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Statistical Mechanics of Neural Processing of Object Manifolds

Abstract

Invariant object recognition is one of themost fundamental cognitive tasks performedby the brain.

In the neural state space, di ferent objects with stimulus variabilities are represented as di ferent man-

ifolds. In this geometrical perspective, object recognition becomes the problem of linearly separating

di ferent object manifolds. In feedforward visual hierarchy, it has been suggested that the object man-

ifold representations are reformatted across the layers, to become more linearly separable. Thus, a

complete theory of perception requires characterizing the ability of linear readout networks to classify

object manifolds from variable neural responses.

A theoretical understanding of the perceptron of isolated points was pioneered by Elizabeth Gard-

ner who formulated it as a statistical mechanics problem and analyzed it using replica theory. In this

thesis, we generalize the statistical mechanical analysis and establish a theory of linear classi cation of

manifolds synthesizing statistical and geometric properties of high dimensional signals.

First, we study the theory of linear classi cation of simple spherical manifolds, such as line seg-

ments, balls, or balls. We provide analytical formula for classi cation capacity of balls, as a

function of dimension, radius, and margin. We also nd that the notion of support vectors needs to

be generalized, and identify di ferent support con gurations of themanifolds, which has implications

in generalization error.

Next, we present aMaximumMarginManifoldMachine ( ), an e cient iterative algorithm that

can nd a maximummargin linear binary classi er for manifolds with an uncountable set of training

samples per each manifold. We provide a convergence proof with a polynomial bound on the conver-

gence time. We further generalize for non-separablemanifolds with slack variables. We report that

the number of training examples required to achieve the same generalization error is much smaller for

, compared with traditional support vector machines.
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Next, we generalize our theory further to linear classi cation of randomgeneralmanifolds. We start

with classi cation capacity of random ellipsoids, and generalize to classi cation capacity of general

smooth and non-smooth manifolds. We identify that the capacity of a manifold is determined that

e fective radius, , and e fective dimension, .

Finally, we show extensions to directions relevant for applications to real data. We have extended

our general manifold classi cation theory to incorporate correlated manifolds, mixtures of manifold

geometries, sparse labels and nonlinear classi cations. Then, we analyze how object-based manifolds

reformat in a conventional deepnetwork (GoogLeNet). We nd that thedeepnetwork indeed changes

the manifolds in the direction that the capacity is increased.

This thesis lays the groundwork for a computational theory of neuronal processing of objects, pro-

viding quantitative measures for linear separability of object manifolds. We hope that our theory will

provide new insights into the computational principles underlying processing of sensory representa-

tions in the brain. Asmanifold representations of the sensory world are ubiquitous in both biological

and arti cial neural systems, exciting future work lies ahead.
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Chapter 1

Introduc on

1.1 Invariant Object Computa on

Object recognition is one of the most fundamental cognitive tasks performed by the brain. A success-

ful object recognition requires a brain to discriminate between di ferent classes of objects despite vari-

abilities in the stimulus space. For example, a mammalian visual system can recognize objects despite

a variation in the orientation, position, and background context, etc. Such impressive robustness to

noise is not only speci c to visual object recognition, but also similar tasks done by other brainmodal-

ities. Auditory systems are able to recognize auditory ’objects’ such as songs, and languages, despite

variabilities in the sound intensity, relative pitches, or sound textures (such as voice of a person). In

general, human perception has to operate with discrete entities such as objects, faces, words, smells,

and tasks. Hence, it is of fundamental interest to understand to evaluate the emergence of neural rep-

resentations of these entities along the sensory hierarchies. Arti cial intelligent systems aim to solve

similar perceptual tasks. The recent success of Deep Networks has been foremost their ability to per-

form object recognition tasks despite the immense variabilities in the signals input representations,

in both training and testing examples 1. An arti cial face recognition tasks have to be done despite

variabilities of facial expressions, image scale and occlusion, etc. Autonomous driving systems have
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to recognize objects in the driving environment fast and accurately, despite the various conditions

such as speed of approach, location, confounding objects. Likewise, voice recognition systems need

to overcome enormous variability in many stimulus dimensions. Indeed, it is a common practice in

Machine Learning to augment the training set by performing a variety of transformations represent-

ing the natural inherent variability in the relevant object domain (’data augmentation’). Therefore,

understanding howbrain achieves an invariant object recognition tasks is not only important scienti c

challenge, but may also provide insight on how to improve arti cial intelligent systems.

Figure 1.1: Ac vity Pa erns as Points andManifolds in the Neural State Space. (a) (Illustra on) Firing Rate of N neurons
(Neuron Index: 1,...,N), responding to two objects. Neural ac vity pa ern shown as red line is a popula on response to
a cat, and blue to a dog. (b) In the dimensional neural state space, the popula on response is a -dimensional vector,
represen ng a point. The blue line in (a) , represen ng a response to a dog, is a point,⃗ , in R space. Likewise, the
red line in ( ) represen ng a cat is a point⃗ inR space (only 3 axis are shown for illustra on). (c)When the s mulus
variabili es are introduced, such as change in orienta on, the neural responses undergo a smooth change, causing the
point represen ng each object in the state space move around, forming an object manifold in the neural state space.
Blue manifold is a set of neural ac vi es represen ng a dog at different orienta ons, and a red manifold is a set of
neural ac vi es represen ng a cat in different orienta ons.

1.2 Object Manifolds

Consider a set of neurons responding to di ferent objects (Figure 1.3(a)). Without additional variabil-

ities, two stimuli belonging to di ferent classes are mapped into two points in the neural state space,

(Figure. 1.3(b)). We will occasionally call each such point, a neural state or an activity pattern. If

however, one varies continuously the physical parameters in the stimulus space which do not change
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the object class, e.g., orientation, location, distortion, the neural state vector will vary so that the set

of neural states or activity patterns that correspond to an object can be thought of as a manifold in

the neural state space (Figure 1.3(a)). In this geometrical perspective, object recognition and discrimi-

nation can be viewed as the the task of discriminating or recognition of manifolds. These manifolds

vary as the signals propagate from one processing stage to another. We will therefore refer to these

manifolds also as neural manifolds or manifold representations, when dealing with object manifolds

as they are re ected in the state space of a speci c neural stage.

Figure 1.2: Untanglement of Object Manifolds in Sensory Hierarchy. Manifolds corresponding to different objects are
thought to be highly tangled in the first stage of sensory processing (such as pixel layer representa on), and undergo
transforma ons across different layers in the sensory hierarchy and becomemore linearly separable in the downstream
of the sensory processing.

1.3 Linear Separability of Manifolds

So, how does the brain and the deep networks overcome stimulus variabilities in object recognition?

In the feedforward visual hierarchy, it has been suggested that the stages of nonlinear transformations

4



reformat the object manifolds so that they become increasingly easier to be readout out by a simple

downstream neural systems 2. The downstream circuit is assumed to implement a biologically plausi-

ble linear readout. Hence, the reformatting of object manifolds is translated as ’untangling’ them so

that they are eventually amenable to be separated by a linear classifier. The idea that ’intermediate’

neural representations help to discriminate complex stimuli by a linear readout, has been applied to

explain features of a variety of sensory representations in the brain (including ’mixed representations’

in prefrontal cortex 3, sparse expansions in neocortical4, memory allocations in hippocampal and cere-

bellar systems 5). Deep Networks for object recognition has similarly employed an architecture where

at the top layer a linear classi er operates as a readout of the networks.

Linear separation of neural manifolds can be described by a decision hyperplane that separates en-

tire manifolds to one of the two sides of the hyperplane, g. 1.3. The separating hyperplane is deter-

mined by the vectorw, a direction vector normal to the hyperplane. The components of this vectors

are the synaptic weights of the Linear Readout, also known as the Perceptron, as it computes the

weighted sum of each vector and thresholds the result to produce a binary output. One of the focus

of this work is to evaluate what aspects of the the neural manifolds representation gives a better lin-

ear separability. Before continuing it is important to emphasize that by separatingmanifolds wemean

separating all points on themanifolds according to a rule that assigns to all points belonging to a single

manifold the same label. Thus, at any given time, the system classi es a single input vector.

1.4 Theory of Linear Classifica on

Quantifying linear separability has been extensively studied in the context of linearly classifying iso-

lated points. Perceptron capacity, rst introduced by Cover6. He asked the following question in his

formulation ofCover’s Theorem. Suppose there are points in anN-dimensional ambient space, and

they are in general position. Each of the point represent a distinct pattern, and half of the points are

labeled positive, and the other half negative. Then, what is the maximum number of where most

of the dichotomies are linearly separable? If there are only a few points, it is easy to nd a linearly
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Figure 1.3: Invariant Object Discrimina on as Linear Separa on of Manifolds. (a) A perceptron with a weightw, which
can classify different objects corresponds to a hyperplane characterized by the orthogonal vector w which separates
the two object points in the state space (b). (c) In this perspec ve, a perceptron weightw, which can classify different
objects with their variabili es, corresponds to a hyperplane characterized by the orthogonal vectorw, which separates
the two object manifolds in the state space.

separable solution, and with an increasing number of points, it becomes harder to nd linearly sepa-

rable solution. When there are too many points, they become linearly non-separable. He derived an

analytic formula for the probability that a random classi cation of P points in N dimensions can be

implemented by perceptron as

( , )
=

∑ −
=

⎛

⎝ −
⎞

⎠

(1.1)

and the notion of perceptron capacity deals with the question of what is the maximum number of

patterns allowed for linear such that almost all dichotomies are linearly separable (Figure 1.4). Cover’s

perceptron capacity refers to themaximumnumber of patterns allowed per ambient dimension

, also known as load (α = / ),such that the probability of linear separability is larger than 0.5.

