not increased

relative to approaches with larger values of γ. This is because the γ = 0 method is not able to

learn that c2 is uninformative and continues to spend time evaluating it, thus performing many

fewer evaluations of c1.

I now address Table 6.1. Whereas Figs. 6.11(b) to 6.11(f) show the number of evaluations of

each task, Table 6.1 shows the time spent in these tasks and in the two optimizer modes. (Note

that in Table 6.1 the total optimizer time plus the total function evaluation time does not add

up to exactly 15 minutes because in this implementation the current iteration is allowed to finish

after the 15-minute mark is reached.) As expected, the optimizer time decreases monotonically

as γ is decreased. The coupled approach also has low optimizer time, owing simply to its only

performing 13 optimization steps. We see that the fifth column of the table, corresponding to
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Table 6.1: Time allocations of five PESC variants corresponding to the results in Fig. 6.11
on the 2D toy problem (Section 6.2.3). For each method, the table reports the mean time in
minutes, over 100 independent runs, spent in standard optimizer steps (Opt-full), fast optimizer
steps (Opt-fast), total optimizer steps (Opt-total), evaluating the constraint c1, evaluating the
constraint c2, and all function evaluations (Evals-total). Time spent evaluating the objective f
is not shown because evaluations of f are instantaneous (< 10−3 min total).

Method Opt-full Opt-fast Opt-total c1(x) c2(x) Evals-total

Coupled 2.0 0.0 2.0 0.4 13.0 13.4
Decoupled, γ =∞ 10.2 0.0 10.2 1.4 3.6 5.0
Decoupled, γ = 1 5.2 3.0 8.2 2.2 4.7 6.9
Decoupled, γ = 0.1 1.5 5.1 6.6 2.5 6.0 8.5
Decoupled, γ = 0.0 0.2 1.8 2.0 1.0 12.5 13.5

time spent in c1 and thus the number of times c1 is evaluated, corresponds roughly to the relative

performances in Fig. 6.11(a). From the results we may conclude this problem exhibits an optimal

value of γ, perhaps near 0.1, and an associated optimal ratio of optimizer time to function time.

I leave to future work the issue of tuning γ, but note that it in a highly sophisticated approach

this could be achieved in an online fashion using reinforcement learning.

85



Chapter 7

Conclusion

7.1 Summary

This thesis is about Bayesian optimization with unknown constraints. Because constraint obser-

vations may be noisy, I formulated the problem using probabilistic constraints in Chapter 3, al-

lowing the user to directly express the trade-off between cost and risk by specifying the confidence

parameter δ. I then extended the constrained Expected Improvement (EIC) acquisition function

by addressing the case when the incumbent η cannot be computed, and by extending EIC to

the decoupled case in which the objective and constraint(s) may be evaluated independently. I

then identified several shortcomings of EIC, especially in the decoupled case. To address these

shortcomings, in Chapter 4 we developed Predictive Entropy Search with unknown Constraints

(PESC). PESC is based on the theoretically appealing expected information gain heuristic. I

showed that the mathematical approximations involved in PESC are quite accurate, and that

PESC performs about equally well to a ground truth method based on rejection sampling. I also

introduce a fast variant of PESC called PESC-F, and a heuristic for switching between the fast

and slow variants such that the total fraction of time spent in the optimization steps (as opposed

to function evaluations) is approximately equal to some user-specified constant. One disadvan-

tage of PESC is that it is relatively difficult to implement: in particular, the EP approximation

often leads to numerical instabilities. Therefore, we have integrated our implementation, which

carefully addresses these numerical issues, into the open-source Bayesian optimization package
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Spearmint, available at https://github.com/HIPS/Spearmint/tree/PESC. In Chapter 5 we

formalized the notion of decoupling and created a taxonomy of decoupled problems including

the cases of competitive and non-competitive decoupling. I discussed the notion of incorporat-

ing cost information into the optimization problem. Chapter 6 contains empirical evaluations

of the methods discussed here. I demonstrated the effectiveness of our algorithms on the meta-

optimization of machine learning algorithms and sampling methods. I also showed that PESC

outperforms previously existing methods such as EIC and AL over a variety of problems. Fur-

thermore PESC is easily applied to problems with decoupled constraints, without additional

computational cost or ad hoc modifications.

7.2 Challenges and directions for future research

7.2.1 Scaling up to bigger data

The cubic cost incurred by the kernel matrix inversion in Eq. (2.1) makes GPs prohibitively slow

once the data set becomes large. In the decoupled case with fast and slow tasks, this becomes

a much more serious problem than in single-task Bayesian optimization, because the fast task

may accumulate hundreds or thousands of observations before the slow task is evaluated even a

handful of times. In such cases, GPs are inadequate. A highly promising recent development in

this area is the work of Snoek et al. (2015), who use deep neural networks with a Bayesian linear

regression at the last layer to replace GPs as the model in Bayesian optimization. Whereas the

GPs exhibit cubic scaling in the number of data, the neural networks scale linearly and thus are

much more tractable with large numbers of observations. One area of future work is to adapt

PESC to interface with models other than GPs. Interestingly, the neural network approach not

only addresses the issue of scalability, but also provides a natural way to address the bounded

rationality issues that PESC-F tries to address. The neural network can be thought of as

approximating a GP with a finite number of basis functions. Thus, by changing the number of

hidden units in the network (or even the number of layers), one can adjust the trade-off between

speed and quality of the modeling. Another interesting direction for future research is a method

for performing this trade-off automatically.
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7.2.2 Theoretical guarantees

Chapter 2 discusses some theoretical results regarding the convergence properties of Bayesian

optimization methods. An important direction for future work is to derive results for more of

these methods, such as EIC, PES, PESC, etc. While these methods are already useful from a

practical standpoint, one may hesitate to use them without any theoretical guarantees.

7.2.3 Experiments with monetary or other costs

In this thesis we consider time spent to be the cost associated with evaluating the unknown

function(s). An interesting extension of this notion is a more general sense of currency or cost

incurred by function evaluations. This could simply be a monetary cost to an experiment. The

framework of resource allocation (Chapter 5) raises further interesting questions in this direction.

For example, in a computational experiment one could consider a commercial computing service

such as Amazon’s EC2 as a resource. The capacity of this resource would essentially be infinite,

but jobs run on this resource incur a real cost in dollars. Then, an obvious question is, when

should one use EC2 to perform experiments? A proper treatment of this issue, combined with

Algorithm 4, could lead to a very powerful optimization method that effectively compromises

time and money to find the best solution within certain time and monetary constraints. This is

a direction for future research.

7.2.4 When it makes sense not to run an experiment

Consider the example of a laboratory wishing to maximize the yield of some process. In addition

to performing the actual experiment, which takes one month, the laboratory also has access to a

computer simulation which takes three hours to perform. The computer simulation provides an

estimate of how likely the experiment is to work, although it is not particularly accurate. This is

a case of non-competitive decoupling in which there are two tasks and two resources. However,

Algorithm 4 is not a good method for approaching this problem. According to Algorithm 4,

one begins by immediately filling the capacity of each resource; in this case, this corresponds to

starting a computer simulation and starting a physical experiment. However, within a few days,

dozens of the computer simulation will have been completed, providing significantly improved
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information about the search space. And, yet, the laboratory experiment is already running and

thus the information provided by the computer simulations will not be usable until a month

has elapsed. Intuitively, a more sensible approach would be to initially not start a laboratory

experiment, even though this means leaving a resource idle for some period of time. There

should be some optimal number of computer simulations to run before starting the laboratory

experiment, such that a balance is struck between, one the one hand, making an informed

decision about the parameters of the laboratory experiment and, on the other hand not leaving

a resource idle for too long. Studying this issue of when it makes sense not to run an experiment

is an interesting direction for future research.