VC dimension refers to themaximum loadα such that the probability of linear separability is 1(Figure

1.4).

A statistical mechanical theory of the perceptron was rst introduced by Elizabeth Gardner7,8.

Gardner’s theory is extremely important as it provides accurate estimates of the Perceptron capacity

6



Figure 1.4: Linear Separability of Points: Cover’s Theorem of Perceptron Capacity. Cover’s theorem specifies the per-
ceptron capacity for isolated points in general posi on, as the maximum number of points (in dimension ) for which
at least half of the possible dichotomies have a linear classifier.
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beyond the Cover theorem. In particular, the theory allows to evaluate the capacity for solutions with

a given robustness measures. Similar to Support VectorMachines9. robustness of linear classi ers can

be quanti ed by themargin, ie., the distance between the separating hyperplane and the closest point.

And the solutions with maximummargins are known as the SVM solutions.

Formally, Gardner’s theory evaluates the maximal number of points in for which there is a

vector that obeys the following set of inequalities

µ (⃗ ·⃗µ + ) /||⃗ || > κ ≥ ; µ = ± (1.2)

Unlike Cover result, the answer to this question depends on the statistics of the inputs and labels.

The simplest case is where all components µare iid with zero mean and nite variance (which can be

taken as 1). (The shape of the distribution are less important as long as mild conditions are obeyed).

The labels are randomly assigned to these points each with probability / . Finally, the theory be-

comes exact in the the thermodynamic limit , → ∞, while α,κ,= ( ) . Using replica theory

in the theory of spin glasses (more detailed treatment is in the appendix to the chapter), Gardner has

evaluated analytically the volume of possible solutions for a given load α and margin κ . The volume

is exponentially large (in ) below the capacity,α (κ) and is zero above it. Themaximalmargin solu-

tion is right at the border between the two regimes. Using the vanishing volume condition, Gardner

obtained an elegant expression for the perceptron capacity with nite margin κ

α (κ) =

(∫ ∞

−κ
( + κ)

)−
(1.3)

where =
exp(− )
( π) / d (Figure. 1.5(a)). Furthermore, the Gardner framework allows for the

calculation of fraction of support vectors on the margin, which has an important bearing on its ro-

bustness and generalization performance (Ref) (Figure. 1.5(b)).

Gardner theory is also applicable to more complex statistical ensembles, such as the case of sparse

labels where the labels are not uniformly distributed. However, the current theory is inapplicable to

the problem ofmanifold classi cation, where the strong correlations between points belonging to the

8



Figure 1.5: Gardner’s Perceptron Theory: Capacity and Support Vectors. (a) Gardner’s replica analysis specifies the
perceptron capacity α = / as a func on of margin κ. is number of points, is the network size. (b) The
frac on of support vectors amongst the total number of points can be calculated as a func on of margin κ . At zero
margin, half of the points are support vectors (black solid), and the other half are interior points, that are in the space
sha ered by the hyperplane (black dashed). The frac on of support vectors in crease with increasing margin κ.

same manifold is of primary importance. The thesis addresses the following questions:

1. What is the capacity of manifolds, and the nature of solution? What geometric features of the

manifolds are relevant for the manifold capacity?

2. How to implement the practical aspects of analyzing data manifolds numerically? In order to

test the manifold capacity with simulation, what is the most e cient algorithm to nd a classi cation

solution for manifolds? To get an estimate of the manifold capacity, how to numerically solve it?

3. What are the necessary extensions required to understand and analyze more realistic problems?

We extend it to manifold classi cation problem with sparse labeling, correlation, classi cation with

nonlinearities such as multilayer and nonlinear kernels, and apply the theory to realistic data.

9



1.5 Outline of Thesis

This thesis introduces a theory that generalizes Gardner’s analysis of perceptron capacity for isolated

points to the perceptron capacity for manifolds. The theory assumes (most of the time) that theman-

ifolds span a low dimensional hyperspace (strictly speaking the embedding dimension is held nite as

→ ∞). In the following chapters, we introduce a set of investigations that lays groundwork for a

comprehensive theory of linear manifold classi cation. In chapter 2, we provides the basic tools for

applying the replica theory to compute linear classi cation of manifolds. Here we focus on the sim-

ple manifolds: line segments, balls, and balls. In chapter 3, we address the numerical question

of how to solve max margin problems on manifolds, which consists of uncountable set of training

examples. We use methods from Quadratic Semi-In nite Programming (QSIP) to develop a novel

algorithm denoted M4 (MaxMargin Manifolds Machines). In chapter 4, we generalize the theory of

chapter 2 to addressmore complexmanifold geometries, for both smooth andnon-smoothmanifolds.

In chapter 5, we present a set of important extensions of the theory to cover more realistic conditions,

such as correlated manifolds, and sparse coding tasks. We also discuss extensions to nonlinear mani-

fold classi cations. Finally, we demonstrate how the theory can be applied to analyze deep networks

for in visual object recognition.

1.6 Chapter 2: Linear Separa on of Balls

Figure 1.6: Linear Classifica on of balls. (a) Classifica on of line segments with length . (Example of =
balls with radius ). (b) Classifica on of -dimensional balls with radius . (c) Classifica on of -dimensional
balls with radius .
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In this chapter we lay the ground for the statistical mechanical theory of linear classi cation of

manifolds. We consider manifolds which can be described as balls in dimensions with a radius

. We write points on the manifolds as,

µ =

{
µ +

∑

=

µ

}
(1.4)

where µ is the center of the µth ball, µ = , ..., . The axes of the balls are given by the D vectors
µwhere = , ..., . The vector ⃗ parameterizes the point on the ball and obeys the constraint

|| || ≤ . The case of = corresponds to the usual Euclidean balls in dimensions. The case of

= is the special case of line segments with length . Other examples are shown in g. 1.6. As

we show in this chapter, linear classi cation of these balls corresponds to the requirements that the

closest points on each manifolds obeys inequalities, eq 1.4 above. For the balls, with < ≤ ∞1,

this amounts to the following constraints (where we consider zero bias for simplicity)

µ − ||⃗ µ|| ≥ κ, (1.5)

= /( − ), < < ∞ (1.6)

= ∞ < ≤ (1.7)

where µ = ||w||− µw · xµ are the elds induced by the centers and µ = ||w||− µw · uiµ are

the elds induced by the th basis vectors of µth manifold, κ is the margin of the linear classi er.

Importantly, linear classi cation of manifolds depends on the geometric properties of the convex

hulls of the data manifolds. Thus, when ≤ , the convex hull of the manifold becomes faceted,

consisting of vertices, at edges and faces. For these geometries, the constraints on the elds associated

with a solution vectorw becomes: µ − max ∥ µ∥ ≥ κ for all < (Fig. 1.6(c)).
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The statistical mechanical theory evaluates the average of the log of solution volume,

=

∫

∥w∥ =
w

∏

µ=

(
µ − ||⃗ µ|| − κ

)
. (1.8)

and identifying the point of vanishing volume allowed us to evaluate the capacity, in the form of

α (κ, , ) for various norms . Beyond the capacity, the theory provides an important insight

into the nature of the max margin solution. In particular it generalizes the notion of support vectors

to support manifolds. As we show, some of the support manifolds are fully embedded in the margin

hyperplanes, some are touching the planes in a single point, while in the case of balls, theymay have

edges or faces in the hyperplanes. These properties have important implications for noise robustness

of the solutions. Finally, these examples already reveal the tradeo f between and , and the e fect of

large and large . Speci cally, we show that for large balls,

α (κ, , ≫ ) = ( + )α (κ+
√

), ≫ (1.9)

relating linear separation of balls to linear separation of points with an additional e fective margin
√

.

1.7 Chapter 3: The Max Margin Manifold Machine

Most learning algorithms assume the number of training examples is nite. In this work, we consider

the problem of classifying data manifolds utilizing the underlyingmanifold structure consisting of an

uncountable number of points. We propose an e cient iterative algorithm called that solves a

quadratic semi-in nite programming problem to nd the maximum margin solution. Our method

is based upon a cutting-plane approach which converges to an approximate solution in a nite num-

ber of iterations. We provide a proof of convergence as well as a polynomial bound on the number

of iterations and training examples required for a desired tolerance in the objective function. The

e ciency and performance of are demonstrated on high-dimensional synthetic data in addition
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Figure 1.7: The Maximum Margin Manifold Machine Performance. (a) Object-based manifolds are created by affine
transforma ons of images from ImageNet dataset. (b) Generaliza on error versus number of training samples, for the
linear (blue markers) and the algorithm, when the manifolds are in the separable regime. (b) General-
iza on error versus the number of training samples for slack-SVM (blue) and algorithm when manifolds are in
the non-separable regime (above capacity). Our and show superior generaliza on error performance
for the same number of training samples.

to object manifolds generated by continuous transformations of images from the ImageNet dataset.

Our results indicate that is able to rapidly learn good classi ers and shows superior generalization

performance than traditional support vector machines using data augmentation methods (Fig. 1.7).

1.8 Chapter 4: Linear Classifica on of General Low Dimensional

Manifolds

In this chapter we generalize the perceptron capacity for the classi cation of manifolds further, to

classi cation of general manifolds. The theory is exact in the thermodynamic limit, i.e., , → ∞,

α = / is nite as in the Gardner’s analysis. In addition, for the mean eld theory to be exact,

the dimensionality of the manifolds has to be nite in this limit (note: this holds except for the

special case of parallel manifolds, section 5.1.1, where is proportional to ). To set the stage, we

rst consider linear classi cation capacity of ellipsoids. We present explicit analytical solution to

the classi cation problem, and show that the capacity and solution properties depend in general on

all radii. Like the balls, the max margin solution is characterized by two types of support ellipsoids

13



(touching or fully embedded).