7.2.5 Utility functions and output warping

When we formulated the Bayesian optimization problem in Eq. (3.3), in terms of minimizing

the expected value of f(x), we implicitly assumed that the user’s utility function u(f) is a

linear function of −f(x). Even if the user’s utility is not linear in the actual outcome of an

experiment, we could rely on the user to transform the observations through u(f) before passing

the values to the Bayesian optimization method. However, consider the case in which a user’s

utility function is almost an infinite step function, as it would be with a constraint. In this case,

a GP would very poorly model the observations as shown in Fig. 6.1; furthermore, if u(f) is not

an invertible function, then information would be lost through the transformation. Thus, there

is a distinction between the output space that matches the user’s utility function and the output

space that is best for modeling purposes. Recent work on input warping (Snoek et al., 2014)

automatically warps the input space to make it more amenable to GP modeling, in particular

by attempting to remove non-stationarity of the objective function. The above discussion calls

for research on output warping which, given observations in utility space or some other space,

warps them to a new space that is more amenable to GP-based modeling.
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7.3 Concluding remarks

Constrained black-box optimization is an exciting area of research with great practical value. It

is a ubiquitous type of problem with applications in areas such as product design (e.g. designing

a low-calorie cookie), machine learning meta-optimization (as in Chapter 6), real-time systems

(such as a speech recognition system on a mobile device with speed, memory, and energy usage

constraints), or any optimization problem in which the objective function or constraints are

expensive to evaluate and possibly noisy. The application to tuning machine learning algorithms

and other software is especially compelling. As research progresses further in this area, we will

be able to tackle a wider variety of problems with interesting and difficult structures, in an

increasingly automated manner. Perhaps in the future it will seem anomalous to have any piece

of software with its parameters set by hand rather than by numerical optimization.
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Appendix A

Details of the PESC Approximation

A.1 Description of Expectation Propagation

The PESC approximation is based on a Gaussian approximation to the finite-product NFCPD

(Eq. (4.12)) using Expectation Propagation (EP) (Minka, 2001a,b). EP is a method for approx-

imating a product of factors (typically, a prior and likelihood factors in the computation of a

posterior), typically with a Gaussian distribution. EP forms a global Gaussian approximation

by approximating each individual factor with an individual Gaussian. This is in contrast to

the Laplace approximation which fits single, global Gaussian to the posterior distribution. EP

achieves the individual Gaussian approximations by, for each factor, minimizing the Kullback-

Leibler (KL) divergence between the exact factor and the Gaussian approximate factor, which

corresponds to matching the first and second moments of the Gaussian to those of the exact

factor. The insight behind EP is that instead doing this moment matching just between the

single exact and approximate factors, we do so in the context of all the other factors, since we are

ultimately interested in having a good approximation in regions where the overall probability is

high. Concretely, assume we wish to approximate the distribution

q(x) =
N∏
n=1

qn(x)
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with the approximate distribution

q̃(x) =

N∏
n=1

q̃n(x) . (A.1)

Consider now that we wish to form a particular approximate factor q̃n(x). Then, we define the

cavity distribution q̃\n(x) as:

q̃\n(x) =
q̃(x)

q̃n(x)
. (A.2)

Instead of matching the moments of qn(x) and q̃n(x), in EP we instead match the moments of

qn(x)q̃\n(x) with q̃n(x)q̃\n(x) = q̃(x). This causes the approximation quality to be higher in

places where the entire distribution q̃(x) is high, at the expense of approximation quality in less

relevant regions where q̃(x) is close to zero.

To compute the moments of qn(x)q̃\n(x) we use Eqs. (5.12) and (5.13) in Minka (2001b),

which give the first and second moments of a distribution p(x)N (x |m,V) in terms of the

derivatives of the log partition function of this distribution. This is the desired form, since

q̃\n(x) is Gaussian with known mean and variance (computed in the previous iteration of EP).

Thus, given some initial approximation for all the {q̃n(x)}, the steps of EP are as follows:

1. Choose an n.

2. Compute the cavity distribution q̃\n(x) given by Eq. (A.2) using the formula for dividing

Gaussians.

3. Compute the first and second moments of qn(x)q̃\n(x) using Eqs. (5.12) and (5.13) in

Minka (2001b). This yields an updated Gaussian approximation q̃(x) to q(x) with mean

and variance given by these moments.

4. Update q̃n(x) given by Eq. (A.2) using the formula for dividing Gaussians.

5. Repeat steps 1 to 4 until convergence.

EP updates maybe also be performed in parallel, by performing steps 1 to 4 for n = 1, . . . , N

using the same q̃(x), and then finally computing the new q̃(x) (Eq. (A.1)) using the formula
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for multiplying Gaussians. Details of the EP implementation used in this thesis are given in

Appendix B.8.

A.2 The Gaussian approximation to the NFCPD

In this section we fill in the details of computing a Gaussian approximation to q(f , c1, . . . , cK)

given Eq. (4.12). This expression can be written as:

q(f , c1, . . . , cK) =
1

Zq
N
(
f |mf

pred,V
f
pred

)[ K∏
k=1

N
(
ck |mck

pred,V
ck
pred

)]
×[

K∏
k=1

Θ[ck,N+1]

]
N∏
n=1

[{
K∏
k=1

Θ[ck,n]

}
Θ[fn − fN+1] +

{
1−

K∏
k=1

Θ[ck,n]

}]
, (A.3)

where mf
pred and Vf

pred are the mean and covariance matrix of the posterior distribution of f

given the data in Df , and mck
pred and Vck

pred are the mean and covariance matrix of the posterior

distribution of ck given the data in Dk. In particular, from Eq. (2.1) we have that

mf
pred = Kf

?(Kf + ν2
f I)−1yf ,

Vf
pred = Kf

?,? −Kf
?(Kf + ν2

f I)−1[Kf
? ]> ,

where Kf
? is an (N + 1)×N matrix with the prior cross-covariances between elements of f and

f1, . . . , fn and Kf
?,? is an (N + 1)× (N + 1) matrix with the prior covariances between elements

of f . Similarly, we have that

mck
pred = Kk

?(K
k + ν2

kI)−1yk ,

Vck
pred = Kk

?,? −Kk
?(K

k + ν2
kI)−1[Kk

?]
> ,

where Kk
? is an (N + 1)×N matrix with the prior cross-covariances between elements of ck and

ck,1, . . . , ck,n and Kk
?,? is an (N + 1)× (N + 1) matrix containing the prior covariances between
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the elements of ck. We will refer to the non-Gaussian factors in Eq. (A.3) as

hn(fn, fN+1, c1,n, . . . , ck,n) =

{
K∏
k=1

Θ [ck,n]

}
Θ [fn − fN+1] +

{
1−

K∏
k=1

Θ [ck,n]

}
(A.4)

(this is called Ψ(xn,x?, f , c1, . . . , cK) in Chapter 4) and

gk(ck,N+1) = Θ[ck,N+1] , (A.5)

such that Eq. (A.3) can be written as

q(f , c1, . . . , cK) ∝ N (f |mf
pred,V

f
pred)

[
K∏
k=1

N (ck |mck
pred,V

ck
pred)

]
[
N∏
n=1

hn(fn, fN+1, c1,n, . . . , ck,n)

][
K∏
k=1

gk(ck,N+1)

]
. (A.6)

We approximate these exact factors hn(fn, fN+1, c1,n, . . . , ck,n) and gk(ck,N+1) in Eqs. (A.4)

and (A.5) with Gaussian approximate factors h̃n(fn, fN+1, c1,n, . . . , ck,n) and g̃k(ck,N+1) respec-

tively. By the assumed independence of the objective and constraints, these approximate factors

take the form

h̃n(fn, fN+1, c1,n, . . . , ck,n) ∝ exp

{
−1

2
[fn fN+1]Ahn [fn fN+1]> + [fn fN+1]bhn

}
K∏
k=1

exp

{
−1

2
ahnc

2
k,n + bhnck,n

}
(A.7)

and

g̃k(ck,N+1) ∝ exp

{
−1

2
agkc

2
k,N+1 + bgkck,N+1

}
, (A.8)

where Ahn ,bhn , ahn , bhn , agk and bgk are the natural parameters of the respective Gaussian

distributions.
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The right-hand side of Eq. (A.6) is then approximated by

q̃(f , c1, . . . , cK) ∝ N
(
f |mf

pred,V
f
pred

)[ K∏
k=1

N
(
ck |mck

pred,V
ck
pred

)]
[
N∏
n=1

h̃n(fn, fN+1, c1,n, . . . , ck,n)

][
K∏
k=1

g̃k(ck,N+1)

]
. (A.9)

Because the h̃n(fn, fN+1, c1,n, . . . , ck,n) and g̃k(ck,N+1) are Gaussian, they can be combined with

the Gaussian terms in the first line of Eq. (A.9) and written as

q̃(f , c1, . . . , cK) ∝ N (f |mf ,Vf )

[
K∏
k=1

N (ck |mck ,Vck)

]
, (A.10)

where, applying the formula for products of Gaussians, we obtain

Vf =

[(
Vf

pred

)−1
+ Ṽf

]−1

, mf = Vf

[(
Vf

pred

)−1
mf

pred + m̃f

]
,

Vck =

[(
Vck

pred

)−1
+ Ṽck

]−1

, mck = Vck

[(
Vck

pred

)−1
mck

pred + m̃ck

]
(A.11)

and with the following definitions for Ṽ, m̃f , Ṽck , and m̃ck :

• Ṽf is an (N + 1)× (N + 1) precision matrix with entries given by

– ṽfn,n = [Ahn ]1,1 for n = 1, . . . , N ,

– ṽfN+1,n = ṽfn,N+1 = [Ahn ]1,2 for n = 1, . . . , N ,

– ṽfN+1,N+1 =
∑N

n=1 [Ahn ]2,2,

– and all other entries are zero.

• m̃f is an (N + 1)-dimensional vector with entries given by

– m̃f
n = [bhn ]1 for n = 1, . . . , N ,

– m̃f
N+1 =

∑N
n=1 [bhn ]2.

• Ṽck is a (N + 1)× (N + 1) diagonal precision matrix with entries given by

– ṽckn,n = ahn for n = 1, . . . , N ,
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– ṽckN+1,N+1 = agk .

• m̃ck is an (N + 1)-dimensional vector such that

– m̃ck
n = bhn for n = 1, . . . , N ,

– m̃ck
N+1 = bgk .

In the next section we explain how to actually obtain the values of Ahn ,bhn , ahn , bhn , agk and

bgk by running EP.

A.3 The EP approximation to hn and gk

In this section we explain how to iteratively refine the approximate Gaussian factors h̃n and g̃k

with EP.

A.3.1 EP update operations for h̃n

EP adjusts each h̃n by minimizing the KL divergence between

hn(fn, fN+1, c1,n, . . . , ck,n)q̃\n(f , c1, . . . , cK) (A.12)

and

h̃n(fn, fN+1, c1,n, . . . , ck,n)q̃\n(f , c1, . . . , cK) , (A.13)

where we define the cavity distribution q̃\n(f , c1, . . . , cK) as

q̃\n(f , c1, . . . , cK) =
q̃(f , c1, . . . , cK)

h̃n(fn, fN+1, c1,n, . . . , ck,n)
.

Because q̃(f , c1, . . . , cK) and h̃n(fn, fN+1, c1,n, . . . , ck,n) are both Gaussian, q̃\n(f , c1, . . . , cK) is

also Gaussian. If we marginalize out all variables except those which h̃n depends on, namely
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fn, fN+1, c1,n, . . . , ck,n, then q̃\n(fn, fN+1, c1,n, . . . , ck,n) takes the form

q̃\n(fn, fN+1, c1,n, . . . , ck,n) ∝ N
(

[fnfN+1] |mfn,fN+1

n,old ,V
fn,fN+1

n,old

)
×[

K∏
k=1

N
(
ck,n |m

ck,n
n,old, v

ck,n
n,old

)]
, (A.14)

where, by applying the forumla for dividing Gaussians, we obtain

V
fn,fN+1

n,old =

{[
Vf
fn,fN+1

]−1
−Ahn

}−1

, (A.15)

m
fn,fN+1

n,old = V
fn,fN+1

n,old

{[
Vf
fn,fN+1

]−1
mf
fn,fN+1

− bhn

}
, (A.16)

v
ck,n
n,old =

{[
vckn,n

]−1 − ahnck,n
}−1

, (A.17)

m
ck,n
n,old =

{
mck
n

[
vckn,n

]−1 − bhn
}−1

, (A.18)

where Vf
fn,fN+1

is the 2 × 2 covariance matrix obtained by taking the entries corresponding to

fn and fN+1 from Vf , and mf
fn,fN+1

is the corresponding 2-dimensional mean vector. Similarly,

vckn,n is the variance for ck,n in q̃ and mck
n is the corresponding mean.

To minimize the KL divergence between Eqs. (A.12) and (A.13), we match the first and

second moments of these two distributions. The moments of Eq. (A.12) can be obtained from

the derivatives of its normalization constant. This normalization constant is given by

Z =

∫
hn(fn, fN+1, c1,n, . . . , ck,n)q̃\n(fn, fN+1, c1,n, . . . , ck,n) dfn, dfN+1, dc1,n, . . . , dck,n

=

({
K∏
k=1

Φ
[
αkn

]}
Φ(αn) +

{
1−

K∏
k=1

Φ
[
αkn

]})
, (A.19)

where αkn = m
ck,n
n,old/

√
v
ck,n
n,old and αn = [1, −1]m

fn,fN+1

n,old /
√

[1, −1]V
fn,fN+1

n,old [1, −1]>. We follow

Eq. (5.13) Minka (2001b) to update ahn and bhn ; however, we use the second partial derivatives

with respect to m
ck,n
n,old rather than first partial derivative with respect to v

ck,n
n,old for numerical
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robustness. These derivatives are given by

∂ logZ

∂m
ck,n
n,old

=
(Z − 1)φ(αkn)