Figure 1.8: Manifold’s Sizes and Dimensions. (a) Dimensions of a Random String. A random string’s degree of freedom
(intrinsic dimension) is 1, but is spanning -dimensional (embedding dimension) and defined in ambient dimension.
(b) Effec ve manifold radius and effec ve manifold dimension , which are relevant proper es for the manifold’s
linear classifica on capacity.

Effective Siz and Dimensions: In general, manifolds considered here are characterized by several

dimensionalities. All points on all manifolds are inR , so is the ambient dimension. All points on

a givenmanifold (relative to its center) span dimensions, thus is themanifold embedding dimen-

sion. In addition, manifolds may be characterized by intrinsic dimensionality which may be much

smaller than . See Fig. 1.8(a) for an example of a string in dimension. This intrinsic dimension

is important practically, but will not play an important role in the theory of linear classi cation. In

addition to the above, the manifold classi cation properties may be described in certain regime by

e fective dimensions and e fective size (Fig. 1.8(b)).

Here we present the results for ellipsoids in the important limit of large . In this limit we nd

that the capacity can be well approximated as,

α (κ, ) = ( + )α (κ+
√

), ≫ (1.10)
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where stands for ellipsoids, and with e fective ellipsoid radius and e fective ellipsoid dimen-

sion given by,

=
∑

=
( + )

/
∑

=
( + )

(1.11)

=

(
∑

=
+

)
/
∑

=
( + )

(1.12)

where are the di ferent radii of the ellipsoid. Finally, when the radii are small, ≪ (i.e., relative

to the center norms which is normalized here to ). these quantities reduce to the simple formulae

=

∑
∑ (1.13)

=
(
∑

)∑ = (1.14)

where is the participation ratio evaluated from the SVD of the ellipsoids (with a uniform mea-

sure). These results set the stage for a derivation of a theory applicable to general low dimensional

manifolds. Brie y, general smooth convex manifolds behave qualitatively the same as the ellipsoids,

for the geometric reason that they can either be interior to, fully embedded in or touching the margin

planes.

Non-smooth manifold can have a large spectrum of overlaps with the planes (as the example of

ball indicates). Nevertheless, we have derived self consistent mean eld equations that describe the

capacity (and solution properties) for a general manifold, and present numerical procedures to solve

these equations iteratively. Here we brie y discuss the theoretical prediction for the limit of large .

In this regime, capacity is well approximated by

α (κ) = ( + )α (κ+
√

), ≫ (1.15)

with self consistent equations for and , which need to be solved numerically by iterative mean

15



eld methods. Remarkably, in the regime where ≪ , and simplify to the quantities

shown in Fig. 1.8(b) and are related to the well known Gaussian Mean Width of convex bodies (Fig.

4.3).

An important application of this theory is nite point cloudmanifolds that arise when subsampled

points of each potentially continuous manifold is given. In this case, and (of the training

manifolds) can be estimated from the given nite training set. The interesting question of how these

quantities are related to the e fective radius and dimension underlying full manifold is touched upon

in the following section. An interesting example is the case of balls in dimensions with radius .

In the limit of large and small , the e fective radius is simply but the dimension is

= log (1.16)

In general, in other point cloud manifolds we expect that ∝ log where is the number of

samples per manifold.

Infinite size manifolds: Finally, it should be noted that as the manifold size grows to in nity (in all

dimensions), their geometric details don’tmatter; only the number of dimensions they span. Here we

obtain

→ (1.17)

re ecting the need of the classifying weight vector to be orthogonal to all the dimensional hy-

perspace that the manifolds span, namely the capacity reduces to

α = (1.18)

where denotes the embedding dimensions of themanifolds (where we assume for simplicity that

the manifolds are not bounded in any of the directions).
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Figure 1.9: Extensions of Manifold Classifica on Theory. (a) Classifica on of Correlated Manifolds. (b) Classifica on of
Mixtures of Manifolds. (c) Sparse Coding (Classifica on with Sparse Labels) and Object Recogni on Limit (One versus
All Classifica on). (d) Extension to Kernel Framework. (Red/black) disks in the kernel input space, transformed to
(blue/black) manifolds in the quadra c kernel’s feature space.

1.9 Chapter 5: Extensions

In Chapter 5, we further extend the theory in directions likely relevant to applications to real data. We

have extendedour generalmanifold classi cation theory to incorporate correlatedmanifolds,mixtures

ofmanifold geometries, sparse labels and nonlinear classi cation, see Fig. 1.9. Wehighlight here brie y

several important results. 1. Correlated manifolds: when manifold axes are strongly parallel ( g.

1.9(a))we expect the capacity tobe relatively large. For example if their spanning spaces are fully aligned

but they are large in extent, w can solve the problem by orthogonalize to the common directions

(rather than in the uncorrelated case). Interestingly, for high dimensional parallel balls we nd a

phase transitionwhereby above some nite critical radius themaxmargin solution fully orthogonalize

to the manifolds subspace. In real data we expect positive correlations but not full alignment of the

di ferent manifolds.

2. Sparse labels: In this case, the fraction of say plus manifolds, , is smaller than that of the minus

ones. In many real life tasks this is to be expected. An extreme case is that of object recognition task

de ned as classifying one manifold as one and the rest as minus one. This can be viewed as a binary

classi cation with = . As in Gardner’s theory the capacity grows as → . However, we show

that the size of the manifolds substantially limits this growth. For instance, in balls with large radius

, the is small but larger than / the capacity remains of order unity.
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3. Nonlinear manifold separation: We consider two schemes of two layer classi cation ofmanifolds

in cases where they are not linearly separable. One is in the form of a nonlinear kernel, similar to Ker-

nel SVM. For this we present a version of the algorithm in a ’dual’ form, appropriate for kernels.

We brie y discuss the e fect of the kernel on the geometry of the manifold and the classi cation ca-

pacity. The second architecture is that of hidden layer of binary units, forming a sparse intermediate

representation of the manifolds. We show how this extra layer formed by unsupervised learning can

enhance the capacity and robustness of the classi cation of the manifolds.

4. Generalization properti : Computation with manifolds raises a speci c type of generalization

problem, namely how training with a subsampled training points perform when new points from

the same underlying manifolds are presented in the test phase. Exact analytical expression for the

generalization error is complicated; also the error depends on the assumed sampling measure on the

manifold (whereas the separability problem is measure invariant). However, in the case of linearly

separablemanifolds with high we can use the insight from the above theory (the notions of e fective

dimensions and radii) to derive a particularly simple approximation. Assume α is such that the full

manifolds are linearly separable with a max margin κ. Then the generalization error will eventually

vanish as more samples per manifold , , are presented. In the limit of large , we obtain,

ϵ ( ) ∝ exp[−κ
√

log ]
(1.19)

Interestingly, this decay is faster than the generic power law, ϵ ( ) ∝ − of generalization bounds

in linearly separable problem and re ects the presence of nite margin of the entire manifold. We also

discuss the generalization error of subsampled manifolds in the case where the full manifolds are not

linearly separable.

5. Application to DeepNetworks: Weclose this section by applying someof the theoretical concepts

to Deep Networks trained to perform visual object recognition tasks. We show how the theory can

be used to characterize the change in the geometry of the manifolds, and changes in the manifold

correlation structure at di ferent stages of the network (using ImageNet 10 as an example).
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1.10 Conclusion and Future Direc on

In this thesis, we generalized Gardner’s theory of linear classi cation of points to the classi cation of

general randomly oriented lowdimensionalmanifolds. The theory, exact in the thermodynamic limit,

describes the relation between the detailed geometry of the convex hulls of the datamanifolds and the

ability to linearly classify them. The problem simpli es considerably when the manifold dimension

is high. In this limit, the classi cation properties depend on two geometric parameters of the convex

hulls: the e fective dimension and e fective radius . In high dimensional manifold with small

sizes, capacity depends on and mainly through the scaling relation
√

. This quantity is

related to thewell knownGaussianMeanWidth of convex bodies. Optimal solution exhibits support

manifold structures with potential consequences for noise robustness. We developed a novel e cient

training algorithm, theMaximumMarginManifoldMachines, for nding themaximummargin solu-

tion for classifyingmanifoldswith uncountable number of training samples, and provide convergence

proof with polynomial bounds on the number of iterations required for convergence. Our theory has

been extended to incorporate correlations in the manifolds, mixtures of shapes, sparse coding, non-

linear processing such as multilayer network or kernel framework, as well as an analysis of manifold

generalization error. With these extensions, our theory provides qualitative and quantitativemeasures

for assessing the ability to decode object information from the di ferent stages of Deep biological and

arti cial neural networks.