ZΦ(αkn)
√
v
ck,n
n,old

, (A.20)

∂2 logZ

∂[m
ck,n
n,old]2

= −(Z − 1)φ(αkn)

ZΦ(αkn)
·

[
αkn + (Z−1)φ(αk

n)
ZΦ(αk

n)

]
v
cnl
l,old

. (A.21)

The update equations for the parameters ahn and bhn of the approximate factor h̃ are then

anew
hn = −

( ∂2 logZ

∂[m
ck,n
n,old]2

)−1

+ v
ck,n
n,old

−1

,

bnew
hn =

mck,n
n,old −

[
∂2 logZ

∂[m
ck,n
n,old]2

]−1
∂ logZ

∂m
ck,n
n,old

 anew
hn (A.22)

We now perform the analogous operations to update Ahn and bhn . We need to compute

∂ logZ

∂m
fn,fN+1

n,old

=

{∏K
k=1 Φ[αkn]

}
φ(αn)

Z
√
s

[1, −1] ,

∂ logZ

∂V
fn,fN+1

n,old

= −1

2
[1, −1]>[1, −1]

{∏K
k=1 Φ[αkn]

}
φ(αn)αn

Zs
,

where

s = [−1 1]V
fn,fN+1

n,old [−1 1]> . (A.23)

We then compute the optimal mean and variance (those that minimize the KL-divergence) of

the product in Eq. (A.13):

[Vf
fn,fN+1

]new = V
fn,fN+1

n,old −V
fn,fN+1

n,old

 ∂ logZ

∂m
fn,fN+1

n,old

(
∂ logZ

∂m
fn,fN+1

n,old

)>
− 2

∂ logZ

∂V
fn,fN+1

n,old

V
fn,fN+1

n,old ,

[mf
fn,fN+1

]new = m
fn,fN+1

n,old + V
fn,fN+1

n,old

∂ logZ

∂m
fn,fN+1

n,old

. (A.24)

Next we need to divide the Gaussian distribution in Eq. (A.24) by the Gaussian cavity distribu-
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tion q̃\n(fn, fN+1, c1,n, . . . , ck,n). Therefore the new parameters Ahn and bhn of the approximate

factor h̃ are obtained using the formula for the ratio of two Gaussians:

[Ahn ]new =
[
Vf
fn,fN+1

]−1

new
−
[
V
fn,fN+1

n,old

]−1
.

[bhn ]new =
[
mf
fn,fN+1

]
new

[
Vf
fn,fN+1

]−1

new
−m

fn,fN+1

n,old

[
V
fn,fN+1

n,old

]−1
. (A.25)

A.3.2 EP approximation to gk

We now show how to refine the {g̃k}. We adjust each g̃k by minimizing the KL divergence

between

gk(ck,N+1)q̃\k(f , c1, . . . , cK) (A.26)

and

g̃k(ck,N+1)q̃\k(f , c1, . . . , cK) , (A.27)

where

q̃\k(f , c1, . . . , cK) =
q̃(f , c1, . . . , cK)

g̃k(ck,N+1)
.

Because q̃(f , c1, . . . , cK) and g̃k(ck,N+1) are both Gaussian, q̃\k(f , c1, . . . , cK) is also Gaussian.

If we marginalize out all variables except those which g̃k depends on, namely ck,N+1, then

q̃\k(f , c1, . . . , cK) takes the form q̃\k(ck,N+1) = N
(
ck,N+1 |m

ck,n
k,old, v

ck,n
k,old

)
, where, by appling the

formula for the ratio of Gaussians, m
ck,n
k,old and v

ck,n
k,old are given by

v
ck,n
k,old =

{
[vckn,n]−1 − agk

}−1
,

m
ck,n
k,old =

{
mck

n [vc
k

n,n]−1 − bgk
}−1

. (A.28)

As in Appendix A.3.1, to minimize the KL divergence between Eqs. (A.26) and (A.27), we

match the first and second moments of these two distributions. The moments of Eq. (A.26) can

be obtained from the derivatives of its normalization constant. This normalization constant is
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given by Z = Φ(α) where α = m
ck,n
k,old/

√
v
ck,n
k,old. Then, the derivatives are

∂ logZ

∂m
ck,n
k,old

=
φ[α]

Φ[α]
√
v
ck,n
k,old

∂2 logZ

∂[m
ck,n
k,old]2

= − φ[α]

v
ck,n
k,oldΦ[α]

·
{
α+

φ[α]

Φ[α]

}
(A.29)

The update rules for agk and bgk are then

[agk ]new = −

[ ∂ logZ

∂m
ck,n
k,old

]−1

+ v
ck,n
k,old

−1

[bgk ]new =

mck,n
k,old −

(
∂2 logZ

∂[m
ck,n
k,old]2

)−1
∂ logZ

∂m
ck,n
k,old

 [agk ]new . (A.30)

Once EP has converged we can approximate the NFCPD as

p (z | D,x,x?) ≈
∫
p(z0 | f)p(z1 | c1) · · · p(zK | cK) q̃(f , c1, . . . , cK)({

K∏
k=1

Θ[ck(x)]

}
Θ[f(x)− fN+1] +

{
1−

K∏
k=1

Θ[ck(x)]

})
df dc1 · · · dcK , (A.31)

where we have used the assumed independence of the objective and constraints to split the distri-

bution p(z | f , c1, . . . , cK) into the product of factors p(f(x) | f), p(c1(x) | c1), . . . , p(cK(x) | cK).

This is Eq. (4.16).

A.4 Performing the integration in Eq. (A.31)

Because the constraint factor on the right-hand side of Eq. (A.31) only depends on fN+1 out of

all the integration variables, we can rewrite Eq. (A.31) as

p
(
z | Df ,D1, . . . ,DK ,x,x(m)

?

)
≈ 1

Z

∫ ({ K∏
k=1

Θ[zk]

}
Θ[z0 − fN+1] +

{
1−

K∏
k=1

Θ[zk]

})
(∫

p(z0 | f) p(z1 | c1) · · · p(zK | cK) q̃(f , c1, . . . , cK) df1 · · · dfN dc1 · · · dcK
)
dfN+1 , (A.32)
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where Z is a normalization constant.

We now compute the inner integral in A.32 analytically. This is possible because the marginal

posterior predictive distributions on z are Gaussian and we also have a Gaussian approximation

q̃(f , c1, . . . , cK). We first rewrite the inner integral in Eq. (A.32) by substituting the definition

of q̃ in Eq. (4.15):

∫
p(z0 | f) p(z1 | c1) · · · p(zK | cK)N (f |m0,V0)

K∏
k=1

N (ck |mk,Vk)df1 · · · dfN dc1 · · · dcK

(A.33)

For each ck, the product of the conditional Gaussian distribution p(ck(x) | ck) with the Gaussian

N (ck |mk,Vk) is an (N +2)-dimensional multivariate Gaussian distribution. All variables in ck

are then integrated out leaving only a univariate Gaussian on ck(x) with mean and variance m′k

and v′k respectively. For the variables f(x) and f , the product of p(f(x) | f) and N (f |m0,V0)

yields an (N + 2)-dimensional multivariate Gaussian distribution. The variables f1, . . . , fN are

integrated out leaving only a bivariate Gaussian on the two-dimensional vector f ′ = (f(x), fN+1)

with mean vector m′f and covariance matrix V′f . Thus, the result of the inner integral in

Eq. (A.32) is

∫
p(z0 | f) p(z1 | c1) · · · p(zK | cK)N (f |m0,V0)

K∏
k=1

N (ck |mk,Vk)df1 · · · dfN dc1 · · · dcK

= N
(
f ′ |m′f ,V′f

) K∏
k=1

N
(
ck(x) |m′k, v′k

)
, (A.34)

where, using Eqs. (3.22) and (3.24) of Rasmussen and Williams (2006) for the means and
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variances repectively, we have the definitions

[
m′f
]
1

= kffinal(x)>
[
Kf
?,?