Ongoing work includes suggesting design principles for deep networks by taking into account the

network size, dimension, sparsity, as well as role of nonlinearities in reformatting of the manifolds

such that the capacity is increased. Whethermanifold capacity can be used as an object function of the

training of a network is an interesting question to pursue. We are exploring applications of our theory

on several neural data bases from IT and other areas in visual cortex, responding to di ferent object

stimuli with a variety of physical transformations. We hope that our theory will provide new insights

into the computational principles underlying processing of sensory representations in the brain. As

manifold representations of the sensory world are ubiquitous in both biological and arti cial neural

systems, exciting future work lies ahead.
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Chapter 2

Linear Classifica on of Spherical Manifolds

High-level perception in the brain involves classifying or identifying objects which are represented by

continuous manifolds of neuronal states in all stages of sensory hierarchies 2,11–16 Each state in an ob-

ject manifold corresponds to the vector of ring rates of responses to a particular variant of physical

attributes which do not change object’s identity, e.g., intensity, location, scale, and orientation. It

has been hypothesized that object identity can be decoded from high level representations, but not

from low level ones, by simple downstream readout networks2,11,15,17–21. A particularly simple decoder

is the perceptron, which performs classi cation by thresholding a linear weighted sum of its input

activities 22,23. However, it is unclear what makes certain representations well suited for invariant de-

coding by simple readouts such as perceptrons. Similar questions apply to the hierarchy of arti cial

deep neural networks for object recognition 19,24–27. Thus, a complete theory of perception requires

characterizing the ability of linear readout networks to classify objects from variable neural responses

in their upstream layer.

A theoretical understanding of the perceptron was pioneered by Elizabeth Gardner who formu-

lated it as a statistical mechanics problem and analyzed it using replica theory7,28–35. In this work, we

generalize the statistical mechanical analysis and establish a theory of linear classi cation of manifolds

synthesizing statistical and geometric properties of high dimensional signals. We apply the theory to

20



simple classes of manifolds and show how changes in the dimensionality, size, and shape of the object

manifolds a fect their readout by downstream perceptrons.

2.1 Line Segments

One-dimensional object manifolds arise naturally from variation of stimulus intensity, such as visual

contrast, which leads to approximate linear modulation of the neuronal responses of each object. We

model these manifolds as line segments and consider classifying such segments in dimensions,

expressed as
{
xµ + uµ

}
, − ≤ ≤ , µ = , ..., . The -dimensional vectors xµ ∈ R

and uµ ∈ R denote respectively, the centers and directions of the µ-th segment, and the scalar

parameterizes the continuum of points along the segment. The parameter measures the extent of

the segments relative to the distance between the centers (Fig. 2.1).

We seek to partition the di ferent line segments into two classes de ned by binary labels µ = ±

. To classify the segments, a weight vectorw ∈ R must obey µw · (xµ + uµ) ≥ κ for all µ and

. The parameter κ ≥ is known as the margin; in general, a larger κ indicates that the perceptron

solution will be more robust to noise and display better generalization properties9. Hence, we are

interested inmaximummargin solutions, i.e., weight vectorsw that yield themaximumpossible value

for κ. Since line segments are convex, only the endpoints of each line segment need to be checked,

namelymin µ ± µ = µ − | µ| ≥ κ where µ = ||w||− µw · xµ are the elds induced by

the centers and µ = ||w||− µw · uµ are the elds induced by the line directions.

2.1.1 Replica Theory

The existence of a weight vector w that can successfully classify the line segments depends upon the

statistics of the segments. We consider random line segments where the components of xµ and uµ

are i.i.d. Gaussians with zero mean and unit variance, and random binary labels µ. We study the

thermodynamic limit where the dimensionality → ∞ and number of segments → ∞ with

niteα = / and . Following Gardner7 we compute the average of log where is the volume
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Figure 2.1: (a) Linear classifica on of points. (solid) points on themargin, (striped) internal points. (b) Linear classifica on
of line segments. (solid) lines embedded in the margin, (do ed) lines touching the margin, (striped) interior lines. (c)
Capacity α = / of a network = as a func on of with margins κ = (red) and κ = . (blue).
Theore cal predic ons (lines) and numerical simula on (markers, see Appendix for details) are shown. (d) Frac on of
different line configura ons at capacity with κ = . (red) lines in the margin, (blue) lines touching the margin, (black)
internal lines.
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of the space of perceptron solutions:

=

∫

∥w∥ =
w

∏

µ=

( µ − ∥ µ∥ − κ
)
. (2.1)

( ) is the Heaviside step function. According to replica theory, the elds are described as sums of

random Gaussian elds µ = µ + µ and µ = µ + µ where and are quenched components

arising from uctuations in the input vectors xµ and uµ respectively, and the , elds represent the

variability in µ and µ resulting from di ferent solutions ofw. These elds must obey the constraint

+ − | + | ≥ κ.The capacity functionα (κ, ) (the subscript denotes the line) describes

forwhich / ratio the perceptron solution volume shrinks to a uniqueweight vector. The reciprocal

of the capacity is given by the replica symmetric calculation (details provided in the Appendix 2.4.1):

α− (κ, ) =

〈
min

+ − | + |≥κ

[
+

]〉

,

(2.2)

where the average is over the Gaussian statistics of and . To compute Eq. (2.2), three regimes

need to be considered. First, when is large enough so that > κ + | |, the minimum occurs

at = = which does not contribute to the capacity. In this regime, µ > κ and µ >

implying that neither of the two segment endpoints reach the margin. In the other extreme, when

< κ − − | |, the minimum is given by = κ − and = − | |, i.e. µ = κ and µ =

indicating that both endpoints of the line segment lie on themarginplanes. In the intermediate regime

where κ − − | | < < κ + | |, = κ − + | + |, i.e., µ − | µ| = κ but µ > κ,

corresponding to only one of the line segment endpoints touching the margin. In this regime, the

solution is given byminimizing the function ( | + |+κ− ) + with respect to . Combining

these contributions, we can write the perceptron capacity of line segments:

α− (κ, ) =

∫ ∞

−∞

∫ κ+ | |

κ− − | |

( | |+ κ− )

+

+

∫ ∞

−∞

∫ κ− − | |

−∞

[
(κ− ) +

]
(2.3)
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with integrations over the Gaussian measure, ≡ √
π

− . It is instructive to consider

special limits. When → , Eq. (2.3) reduces to α (κ, ) = α (κ) where α (κ) is Gardner’s orig-

inal capacity result for perceptrons classifying points (the subscript stands for zero-dimensional

manifolds) with margin κ 2.1-(a). Interestingly, when = , then α (κ, ) = α (κ/
√

). This is

because when = there are no statistical correlations between the line segment endpoints and the

problem becomes equivalent to classifying random points with average norm
√

.

Finally, when → ∞, the capacity is further reduced: α− (κ,∞) = α− (κ)+ . This is because

when is large, the segments become unbounded lines. In this case, the only solution is forw to be

orthogonal to all line directions. The problem is then equivalent to classifying center points in

the − null space of the line directions, so that at capacity = α (κ)( − ).

We see this most simply at zero margin, κ = . In this case, Eq. (2.3) reduces to a simple analytic

expression for the capacity: α− ( , ) = + π arctan (Appendix 2.4.1). The capacity is seen to

decrease from α ( , = ) = to α ( , = ) = and α ( , = ∞) = for unbounded

lines. We have also calculated analytically the distribution of the center and direction elds µ and
µ 36. The distribution consists of three contributions, corresponding to the regimes that determine

the capacity. One component corresponds to line segments fully embedded in these planes. The

fraction of these manifolds is simply the volume of phase space of and in the last term of Eq.

(2.3). Another fraction, given by the volume of phase space in the rst integral of (2.3) corresponds to

line segments touching the margin planes at only one endpoint. The remainder of the manifolds are

those interior to the margin planes. Fig. 2.1 shows that our theoretical calculations correspond nicely

with our numerical simulations for the perceptron capacity of line segments, even with modest input

dimensionality = . Note that as → ∞, half of the manifolds lie in the plane while half

only touch it; however, the angles between these segments and the margin planes approach zero in

this limit. As → , half of the points lie in the plane 36.
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2.2 -dimensional Balls

Higher dimensional manifolds arise frommultiple sources of variability and their nonlinear e fects on

the neural responses. An example is varying stimulus orientation, resulting in two-dimensional ob-

ject manifolds under the cosine tuning function (Fig. 2.2(a)). Linear classi cation of these manifolds

depends only upon the properties of their convex hulls 37. We consider simple convex hull geome-

tries as -dimensional balls embedded in -dimensions:
{
x µ +

∑
= uµ

}
, so that the µ-th

manifold is centered at the vector xµ ∈ R and its extent is described by a set of basis vectors
{
uµ ∈ R , = , ...,

}
. The points in eachmanifold are parameterized by the -dimensional vec-

tor⃗ ∈ R whose Euclideannorm is constrained by: ∥⃗ ∥ ≤ and the radius of the balls are quanti ed

by .

Statistically, all components of xµ and uµ are i.i.d. Gaussian random variables with zero mean and

unit variance. We de ne µ = − / µw · xµ as the eld induced by the manifold centers and
µ = − / µw · uµ as the elds induced by each of the basis vectors and with normalization

∥w∥ =
√

. To classify all the points on themanifolds correctly withmarginκ,w ∈ R must satisfy

the inequality µ − ||⃗ µ|| ≥ κwhere ||⃗ µ|| is the Euclidean norm of the -dimensional vector⃗µ

whose components are µ . This corresponds to the requirement that the eld induced by the points

on the µ-th manifold with the smallest projection onw be larger than the margin κ.

We solve the replica theory in the limit of , → ∞with nite α = / , , and . The elds

for each of the manifolds can be written as sums of Gaussian quenched and entropic components,
(

∈ R, ⃗ ∈ R
)
and

(
∈ R, ⃗ ∈ R

)
, respectively. The capacity for -dimensional manifolds

is given by the replica symmetric calculation (Appendix 2.4.2):

α− (κ, , ) =

〈
min

+ − ∥⃗ +⃗ ∥>κ

[
+ ∥⃗ ∥

]〉

,⃗

(2.4)

where stands for balls. The capacity calculation canbepartitioned into three regimes. For large

> κ+ , where =
∥∥⃗ ∥∥, = and⃗ = corresponding to manifolds which lie interior to the

margin planes of the perceptron. On the other hand, when < κ− − , theminimum is obtained
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at = κ − and⃗ = −⃗ corresponding to manifolds which are fully embedded in the margin

planes. Finally, in the intermediate regime, whenκ− − < < κ+ , =
∥∥⃗ +⃗

∥∥− +κ

but⃗ ̸= −⃗ indicating that these manifolds only touch the margin plane. Decomposing the capacity

over these regimes and integrating out the angular components, the capacity of the perceptron can be

written as:

α− (κ, , ) =

∫ ∞
χ ( )

∫ κ+

κ−

( + κ− )

+

+

∫ ∞
χ ( )

∫ κ−

−∞

[
(κ− ) +

]
(2.5)

where χ ( ) =
−

( )
− − is theD-Dimensional Chi probability density function. For large

→ ∞, Eq. (2.5) reduces to: α− (κ, = ∞, ) = α− (κ)+ which indicates thatwmust be in

the null space of the basis vectors {uµ} in this limit. This case is equivalent to the classi cation of

points (the projections of the manifold centers) by a perceptron in the − dimensional null

space.

To probe the elds, we consider the joint distribution of the eld induced by the center, , and the

norm of the elds induced by the manifold directions, ≡
∥∥∥⃗

∥∥∥ . There are three contributions. The

rst term corresponds to − > κ, i.e. balls that lie interior to the perceptronmargin planes; the

second component corresponds to − = κ but > , i.e. balls that touch the margin planes;

and the third contribution represents the fraction of balls obeying = κ and = , i.e. balls fully

embedded in the margin. The dependence of these contributions on for = is shown in Fig.

2.2(b). Interestingly, when κ = , the case of = is particularly simple for all . The capacity is

α ( = , ) = /( + ) ; in addition, the fraction of embedded and interior balls are equal and

the fraction of touching balls have a maximum, see Fig. 2.2(b) and Appendix.

In a number of realistic problems, the dimensionality of the object manifolds could be quite

large. Hence, we analyze the limit ≫ . In this situation, for the capacity to remain nite, has

to be small, scaling as ∝ − , and the capacity is α (κ, , ) ≈ α (κ +
√

). In other

words, the problem of separating high dimensional balls with margin κ is equivalent to separating
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Figure 2.2: Random -dimensional balls: (a) Linear classifica on of = balls. (b) Frac on of 2- ball configura ons
as a func on of at capacity with κ = , comparing theory (lines) with simula ons (markers). (red) balls embedded in
the plane, (blue) balls touching the plane, (black) interior balls. (c) Linear classifica on of balls with = at margin κ
(black circles) is equivalent to point classifica on of centers with effec vemarginκ+

√
(purple points). (d) Capacity

α = / for κ = for large = and ∝ − / as a func on of
√

. (blue solid) α (κ = , , )
compared with α (κ =

√
) (red square). (Inset) Capacity α at κ = for . ≤ ≤ and = : (blue)

theore cal α compared with approximate form ( + − )/ (red dashed).
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points but with a margin κ+
√

. This is because when the distance of the closest point on the

-dimensional ball to the margin plane is κ, the distance of the center is κ +
√

(see Fig. 2.2).

When is larger, the capacity vanishes as α ( , , ) ≈
(

+ − )
/ . When is large, making

w orthogonal to a signi cant fraction of high dimensional manifolds incurs a prohibitive loss in the

e fective dimensionality. Hence, in this limit, the fraction of manifolds that lie in the margin plane

is zero. Interestingly, when is su ciently large, ∝
√

, it becomes advantageous for w to be

orthogonal to a nite fraction of the manifolds.

2.3 Balls

To study the e fect of changing the geometrical shape of the manifolds, we replace the Euclidean

norm constraint on the manifold boundary by a constraint on their norm. Speci cally, we con-

sider -dimensional manifolds
{
xµ +

∑
= uµ

}
where the dimensional vector⃗ parameter-

izing points on the manifolds is constrained: ∥⃗ ∥ ≤ . For < < ∞, these manifolds

are smooth and convex. Their linear classi cation by a vectorw is determined by the eld constraints
µ− ||⃗ µ|| ≥ κwhere, as before, µ are the elds inducedby the centers, and ||⃗ µ|| , = /( − ),

are the dual norms of the -dimensional elds induced by uµ (Appendix 2.4). The resultant solu-

tions are qualitatively similar to what we observed with ball manifolds.

However, when ≤ , the convex hull of the manifold becomes faceted, consisting of vertices, at

edges and faces. For these geometries, the constraints on the elds associated with a solution vectorw

becomes: µ− max ∥ µ∥ ≥ κ for all < . Wehave solved in detail the case of = (Appendix

2.4.3). There are four manifold classes: interior; touching the margin plane at a single vertex point; a

at side embedded in themargin; and fully embedded. The fractions of these classes are shown in Fig.

2.3.

Discussion: We have extended Gardner’s theory of the linear classi cation of isolated points to the

classi cation of continuous manifolds. Our analysis shows how linear separability of the manifolds

depends intimately upon thedimensionality, size and shapeof the convexhulls of themanifolds. Some
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Figure 2.3: balls: (a) Linear classifica on of 2- balls. (b) Frac on of manifold configura ons as a func on of
radius at capacity with κ = comparing theory (lines) to simula ons (markers). (red) en re manifold embedded,
(blue) manifold touching margin at a single vertex, (gray) manifold touching with two corners (one side), (purple) interior
manifold.

or all of these properties are expected to di fer at di ferent stages in the sensory hierarchy. Thus, our

theory enables systematic analysis of the degree to which this reformatting enhances the capacity for

object classi cation at the higher stages of the hierarchy.

We focused here on the classi cation of fully observed manifolds and have not addressed the prob-

lem of generalization from nite input sampling of themanifolds. Nevertheless, our results about the

properties of maximummargin solutions can be readily utilized to estimate generalization from nite

samples. The current theory canbe extended in several importantways. Additional geometric features

can be incorporated, such as non-uniform radii for the manifolds as well as heterogeneous mixtures

of manifolds. The in uence of correlations in the structure of the manifolds as well as the e fect of

sparse labels can also be considered. The present work lays the groundwork for a computational the-

ory of neuronal processing of objects, providing quantitative measures for assessing the properties of

representations in biological and arti cial neural networks.
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2.4 Appendix

2.4.1 Perceptron Capacity of Line Segments.

The simplest example of linear separability of manifolds is when the manifolds are line segments.

Speci cally,

we consider the problem of classi cation of line segments of length , given by

{
xµ + uµ

}
, | | ≤ , µ = , ... (2.6)

the −dimensional vectors x µ and uµ, which are, respectively, the centers and the directions of

the µ segment. [We use the boldface style to denote -dim vectors]. We consider random line seg-

ments, speci cally assume that the components of all x µ and uµ are i.i.d. normally distributed (with

zero mean and unit variance). The target classi cation labels of the manifolds are µ = ± and are

drawn randomly with equal probability of± .

We search for an -dimenional weight vectorw that classi es correctly the line segments. Since the

line segments are convex this is equivalent to the requirement thatw classi es correctly the end points

of each segments, This condition can be written using two local elds for each segment. One is the

eld induced by the center of the line µ, giving

µ = ||w||− µw · x µ (2.7)

The other is the eld induced by the direction vector uµ,

µ = ||w||− µw · uµ (2.8)

Note that all the elds are de ned with the target label µ, and they are normalized by the norm of

w. With these de nitions, µ± µ are the signed distance of the endpoints of the segment from the
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separating plane which is the plane orthogonal tow . Thus,w has to obey,

µ − ∥ µ∥ ≥ κ (2.9)

where µ − ∥ µ∥ is the eld of the endpoint with the smallest (signed) distance to the plane.

The parameter κ > is a parameter de ning two margin planes. According to Eq. (2.9) all the

positively labeled inputs must lie either above the ’positive’ margin plane. Conversely the negatively

labeled points must lie below the negative margin plane (See Fig. 1).

Replica Theory

We consider a thermodynamic limit where , → ∞ whereas α = / , and are nite. We use

the Gardner framework to compute the volume of space of solutions.

=

∫
wαδ(w − ) µ= ( µ − ∥ µ∥ − κ) (2.10)

where is the Heaviside function. According to replica theory, ⟨ln ⟩ = lim →
⟨ ⟩− , where

can be written as,

=
∏

α=

∫
wαδ(wα − )

∏

µ=

∫ ∞

κ

µ+
α

∫ ∞

κ

µ−
α

∫ ∞

−∞
˜µ+
α

∫ ∞

−∞
˜µ−
α (2.11)

=
∑

±
˜µ±
α

(
µ±
α −√ { µwα(x µ± uµ)}

)

(2.12)

where µ+ = µ + µ, µ− = µ − µ. Averaging over the random inputs xµ and uµ , the

above elds can be written as sums of two random elds, where and are the quenched component

resulting from the quenched random variables, namely the input vectors xµand uµ, while the and

elds represent the variability of di ferentw’s within the volume of solutions for each realization of
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inputs and labels,

µ =
√ µ +

√
− µ, µ =

√ µ +
√

− µ (2.13)

where the replica symmetric order parameter is = wα · wβ , α ̸= β . The resultant ’free

energy’ is:

⟨ ⟩ , = [ ( )] = [ ( )+α ( )] (2.14)

where,

( ) = ln( − ) +
( − )

(2.15)

is the entropic term representing the volume ofwα subject to the constraint that = wα · wβ .