]−1
mf ,[

m′f
]
2

=
[
mf
]
N+1

,[
V′f
]
1,1

= kf (x,x)− kffinal(x)>
{[

Kf
?,?

]−1
+
[
Kf
?,?

]−1
Vf
[
Kf
?,?

]−1
}
kffinal(x) ,

[
V′f
]
2,2

=
[
Vf
]
N+1,N+1

,[
V′f
]
1,2

= kf (x,x
(m)
? )− kffinal(x)>

{
[Kf

?,?]
−1 + [Kf

?,?]
−1Vf [Kf

?,?]
−1
}
kffinal(x

(m)
? ) ,

m′k = kkfinal(x)>
[
Kk
?,?

]−1
mck ,

v′k = kk(x,x)− kkfinal(x)>
{[

Kk
?,?

]−1
+
[
Kk
?,?

]−1
Vck

[
Kk
?,?

]−1
}
kkfinal(x) ,

and

• mf and Vf are the posterior mean and posterior covariance matrix of f given by q̃.

• kffinal(x) is the (N + 1)-dimensional vector with the prior cross-covariances between f(x)

and elements of f , i.e., f(x1), . . . , f(xN ), f(x
(m)
? ).

• Kf
?,? is an (N + 1)× (N + 1) matrix with the prior covariances between elements of f .

• kffinal(x
(m)
? ) is the (N + 1)-dimensional vector with the prior cross-covariances between

f(x
(m)
? ) and f(x1), . . . , f(xN ), f(x

(m)
? ).

• kkfinal(x
k) is an (N + 1) vector with the cross-covariances between ck(x) and the elements

of ck.

• Kk
?,? is an (N + 1) × (N + 1) covariance matrix with the prior covariances between

ck(x1), . . . , ck(xn), ck(x
(m)
? ).

We have now computed the inner integral in Eq. (A.31), leaving us with our next approximation
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of the NFCPD,

p(f(x), c1(x), . . . , cK(x) | Df ,D1, . . . ,DK ,x,x(m)
? ) ≈

1

Z

∫ ({ K∏
k=1

Θ[ck(x)]

}
Θ [f(x)− fN+1] +

{
1−

K∏
k=1

Θ [ck(x)]

})
{

K∏
nk=1

N
(
ck(x) |m′k, v′k

)}
N
(
f ′ |m′f ,V′f

)
dfN+1 . (A.35)

Eq. (A.35) is the same as Eq. (4.18) in the main text. Note that the computations performed

to obtain m′k, v
′
k, m′f , and V′f do not depend on x. In the following section we make a final

Gaussian approximation to Eq. (A.35), which must be performed for every x.

A.5 Final Gaussian approximation to the NFCPD, for each x

Because the right-hand side of Eq. (A.35) cannot be computed analytically, we approximate it

with a product of Gaussians that have the same marginal means and variances. In particular,

we approximate it as Eq. (4.19) in the main text, namely,

p
(
z | D,x,x(m)

?

)
≈ N

(
f(x) |µNFCPD

f (x), vNFCPD
f (x)

) K∏
k=1

N
(
ck(x) |µNFCPD

k (x), vNFCPD
k (x)

)
,

where µfNFCPD(x), vfNFCPD(x) and µkNFCPD(x) and vkNFCPD(x) are the marginal means and

marginal variances of f(x) and ck(x) according to the right-hand-side of Eq. (A.35). Using

Eq. (5.13) in Minka (2001b) we can compute these means and variances in terms of the deriva-

tives of the normalization constant Z in Eq. (A.35), which is given by

Z =

{
K∏
k=1

Φ[αk]

}
Φ[α] +

{
1−

K∏
k=1

Φ[αk]

}
(A.36)
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where

s =
[
V′f
]
1,1

+
[
V′f
]
2,2
− 2

[
V′f
]
1,2

α =
[1, −1]m′f√

s

αk =
m′k√
v′k
.

Doing so yields

vNFCPD
f (x) =

[
V′f
]
1,1
− β

s
(β + α)

([
V′f
]
1,1
−
[
V′f
]
1,2

)2

µNFCPD
f (x) =

[
m′f
]
1

+
([

V′f
]
1,1
−
[
V′f
]
1,2

) β√
s

vNFCPD
k (x) =

{
[v′k]
−1 + ã

}−1

µNFCPD
k (x) = vkN,const(x)

{
[m′k]

−1[v′k]
−1 + b̃

}
, (A.37)

where

β =

{∏K
k=1 Φ[αk]

}
φ(α)

Z

ã = −

{
∂2 logZ

∂
[
m′k
]2 + v′k

}−1

b̃ = ã

{
m′k +

√
v′k

αk + βk

}

βk =
φ(αn)

ZΦ(αn)
(Z − 1) ,

∂2 logZ

∂
[
m′k
]2 = −βk {αk + βk}

v′k
.
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Appendix B

Implementation Considerations

The following are details of the implementation used in the experiments in Chapter 6 of this

thesis, as well as general implementation considerations for constrained Bayesian optimization

and the methods presented in this thesis.

B.1 Kriging believer implementation

The kriging believer method for asynchronous parallel Bayesian optimization (Section 2.7) can

be made to run faster in two ways. The kriging believer works by attributing to a pending

experiment the mean value according to the GP. We then must condition on this “dummy”

observation and update the GP posterior. The first implementation trick is that the GP posterior

mean does not need to be updated after conditioning on this extra observation equal to the

posterior mean. We can see this by Eq. (4) in Hennig and Schuler (2012), which we repeat here

(with the notation changed slightly to be consistent with this thesis):

µ(x′) = µ0(x′) + Σ0(x′,x)σ−1
0 (x)(y − µ0(x)) . (B.1)

Here, X0 is the original design matrix, x is the location of data collection with corresponding

output y, Σ0 is the posterior predictive covariance matrix conditioned on the original data,

σ0 is the posterior predictive marginal variance conditioned on the original data, µ is the new

posterior predictive mean, µ0 is the original posterior predictive mean, and x′ is some test point.
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From Eq. (B.1) we see that if y = µ0(x), i.e. if the observation at x falls exactly at the posterior

predictive mean value, then µ(x′) = µ0(x′), i.e. the posterior predictive mean is unchanged for

all x′.

The second implementation trick for the kriging believer method is based on the observation

is that to compute the posterior variance, we need to compute the Cholesky decomposition of

the kernel matrix K(X,X). This kernel matrix is precisely the original kernel matrix K(X0, X0)

plus an additional row and column corresponding to the new point x. Thus, we can compute

the Cholesky decomposition of K(X,X) using a rank-one update to the Cholesky decomposition

of K(X0, X0) (see Dongarra et al. (1979)). This reduces the computational burden from O(N3)

to O(N2) where N is the number of collected data.