The classi cation constraints contributes

( ) = ⟨ln ( , , )⟩ , (2.16)

( , , ) =

∫ ∞

−∞

∫ ∞

−∞

[(√
+
√

−
)
−

∣∣∣
√

+
√

−
∣∣∣− κ

]
(2.17)

where ≡ √
π
exp− and the average wrt , denotes integrals over the gaussian variables

, with measures and , respectively. Finally, is determined by solving ∂
∂ = . Solution

with < indicates a nite volume of solutions. For each κ there is a maximum value of α where

a solution exists. As α approaches this maximal value, → indicating the existence of a unique

solution, which is the max margin solution for this α.

In this chapter we focus on the properties of themax margin solution, i.e., on the limit → .
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→ Limit We de ne

= − (2.18)

and study the limit of → ∞. In this limit the leading order is = .

⟨ln ⟩ = [ − α⟨ ( , )⟩ , ] (2.19)

where, ≡ − log is independent of and is given by replacing the integrals in Eq. (4.16) by

their saddle point, yielding

( , ) = min
+ − | + |≥κ

[ + ] (2.20)

Note that here we have scaled variables and such that →
√

and similarly for .

Finally, at the capacity, ln vanishes, hence

α− (κ, ) = ⟨ ( , )⟩ , (2.21)

where we have denoted the capacity for one dimensional manifolds as α .

Capacity

The nature of solution of Eq. (2.20) depends on the values of and . There are three regimes.

a) Regime 1:

− κ > ∥ ∥ (2.22)

in which case the solution is = = which does not contribute to Eq. (2.21).

For values of − κ ≤ || ||, the solution obeys + − || + || = κ , meaning that one of

the endpoints touches the margin plane. This regime is further divided into two cases.
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b) Regime 2:

− − || || < − κ < || || (2.23)

Here, the center eld + is larger than the margin (i.e., the center points are interior) and the

elds can be determined by minimizing Eq. (2.20) ( | + |− + κ) + w.r.t. yielding

=
|| ||+ (κ− )

+
(2.24)

=
|| ||+ κ−

+
(2.25)

and its contribution to Eq. (2.21) is

=
(κ− + || ||)

+
(2.26)

c) Regime 3:

− κ < − − || || (2.27)

Here the center points are also on themargin plane, hence = −|| || and + = κ, contributing

= ( − κ) + (2.28)

Finally, combining the contributions from Regimes 2 and 3 yields,

α− (κ, ) =

∫ ∞

−∞

[∫ κ+ | |

κ−| | −

(| | − ( − κ))

( + )
+

∫ κ−| | −

−∞
(( − κ) + )

]

(2.29)
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For κ = , this expression reduces to

α− ( , ) =

∫ ∞

−∞

[∫ | |

−| | −

(| | − )

( + )
+

∫ −| | −

−∞
( + )

]
(2.30)

By switching to polar coordinates: = cosφ, = sinφ, these integrals reduce to

α− ( ) = +
π
arctan (2.31)

Limits of R

In the limit of → , Eq. (2.29) reduces to α (κ, = ) = α (κ) where α (κ) is the Gardner’s

result for classifying random points.

Interestingly, α (κ, ) = α (κ/
√

) . This is because when = the distance between edge

points on the line segments is statistically the same as that between points of di ferent segments, hence

the problem is equivalent to classifying randomly points with norms
√

.

Finally, when → ∞, the capacity becomes

α− (κ, = ∞) =

∫ ∞

−∞

[∫ ∞

κ
+

∫ κ

−∞
(( − κ) + )

]
(2.32)

= +

∫ κ

−∞
(( − κ) = + α− (κ) (2.33)

The reason for this is that when is large, the manifolds are essentially unbounded lines. The

only way to classify them correctly is for w to be orthogonal to all lines, reducing the problem to

classifying points which are the projections of the centers on the null space of the lines. Thus, this

is equivalent to classifying random points in a space with dimensionality − = ( − α) from
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which Eq. (2.32) follows. These limits can be readily seen in the simple case of κ = . It is readily seen

from Eq. (2.31) that α = , , and / for = ,1, and∞ respectively.

Distribu on of Fields

It is instructive to calculate the distribution of elds ( , ) induced by the manifolds with the max

margin solutionw. Using the above theory, we nd that

( , ) = ⟨
∫ ∞

−∞

∫ ∞

−∞

[(√
+
√

−
)
−

∣∣∣
√

+
√

−
∣∣∣− κ

]
(2.34)

δ( −√ −
√

− )δ( −√ −
√

− )⟩ , (2.35)

Considering the three above regimes for ( , ), we obtain the dominant contribution in the limit

of → ∞,

( , ) = ( , ) ( − || ||−κ)+ ( )δ(|| ||− − ( −κ))+ δ( −κ)δ( ) (2.36)

( , ) =
exp(− ( + )

π
, − | |− κ ≥ (2.37)

( ) =

√
+ −

π
(− − κ′) exp

[
−( + − )( − − κ′)

]
, ≥ (2.38)

=

∫ ∫ κ− − || ||

−∞
(2.39)
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where ( ) =
∫∞ , and

κ′ =
κ

+ − (2.40)

The integrated weights are:

∫
( , ) =

∫ ∞
(κ+ ) (2.41)

∫
( ) =

∫ ∞

−∞

∫ κ+ | |

κ−| | −
=

∫ ∞ [
(κ− − )− (κ+ )

]
(2.42)

=

∫ ∞

−∞

∫ κ−| | −

−∞
= −

∫ ∞
(κ− − ) (2.43)

The rst term represents the fraction of line segments that are interior to the margin plane (corre-

sponding to Regime 1); the second component corresponds to segments that touch themargin planes

but do not lie on the margin plane (Regime 2); the third term corresponds to the segments that lie

completely on the margin planes (see Fig. 1 in main text). When → ∞,we obtain,

∫
( ) = (κ) (2.44)

= − (κ) (2.45)

The reason for this is as follows. when → ∞,w becomes increasingly orthogonal to all the direc-

tors, hence the fraction of interior points vanish. The value of represents the fraction of segments

that touch the margin planes. The elds associated with the centers is nite, larger than κ. However,

the angle between the segments andw vanish, since the angle is roughly || ||which is − ( − κ) .

In contrast, the elds of the segments represented by equal κ, hence they lie in the margin planes.
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Thus, in this limit, the elds are the same as the separation of the centers in the null space (of dimen-

sion − ).

2.4.2 Perceptron Capacity of -dimensional Balls

We now consider linear classi cation of higher dimensional manifolds, modeling them as dimen-

sional balls with radius ,

x µ +
∑

=

uµ, ∀ , ||⃗ || ≤ (2.46)

[Weuse⃗ sign to denote - dimensional vectors and ||...|| for norm ]. For eachmanifold, the center

xµ, and the basis vectors {uµ} are dimensional vectors ( = , .., ), the components of which

are all independent Gaussian random variables with zero mean and unit variance. The target labels

of the manifolds are random assignments of µ = ± . To classify all the points on the manifolds

correctly (with a given margin), the weight vector w (normalized for convenience by ||w|| =
√

),

must satisfy

µ + min
⃗, ||⃗ || =

∑

=

µ ≥ κ (2.47)

where µ = − / µw · xµ is the eld induced by the manifold centers and µ = − / µw ·

uµ = , ..., are elds induced by each of the basis vectors. Di ferentiating
∑

=
µ+λ

∑

(where λ is a Lagrange multiplier enforcing the norm constraint) wrt , we obtain,

= −
µ

||⃗ µ||
(2.48)

where ||⃗ µ|| is the norm of the -dimensional vector µ, hence
∑ µ = −||⃗ µ|| and the

constraints can be written as

µ − ||⃗ µ|| ≥ κ (2.49)

Geometrically, the LHS corresponds to the eld induced by the point on themanifoldµwhich has
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the smallest (signed) projection on w. We consider a thermodynamic limit where , → ∞ while

α = / , , and are nite.

Capacity

The replica theory as outlined above, yields

⟨ ⟩ , = [ ( )] = [ ( )+α ( )] (2.50)

where as before,

( ) = ln( − ) +
( − )

(2.51)

and

( ) = ⟨ln ( , ,⃗ )⟩ ,⃗ (2.52)

( , , t) =
∫ ∞

−∞

∫ ∞

−∞
⃗

[(√
+
√

−
)
− ||√ ⃗+

√
− ⃗||− κ

]
(2.53)

where

µ =
√ µ +

√
− µ, µ =

√ µ +
√

− µ, = , ..., (2.54)

and ||...|| is the norm of the -dimensional vectors. All variables , ,⃗,⃗ are normally dis-

tributed.

ln ( , ,⃗) = ln

∫ ∞

−∞

∫ ∞

−∞
⃗

(√
+ − ||√ ⃗+

√
− ⃗||− κ

)
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where the saddle point behavior in the limit of → , → ∞ gives ≡ − log ,

( , ) = min
+ − ||⃗ +⃗ ||>κ

[
+ ∥⃗ ∥

]
(2.55)

and the capacity is given by

α− (κ, , ) = ⟨ ( ,⃗)⟩ ,~t (2.56)

Again, there are three regimes.

a) Regime 1: De ning = ||⃗ ||, when − κ > : then ≈ ,⃗ ≈ ≈ corresponding to

manifolds which obey the inequality (not equality) of Eq. (4.7), hence are interior to the plane.

b) Regime 2: When− − < − κ < : then = ||⃗ +⃗||− + κ and

⃗ = − ⃗/ (2.57)

the scalar can be calculated by

≈ min
[
( ( − )− + κ) +

]
(2.58)

=
− (κ− )

+
(2.59)

=
+ κ−
+

(2.60)

=
(κ− − )

+
(2.61)

c) Regime 3: When < − : then = and = κ− so that ≈ ( − κ) + .
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Combining these contributions, the capacity is:

α− (κ, , ) =

∫ ∞
χ ( )

[∫ κ+

κ−

( − + κ)

+
+

∫ κ−

−∞
([ − κ] + )

]

(2.62)

where χ is the -dim Chi distribution,

χ ( ) =

∫
⃗δ

(
− ||⃗ ||

)
=

− − −

( )
(2.63)

Distribu on of Fields

We consider the joint distribution of two elds: which is the eld induced by themanifold centers,

and ≡ ||⃗ ||, namely the normof the dimensional vector of elds induced by the u ’s. Taking

into account the above three regimes, we have,

( , ) = ( , ) ( − − κ) + ( )δ( − − ( − κ)) + δ( − κ)δ( ) (2.64)

1. Field Distribu on for κ = .

( , ) =
exp(− )

√
π

χ ( ), − |⃗ | ≥ (2.65)

( ) = ( + )−
∫ ∫ ∞

χ ( ) δ( − ( + − ) − − ) (2.66)

=

∫ ∫ κ− − |⃗ |

−∞
(2.67)

2. Integrated Weights:

∫
( , ) =

∫ ∞
( ) (κ+ ) (2.68)
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∫
( ) =

∫ ∞
χ ( )

∫ κ+

κ−
=

∫ ∞
χ ( )

[
(κ− )− (κ+ )

]
(2.69)

=

∫ ∞
χ ( )

∫ κ−

−∞
= −

∫ ∞
χ ( ) (κ− ) (2.70)

As in the case of line segments, the rst term corresponds to the fraction of -dim balls that lie in

the interior space; the second component corresponds to the fraction of balls that touch the margin

planes, whereas stands for the fraction of balls that are fully embedded in these planes.

=

1. Capacity for κ = In the case of = , the capacity obtains a simple form:

α− (κ = , = , ) =

∫ ∞
χ ( )

[∫ +

−

+
−
∫ +

−
+

∫ −

−∞
( + )

]

α− (κ = , = , ) =

∫ ∞
χ ( )

[∫ ∞
( + )

]

α− (κ = , = , ) =
+ !

2. Manifold Geometry Configura ons for κ =

a) Interior vs. Embedded: The fraction of embedded manifolds:

embedded =

∫ ∞
χ ( )

[∫ −

−∞

]

Fraction of interior manifolds:
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interior =
∫ ∞

χ ( )

∫ ∞
= embedded

The fraction of touching manifolds:

touching =
∫ ∞

χ ( )

∫

−

Thus, the fraction of interior manifolds and embedded manifolds are equal. !.

b) Touching Manifolds: In general,

touching =
∫ ∞

χ ( )

[∫ +

−

]

=

∫ ∞
χ ( ) [ − ( )− ( / )]

The radius at which touchingis at maximum can be found by

∂

∂

(
touching

)
=

∫ ∞
χ ( )

[
− ′( ) + − ′( / )

]
=

The solution for above is = for all . For = , touching( = , = ) =
∫∞ χ ( )[ − ( )] ∼ . .

Therefore, at = , the fraction of touching disks is at maximum, and for = , the value is

about 0.7. !.

Large Limit

In the limit of large , Eq. (2.62) reduces to:

α− (κ, = ∞, ) =

∫ ∞
χ ( )

[∫ ∞

κ
+

∫ κ

−∞
([ − κ] + )

]
(2.71)
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=

∫ ∞
χ ( ) +

∫ κ

−∞
( − κ) = α− (κ) + (2.72)

which re ects the fact that when is largewmust be in the null space of the vectors uµ; thus,

the classi cation problem is that of points (i.e., the projections of the centers onto the null space) in

− dimensions. Likewise, in this limit vanishes and the angle between the manifold centers

and the margin planes vanish.

Limit of Large

In many realistic problems it is expected that the dimension of the object manifolds is large, hence

it is of interest to examine the results in the limit of ≫ . In his limit, χ ( ) is centered around

=
√

, yielding

α−
, ≫ =

∫ κ+
√

κ−
√

(
√

− + κ)

+
+

∫ κ−
√

−∞
([ − κ] + ) (2.73)

As long as ≪
√

, the second term in Eq. (2.73) vanishes and yields

α−
, ≫ =

∫ κ+
√

−∞

(
√

− + κ)

+
=

α− (κ+
√

)

+
(2.74)

Thus, αremains nite in the limit of large only if is not larger than the order of − / . If, on

the other hand,
√

≫ , Eq. (2.74) implies

α−
, ≫ =

+
(2.75)

(where we have used the asymptote α− ( ) → for large ).

Numerically, this approximation works very well for ≥ . and all (as long as ≪
√

).
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Figure 2.4: balls. Illustra on of balls of norm for (a) = 0.5, (b) =1.5, (c) = 1. No ce that rota on of the
axis introduces the reduc on of effec ve by factor of /

√
.

Field Distribu on in Large : In the limit of large , the fraction of manifolds that lie on

the margin plane, , is zero. The overall fraction of interior manifolds is (κ +
√

) whereas the

fraction of manifolds that touch the margin planes is − (κ+
√

) .

Large : In the limit of ∝
√

,

α−
, ≫ =

∫ ∞

κ−
√ +

∫ κ−
√

−∞
= (2.76)

Note that in this case, both terms in Eq. (2.73) contribute. This re ects the fact thatwhen is (
√

)

it is again advantageous forw to be orthogonal to some of the spheres. This is seen in the eld distri-

bution. In this limit, it consists of a fraction of (
√

/ ) lying on the plane whereas the fraction of

touching balls is − (
√

/ ). Finally, when /
√

is large, most of the spheres lie on the margin,

as expected.

2.4.3 Perceptron Capacity of Manifolds
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We consider manifolds de ned with norm,

x µ +
∑

=

uµ, ∀ , ∥⃗ ∥ ≤ (2.77)

where ∥⃗ ∥ is the norm of⃗ . Linear classi cation requires

µ + min
, ∥⃗ ∥ =

∑

=

µ ≥ κ (2.78)

< < ∞: Di ferentiating
∑ µ + λ

∑
∥ ∥ wrt yields,

= −sign( µ)
|| µ|| /( − )

(|| µ|| ) /
(2.79)

where = − is the dual norm of , hence,min⃗
, ∥⃗ ∥ =

∑
=

µ = −
∥∥∥⃗µ

∥∥∥ . Thus, linear

classi cation of manifolds is equivalent to the constraints on the elds,

µ −
∥∥∥⃗µ

∥∥∥ ≥ κ (2.80)

Smoothness of the normguarantees that the solutionwill be qualitatively similar to spheres (i.e.,

= = ). (See Fig. 2.4(a) in the Appendix)

< ≤ : In this regime di ferentiating with respect to does not minimize
∑ µ . Instead,

the minima are at the extremal points: = , = , ̸= corresponding to the corners of the

manifolds (see Fig. 2.4(b)). Thus, for all ≤ the linear classi cation constraint is the same and is

given by the corner with the smallest projection on , namely

µ − max µ ≥ κ (2.81)
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We can now use the replica theory, where now the capacity is given by

α− (κ, , ) = ⟨ ( ,⃗)⟩ ,⃗ (2.82)

where stands for Balls with norm,

( , ) = min
+ − max ( + )>κ

[
+ ∥⃗ ∥

]
(2.83)

where,

+ − max( + ) ≥ κ (2.84)

in =

Rotated Coordinates Without loss of generality, we assume the are ordered: ≥ ≥ and

similarly for + .

It is easier to consider the following transformation

′ = √ ( − ) (2.85)

′ = √ ( + ) (2.86)

′ = √ ( − ) (2.87)

′ = √ ( + ) (2.88)

′ = /
√

(2.89)
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see the geometry of the rotation in Fig. 2.4 (c).

In these coordinates and convention,max ( + ) = + = √
∑

( ′ + ′) hence,

( , ) = min
+ − ∥⃗ +⃗ ∥ >κ

[
+ ∥⃗ ∥

]
(2.90)

where we have dropped the primes.

General solution:

= − , > (2.91)

The sign is well de ned only for + ̸= . Hence the general solution takes the form

= −min( , ), ≥ (2.92)

a) − κ > ||⃗ || :

, = (2.93)

b) − κ < |⃗ | :

= κ− + |
∥∥⃗ +⃗

∥∥ (2.94)

=
(

∥∥⃗ ∥∥ − + κ)

+
(2.95)

=
(

∥∥⃗ ∥∥ − + κ)

( + )
(2.96)

This is consistent if

<
(

∥∥⃗ ∥∥ − + κ)

+
< (2.97)
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− κ >
∥∥⃗ ∥∥ − − ( + ) = (2.98)

− κ > (2.99)

c) <

= ( + )− − ( + ) = ( − )− − (2.100)

Assume

= − , = − , > > (2.101)

=
( − + κ)

+
(2.102)

= +
( − + κ)

( + )
(2.103)

− κ > − − = (2.104)

d) <

= − (2.105)

= ( − κ) + (2.106)
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Capacity Finally, converting back the above regimes and values of to the original coordinates, we

have

α− =

∫ ∞ ∫ ∫ κ+

κ+ − − ( − )

( − + κ)

( + )
(2.107)

+

∫ ∞ ∫ ∫ κ+ − − ( − )

κ− − ( + )

[
( − )

+
( ( + )− + κ)

( + )

]
(2.108)

+

∫ ∞ ∫ ∫ κ− − ( + )

−∞

[
( − κ) + +

]
(2.109)

where the subscript for α− is used to denote capacity for balls with norm.