B.2 Optimizing the acquisition function

Optimizing the acquisition function in Bayesian optimization is a bound-constrained global op-

timization problem. Often, derivative information is available. The implementation used in

this thesis uses implementations in the NLopt package (Johnson) of the Method of Moving

Asymptotes (MMA) (Svanberg, 2002) when derivative information is present and Bound Opti-

mization by Quadratic Optimization (BOBYQA) (Powell, 2009) when derivative information is

not present. In either case the optimizer is initialized with the point giving the best acquisi-

tion function value from a grid of 104 points from the low-discrepancy Sobol sequence plus the

locations of collected data and 10 additional points drawn i.i.d. from a Gaussian distribution

with mean equal to the current recommendation and variance 10−8. One could also generate

this grid through Latin hypercube sampling, Halton sequences, or a number of other methods.

The tolerance for NLopt convergence is 10−4 in the scaled units.

B.3 Making recommendations

There are several ways to make recommendations in Bayesian optimization. A principled ap-

proach is to follow the problem formulation that is being optimized. For example, if we are

using probabilistic constraints and thus formulating the problem as in Eq. (3.3), then we make
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a recommendation following Eq. (3.3) as well. Namely, we do a constrained minimization on

the GP predictive mean subject to the probabilistic constraints being satisfied. Fortunately,

gradient information is available both for the GP predictive mean and for the probabilistic con-

straints. To perform the actual optimization, we use the same methods as when optimizing the

acquisition function (Appendix B.2). For EIC, we use this procedure to make a recommendation

x̃ at every iteration, and then use the GP mean value E[f(x̃)] as the incumbent η.

B.4 The initial design

Typically Bayesian optimization schemes start by running some initial experiments before be-

ginning the model-based approach. These initial experiments are also called the initial design.

Here we use as the initial design just one random point (in the decoupled case, we pick the ob-

jective task). Difficulty arises when dealing with hidden constraints that, when violated, prevent

us from observing the objective function. In this case, it is possible to enter a loop in which a

random point is queried, the constraint is violated, no objective function value is reported, and

thus a random point is queried again. In such a situation one ideally begins the model-based

optimization immediately even though zero objective function observations are available.

B.5 Normalizing the input and output spaces

We normalize the inputs by linearly mapping the input space into the unit hypercube. We nor-

malize the output space as follows. The observations of the objective function are shifted to have

zero mean and then scaled to have unit variance. Observations of constraint functions cannot

be shifted (because the value zero has special meaning) and require more care in normalization.

Here, we normalize constraint observations by scaling them such that the maximum absolute

value of the scaled observations is one. For binary or binomial constraints, no normalization is

used.
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B.6 GP implementation

Efficient and stable implementations of the key GP computations such as Eqs. (2.1) and (2.4)

are given in Rasmussen and Williams (2006), Algorithm 2.1 and Appendix A.4. For numerical

stability, in our implementation we add a small constant jitter in the range of 10−9 − 10−6 to

the diagonal of the kernel matrix K(X,X) before taking its Cholesky decomposition. This is

equivalent to adding the same amount to the assumed noise variance.

Unless otherwise specified, we use the Matérn 5/2 kernel (Section 2.2.1) in experiments. By

default we use slice sampling (Neal, 2000) to take 10 samples of the GP kernel hyperparameters

after burning 20 samples at each iteration. The hyperparameters are initialized as follows: length

scales are 0.1, mean is zero, amplitude is 1, noise is 10−4. Each length scale has a Beta prior

on `/5 with α = 1.5, β = 7.0. The amplitude has a rectified Gaussian prior with µ = 1, σ2 = 1,

the mean has a Gaussian prior with µ = 1, σ2 = 1, and the noise has a rectified Horseshoe prior

(Carvalho et al., 2009) with parameter 0.1.

When the posterior distribution cannot be computed in closed form due to a non-Gaussian

likelihood, we use elliptical slice sampling (Murray et al., 2010) to sample the latent functions.

We also use the prior whitening procedure described in Murray and Adams (2010) to avoid poor

mixing due to the strong coupling of the latent values and the kernel hyperparameters. Following

Snoek et al. (2012), we use the Matérn 5/2 kernel for the GP prior, which corresponds to the

assumption that the function being modeled is twice differentiable. We assume the objective

and all constraints are independent and model them with independent GPs. When constraints

are modeling with GP classifiers, we use the Gaussian CDF as the response function. Note that

since the objective and constraints are all modeled independently, they need not all be modeled

with GPs or even with the same types of models as each other. Any combination of models

suffices, so long as each one represents its uncertainty about the true function values. However,

the PESC acquisition function is specific to GP models.
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B.7 Sampling in EIC-D

Section 3.3 introduces EIC for decoupled constraints, or EIC-D. The implementation of the

sampling approach in Eq. (3.6) is similar to Villemonteix et al. (2009), but must be extended to

constraints. First, estimating p(x?) requires a discretization of the space. In the spirit of Hennig

and Schuler (2012), we form a discretization of Nd points by taking the top Nd points according

to the EIC criterion. Then, we extend the method of Villemonteix et al. (2009) to constrained

optimization: we sample from the objective function GP and all K constraint GPs, and then find

the minimum of the objective for which the constraint is satisfied for all K constraint samples.

B.8 EP implementation for PESC

B.8.1 Initialization and convergence

Initially EP sets the parameters of all the approximate factors to be zero. We use at the

convergence criterion that the absolute change in all parameters should be below 10−4.

B.8.2 Damping

To improve convergence we use damping (Minka and Lafferty, 2002). If h̃new
n is the minimizer of

the KL-divergence, damping entails using instead h̃damped
n as the new factor, as defined below:

h̃damped
n = [h̃new

n ]ε + h̃1−ε
n , (B.2)

where h̃n is the factor at the previous iteration. We do the same for g̃k. The parameter ε

controls the amount of damping, with ε = 1 corresponding to no damping. We initialize ε to

1 and multiply it by a factor of 0.99 at each iteration. Furthermore, the factors h̃n and g̃k

are updated in parallel (i.e. without updating q̃ in between) in order to speed up convergence

(Gerven et al., 2009). During the execution of EP, some covariance matrices may become non

positive definite due to an excessively large step size (i.e. large ε). If this issue is encountered

during an EP iteration, the damping parameter is reduced by half and the iteration is repeated.

The EP algorithm is terminated when the absolute change in all the parameters in q̃ is less than
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10−4.

B.8.3 Numerical stability

The EP approximation in PESC can easily become numerically unstable unless care is taken.

The calculations involve many matrix inversions. These should be avoided whenever possible

by replacing the inversion with a Cholesky decomposition plus solving a triangular system.

However, matrix inversion cannot be avoided entirely. As mentioned in Appendix B.6, it is useful

to add jitter to the diagonal of the kernel matrix before computing its Cholesky decomposition

when making GP predictions. We found that this jitter was not needed in other places; it is

sufficient to add it when making GP predictions.

One case of interest is robustly computing log(1 + exp(x)). We compute this as follows:

[log (1 + exp(x))]robust =


exp(x), if exp(x) < ε

x, if x > log(ξ)

log(1 + exp(x)), otherwise

(B.3)

for some small constant ε and some large constant ξ. Eq. (B.3) is derived as follows. If z ≡ exp(x)

is small, then we can apply the Taylor expansion log(1 + z) ≈ z so log(1 + exp(x)) ≈ exp(x).

If exp(x) is very large, then we can say that 1 is negligible compared to exp(x), and thus

log(1 + exp(x)) ≈ log(exp(x)) = x. Otherwise, we simply return log(1 + exp(x)). In our

implementation we use ε = 10−6 and ξ = 100.

Another case of interest is robustly computing log(1 − exp(x)) when x < 0. We compute

this as follows:

[log (1− exp(x))]robust =


− exp(x), if exp(x) < ε

log(−x), if − ε < x < 0

log(1− exp(x)), otherwise

(B.4)

for some small constant ε > 0. Eq. (B.4) is derived as follows. If z ≡ exp(x) is small, then
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we can apply the Taylor expansion log(1 − z) ≈ −z so log(1 − exp(x)) ≈ − exp(x). If x > −ε,

meaning that |x| is very small, then we can use the Taylor approximation exp(x) ≈ 1 + x, so

that log(1 − exp(x)) ≈ log(1 − (1 + x)) = log(−x). If neither of these cases holds, we simply

return log(1− exp(x)). In our implementation we use ε = 10−6.

A third case of interest is robustly computing log(exp(x)+exp(y). One can easily derive this

for a sum of arbitrarily many terms but here we use only two terms for simplicity. We compute

this as follows:

[log (exp(x) + exp(y))]robust =


x+ [log(1 + exp(y − x))]robust , if x > y

y + [log(1 + exp(x− y))]robust , otherwise

(B.5)

This works by factoring out the larger value to prevent computing the exp of a very large or

small value, if both x and y are very large or small. For example, if x > y, then

log(exp(x) + exp(y)) = log (exp(x) [1 + exp(y − x)]) = x+ log(1 + exp(y − x)) ,

and vice versa when x < y.

Finally, the PESC algorithm requires computing the log of the Gaussian CDF (denoted

Φ(x)) accurately for large values of x. Some implementations, such as the SciPy python imple-

mentation, saturate to 1 for arguments as small as 9.0 (SciPy version 0.14.0). Thus log Φ(9.0)

is computed as exactly 0.0. Curiously, this situation is not the same when x is negative. For

example, in the same version of SciPy Φ(−9) is computed without saturating to zero, and then

log Φ(−9) can be computed with no issue. To make use of this, we do the following:

[log Φ(x)]robust =


− log Φ(−x), if x > 5

−Φ(−x), otherwise

(B.6)

The logic is as follows. When x > 5, Φ(x) is very close to 1. Thus, 1 − Φ(x) is a very small

positive quantity. Then, we use the Taylor expansion approximation log(1− z) ≈ −z for small
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z to yield

log(Φ(x)) = log(1− (1− Φ(x))) ≈ −(1− Φ(x)) = −Φ(−x) .

When the standard implementation of the Gaussian CDF saturates easily only on the positive

end, Eq. (B.6) can make use of the CDF of negative values in this way to accurately compute

the log Gaussian CDF for relatively large positive values.

Finally, if x is close to x?, then the quantity s (Eq. (A.23)) may be very close to zero, causing

numerical instability. To avoid this, whenever s < 10−10 we scale the covariance term
[
Vpred

f ′

]
1,2

down until s ≥ 10−10.

B.9 Sampling x? in PESC

The procedure for sampling x? is a constrained extension to the method outlined in Hernández-

Lobato et al. (2014). We perform a finite basis function GP approximation to the objective

and each constraint, and then sample all of these functions. We then minimize these analytical

samples, but now using a constrained optimization method. In particular we use the Method of

Moving Asymptotes (MMA) (Svanberg, 2002) as implemented in the NLopt package (Johnson).

We use a grid size of 103; the number of random features is 103; the NLopt convergence tolerance

is 10−6 in the scaled input space units.

As described in Hernández-Lobato et al. (2014), if the Gaussian covariance matrix is the sum

of a low rank matrix and a diagonal matrix, we can use a faster method to sample from it. This

method is outlined in Appendix B.2 of Seeger (2008). The cost of this method is is O(N2M)

where N is the number of collected data and M is the number of random features. Sampling with

the naive method takes O(M3) operations because we must take the Cholesky decomposition

of an M ×M matrix. Given that in our implementation M = 1000 and typically N . 100, this

method can speed up this sampling procedure by orders of magnitude. This method could be

sped up further by using a quasi-random numbers to sample the random features, thus reducing

the number of random features needed to attain the same approximation quality.
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B.10 PESC-F implementation details

B.10.1 Rank-one Cholesky update in PESC-F

In PESC-F because the GP hyperparameters (and in particular the length scales) are not changed

since the last iteration, the kernel matrix K(X,X) from Eq. (2.1) is unchanged except for the

addition of a new row and column. Given this, we can compute the Cholesky decomposition

of the new kernel matrix with a rank-one update of the Cholesky decomposition of the current

kernel matrix, as discussed in Appendix B.1. As this O(N3) operation is the main bottleneck

for GP-based Bayesian optimization as N gets large, this trick can significantly speed up the

fast updates in PESC-F. In fact, this trick applies more generally beyond PESC-F or even

any fast-update method: any Bayesian optimization method that does not update the GP

hyperparameters at every iteration can take advantage of the rank-one Cholesky update.

B.10.2 Speeding up the acquisition function maximization

In our implementation of PESC-F, the grid size for maximizing the acquisition function is

reduced from 104 to 103, and the tolerance for the convergence of the optimization routine is

increased from 10−4 to 10−3.

B.11 Fast implementation of the IAGO algorithm

The IAGO algorithm Section 2.4.5 can be sped up significantly by using the implementation

described below and illustrated in Algorithm 5. The implementation relies on the fact that

Algorithm 2 is dominated by the cost of sampling the functions fj on line 6. This is true even

if we pre-compute the Cholesky decomposition of the covariance matrix of f , which we can do

because the covariance matrix does not depend on j or yi. Given the Cholesky decomposition of

the covariance matrix, sampling a multivariate normal vector of lengthN3 requiresN2
3 operations

because we must multiply a N3 × N3 matrix with a vector of length N3. Thus the total cost

of the method in Algorithm 2, for each x, is O(N1N2N
2
3 ), where N1 is the number of samples

of y, N2 is the number of samples of f in estimating p(x? | D ∪ {(x, y)}), and N3 is the size of

the grid on which samples of f are drawn.
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Algorithm 5 The IAGO algorithm (Villemonteix et al., 2009), faster implementation

1: Inputs: data set D, candidate x, # of y samples N1, # of f samples N2, grid size N3

2: initialize the grid X ′ of size N3 ×D
3: compute the posterior predictive mean, µ0, on the grid using Eq. (2.1)
4: compute posterior predictive covariance matrix, Σ, on the grid, adding x to design matrix
5: compute the Cholesky decomposition of the covariance matrix: Σ1/2 = chol(Σ)
6: for j = 1 to N2 do
7: sample N3 i.i.d. standard normals: zk ∼ N (0, 1) for k = 1, . . . , N3

8: sample a zero-mean function: fj = Σ1/2z
9: end for

10: for i = 1 to N1 do
11: sample yi ∼ p(y|x,D) on the grid
12: update the mean on the grid: µ(X ′) = µ0(X ′) + Σ(X ′, X)Σ−1(X,X)(yi − µ0(X ′))
13: initialize pempirical = 0 for grid of size N3

14: for j = 1 to N2 do
15: shift fj to have the correct mean: fj = fj + µ(X ′)
16: compute the grid index k = arg min f
17: record the result: pempirical[k] = pempirical[k] + 1

N2

18: end for
19: compute the entropy Hi = −

∑N2
j=1 pempirical[j] log pempirical[j]

20: end for
21: compute the average entropy H = 1

N1

∑N1
i=1 Hi

22: Output: αSUR(x) = −H

The trick to speed up this computation relies on two properties of GPs and Gaussian random

variables. The first property is that the posterior predictive covariance in a GP depends only

on the collection data locations {xi}, not on the collected data values {yi} (see Section 2.2).

The second property is that a Gaussian random variable with mean µ and covariance matrix Σ

can be sampled by first sampling a Gaussian random variable with covariance matrix Σ and

mean zero, and then adding µ to this sample. Because the sampling step takes O(N2
3 ) time and

adding the mean only takes O(N3) time, we can interpret this property as allowing us to break

up the sampling into the slow step and the fast step.

In line 6 of Algorithm 2, f is sampled conditional on the fantasy observation yi. But, we

can split up the sampling into two steps: first, generate a zero-mean sample with the correct

covariance, and, second, add the correct mean (the second property described above). However,

only the mean depends on yi; this is the first property described above. Therefore, we can do

the first step of the sampling without conditioning on yi. This is precisely the trick employed

in Algorithm 5. In lines 2-9, we pre-compute the first step of the f sampling. In line 15-17, we
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re-use these pre-computed samples for all i. Thus, we perform the expensive O(N2
3 ) operation

only N2 times instead of N1N2 times. This reduces the entire computational cost of the method

from O(N3
3 +N1N2N

2
3 ) to O(N3

3 +N2N
2
3 +N1N2N3), where the N3

3 terms come from computing

the Cholesky decomposition of the posterior predictive covariance matrix. For reasonable choices

of N1, N2, and N3 such as N1 = 10, N2 = 1000, N3 = 1000, this fast method achieves an order

of magnitude speedup.

Note: it may seem that computing the GP mean conditioned on observing a sample yi also

requires O(N2
3 ) operations, thus rendering Algorithm 5 no better than Algorithm 2. However,

Eq. (2.1) shows us that the posterior predictive mean is a linear function of the observation

vector y. Thus, augmenting the collected data with a single observation fantasy yi only con-

stitutes an additional term in the posterior predictive mean. Thus updating the mean is faster

than recomputing it entirely, and only requires O(N3) operations. This is another trick, and

is implemented in lines 3, 12 and 15. Note also that the Cholesky decomposition in line 4 of

Algorithm 5 can be performing using a rank-one update to the Cholesky decomposition of the

kernel matrix evaluated at the non-augmented design matrix; see Appendix B.10.1 for more

details.
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Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits
problems. In Proceedings of the 20th International Conference on Algorithmic Learning The-
ory, pages 23–37, Berlin, Heidelberg, 2009.

Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, (3-4):2879–2904, 2011.

Carlos M. Carvalho, Nicholas G. Polson, and James G. Scott. Handling sparsity via the horse-
shoe. In International Conference on Artificial Intelligence and Statistics, pages 73–80, 2009.

Olivier Chapelle and Lihong Li. An empirical evaluation of Thompson sampling. In Advances
in Neural Information Processing Systems 24, pages 2249–2257. 2011.

Clment Chevalier and David Ginsbourger. Fast computation of the multi-points expected im-
provement with applications in batch selection. In Learning and Intelligent Optimization,
volume 7997, pages 59–69. 2013.

Scott Clark. Parallel Machine Learning Algorithms in Bioinformatics and Global Optimization.
PhD thesis, Cornell University, 2012.

Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to Derivative-Free Op-
timization, volume 8. Society for Industrial and Applied Mathematics, 2009.

Nando de Freitas, Alex Smola, and Masrour Zoghi. Exponential regret bounds for Gaussian
process bandits with deterministic observations. In International Conference on Machine
Learning, pages 1743–1750, 2012.

Geng Deng and Michael C. Ferris. Extension of the DIRECT optimization algorithm for noisy
functions. In Winter Simulation Conference, pages 497–504, 2007.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High dimensional Gaussian Process ban-
dits. In Advances in Neural Information Processing Systems, pages 1025–1033, 2013.

Jack J. Dongarra, James R. Bunch, Cleve B. Moler, and Gilbert W. Stewart. LINPACK User’s
Guide. Philadelphia, PA, 1979.

Simon Duane, Anthony D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid Monte
Carlo. Physics letters B, 195(2):216–222, 1987.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering Design via Surrogate

117



Modelling. John Wiley and Sons, 2008.

Andrew Frank and Arthur Asuncion. UCI machine learning repository, 2010.

Michael P Friedlander and Paul Tseng. Exact regularization of convex programs. SIAM Journal
on Optimization, 18(4):1326–1350, 2007.

Jacob R. Gardner, Matt J. Kusner, Zhixiang (Eddie) Xu, Kilian Q. Weinberger, and John P.
Cunningham. Bayesian optimization with inequality constraints. In International Conference
on Machine Learning, pages 937–945, 2014.

Andrew Gelman and Donald R. Rubin. A single series from the Gibbs sampler provides a false
sense of security. In Bayesian Statistics, pages 625–32. Oxford University Press, 1992.

Donald Geman and Bruno Jedynak. An active testing model for tracking roads in satellite
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1):1–14, 1996.

Marcel V. Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source local-
ization with the multivariate Laplace prior. In Advances in Neural Information Processing
Systems, pages 1901–1909, 2009.

John Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of
posterior moments. In Bayesian Statistics, pages 169–193. University Press, 1992.

David Ginsbourger and Rodolphe Riche. Towards Gaussian process-based optimization with
finite time horizon. In Advances in Model-Oriented Design and Analysis, pages 89–96. 2010a.

David Ginsbourger and Rodolphe Le Riche. Dealing with asynchronicity in parallel Gaussian pro-
cess based global optimization. http://hal.archives-ouvertes.fr/hal-00507632, 2010b.

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to parallelize
optimization. In Computational Intelligence in Expensive Optimization Problems, pages 131–
162. Springer-Verlag, 2010.

Robert B. Gramacy and Herbert K. H. Lee. Optimization under unknown constraints. Bayesian
Statistics, 9, 2011.

Robert B. Gramacy, Genetha A. Gray, Sebastien Le Digabel, Herbert K. H. Lee, Pritam Ranjan,
Garth Wells, and Stefan M. Wild. Modeling an augmented Lagrangian for improved blackbox
constrained optimization, 2014. arXiv:1403.4890v2 [stat.CO].

Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In International Conference on
Evolutionary Computation, pages 312–317, 1996.

Nikolaus Hansen, Andr S. P. Niederberger, Lino Guzzella, and Petros Koumoutsakos. A method

118

http://hal.archives-ouvertes.fr/hal-00507632


for handling uncertainty in evolutionary optimization with an application to feedback control
of combustion. IEEE Transactions on Evolutionary Computation, 13(1):180–197, 2009.

Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 13(1):1809–1837, 2012.
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