1. →

α− =

∫ ∞ ∫ ∫ κ

−∞
(− + κ) = α− (κ) (2.110)

2. → ∞

α− =

∫ ∞ ∫ ∫ ∞

κ

[
( − ) + ( + )

]
(2.111)

+

∫ ∞ ∫ ∫ κ

−∞

[
[ − κ] + +

]
(2.112)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
+

]
+

∫ ∞

−∞

∫ ∞

−∞

∫ κ

−∞
[ − κ] (2.113)

α− = + α− (κ) (2.114)
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as expected in this case of = . The e fective dimensionality is − .

Fields. The integrated weight of manifolds that touch the margin planes is

∫ ∞ ∫ ∫ κ+

κ+ − − ( − )
(2.115)

The integrated weight of manifold that have a side on the planes is

∫ ∞ ∫ ∫ κ+ − − ( − )

κ− − ( + )
(2.116)

The fraction of manifolds that lie on the planes is

∫ ∞ ∫ ∫ κ− − ( + )

−∞
(2.117)

2.4.4 Simula on Details

Linear Classifica on of Line Segments

Linear Classifica on of Line Segments. The classi cation problem of line segments is cast in

the form of linear classi cation of the endpoints where each pair of endpoints receive the same

target label. These labeled inputs were classi ed using IBM cplex package which uses quadratic pro-

gramming solving the primal support vector problem. To compute the network capacity α = / ,

100 trials were used for each and the fraction of converged trials was computed. was gradually

increased. Maximum capacity was de ned as the value of for which the convergence rate reached

0.5. In Fig. 1(c) (main text) = was used. To obtain the capacity for κ = . , was varied

until SVM’s maximummargins averaged over runs was close to κ = . .

Frac on of Line Segment Configura ons. Once the data was determined to be separable, the

fraction of the di ferent line segment con gurationswas computed. Each line segment’s con guration

was determined based on the number of endpoints on the main plane. Endpoints were considered to
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be on themargin plane i f their eld was larger than themargin by an amount smaller than a tolerance

of ϵ = − .

Linear Classifica on of D-dimensional balls

Sampling of balls ofDimension . Unlike the case of the line segments, where it is su cient to

consider the endpoints, nding SVM solution for classifying dimensional norm balls requires

an iterative algorithm to sample the points on the balls so that the decision plane is e ciently

determined. First, we sample randomly a number of points on all manifolds and nd the maxmargin

solution w and its margin κ, for this set of points. Next, for each manifold we nd analytically the

point on the boundary which has the minimum (signed) distance from the decision plane given by

w. If the eld of this point lies below the margin this point is added to the training data and a neww

is computed. This iterative procedure stops when all the minimal points lie above or on the current

margin, guaranteeing the correct classi cations of the entire manifolds. For details, see Alg.1.

Fraction of ball con gurations were computed similar to the line case.

Simula on Results: Fig. 2-(b) (main text): Wehave used network of size = , and =

initial points on each manifold. Each point (marker) displayed is an average over 50 trials.

Numerical Results for High Balls. The test of the network capacity for large dimensional

balls, we performed simulations to evaluate the capacity for balls with < < and = , ,

. Here the capacity was estimated using 20 trials. Good agreement was achieved with the theory, See

Fig. 2.5.

Linear Classifica on of Balls

Sampling of Balls. Because the sides of balls are straight lines, if all the vertices are on the

same side of the plane, all the points in the interior of ball are on the same side of the plane as

well. Therefore linear classi cations of the entire ball is equivalent to linear classi cation of all the

vertices. In Fig. 3 (main text), we consider = , thus, we simulated SVM solutions of the
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Algorithm 1 Pseudocode for linear classi cation of spheres.
Initialize:

xµ, ~uµ ∼ ( , ) ( µ = , ..., ) [Sample centers and direction vectors]
µ ∼ sign {unif(− , )} ( µ = , ..., ) [Sample labels for manifolds]
∼ unif (− , ) and ||⃗ || = = , ..., . [Sample coe cient vectors]

xµ +
∑

= uµ∈ data [Construct points on each manifold]
t=0; = svmsolver( , ) [Check separability, nd SVM solution]
t=0; = argminµ, , ||w ||− / µw

{
xµ +

∑
= uµ

}
[Get margin]

Repeat: while <
= +

Repeat: for µ = : [For each manifold]
min = −

µ( )

||⃗ µ( )||
[Coe cients of point with a minimum eld]

dµ
min = xµ +

∑
=

minuµ [Point with smallest (signed) distance to the current
margin plane]

If µw ·dµmin
|w | < min then add d

µ to data
End

= svmsolver( , ) [Check separability, nd new SVM solution]
= argminµ, , ||w ||− / µw

{
xµ +

∑
= uµ

}
[Get newmargin]

End
Continue: until no more points are added
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Figure 2.5: Capacity of high dimensional balls. α = / at capacity with κ = as a func on of D. (red) =
(blue) = (green) = . (markers) Simula on results. (dashed) full evalua on of α (κ = , , ). Note that
for > , α− (κ = , ≫ , ) ∼ .
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points, zµ = x µ ± uµ ± uµ where each set of points on the same manifold receive the same

label. In the simulations shown in the gure, network size of = was used and the simulation

was repeated 100 times to get the convergence rate (of 0.5 for estimating capacity). The fractions of

manifold geometry con gurations were computed similarly to the previous cases. Here, however,

there are con gurations, corresponding to con gurations with , , , or number of vertices on

the margin plane.
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Chapter 3

The MaximumMargin Manifold Machines

3.1 Introduc on

Handling object variability is a major challenge for machine learning systems. For example, in visual

recognition tasks, changes in pose, lighting, identity or background can result in large variability in

the appearance of objects 38. Techniques to deal with this variability has been the focus of much re-

cent work, especially with convolutional neural networks consisting of many layers. The manifold

hypothesis states that natural data variability can bemodeled as lower-dimensional manifolds embed-

ded in higher dimensional feature representations 39. A deep neural network can then be understood

as disentangling or attening the data manifolds so that they can be more easily read out in the nal

layer40. Manifold representations of stimuli have also been utilized in neuroscience, where di ferent

brain areas are believed to untangle and reformat their representations 2,11,17,24,41.

This chapter addresses the problem of e ciently utilizing manifold structures to learn classi ers.

The manifold structures may be known from prior knowledge, or could be estimated from data us-

ing a variety of manifold learning algorithms42–47. Based upon knowledge of these structures, some

areas of prior research have focused on building invariant representations48 or constructing invariant

metrics49. On the other hand, most approaches today rely upon data augmentation by explicitly gen-
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erating “virtual” examples from these manifolds 50,51. Unfortunately, the number of samples needed

to successfully learn the underlying manifolds may increase the original training set by more than a

thousand-fold 1.

~w

y = +1

y = +1

y = -1

y = -1

Figure 3.1: Themaximummarginmanifold binary classifica on problem. The op mal linear hyperplane is parameterized
by the weight vector ⃗ which separates posi vely labeled manifolds from nega vely labeled manifolds. Tradi onal data
augmenta on techniques would sample a large number of points from each manifold to train a conven onal SVM.

Wepropose anewmethod, called theMaximumMarginManifoldMachineor , that uses knowl-

edge of the manifolds to e ciently learn a maximummargin classi er. Figure 3.1 illustrates the prob-

lem in its simplest form, binary classi cation of manifolds with a linear hyperplane. Given a number

of manifolds embedded in a feature space, the algorithm learns a weight vector ⃗ that separates

positively labeledmanifolds from negatively labeledmanifolds with themaximummargin. Although

the manifolds consist of uncountable sets of points, the algorithm is able to nd a good solution

in a provably nite number of iterations and training examples.

Support vector machines (SVM) are widely used method to learn a maximum margin classi er

based upon a set of training examples 9. However, the standard SVM algorithm quickly becomes

computationally intractable in time and memory as the number of training examples increases, ren-

dering data augmentation methods impractical for SVMs. Methods to reduce the space complexity

of SVMhave been studied before, in the context of dealing with large-scale datasets. Chunkingmakes

large problems solvable by breaking up the problem into subproblems 52, but the resultant kernel ma-
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trix may still be very large. One method that subsamples the training data include the reduced SVM

(RSVM), which utilize a random rectangular subset of the kernel matrix 53. But this approach and

other methods that attempt to reduce the number of training samples 52,54 may result in suboptimal

solutions that do not generalize well.

Our algorithm directly handles the uncountable set of points in the manifolds by solving a

quadratic semi-in nite programming problem (QSIP). is based upon a cutting-plane method

which iteratively re nes a nite set of training examples to solve theunderlyingQSIP 55–57. The cutting-

plane method was also previously shown to e ciently handle learning problems with a nite number

of examples but an exponentially large number of constraints 58. We provide a novel analysis of the

convergence of with both hard and sof margins. When the problem is realizable, the convergence

bound explicitly depends upon the margin value whereas with a sof margin and slack variables, the

bound depends linearly on the number of manifolds.

The chapter is organized as follows. We rst consider the hard margin problem and analyze the

simplest form of the algorithm. Next, we introduce slack variables in , one for each manifold,

and analyze its convergencewith those additional auxiliary variables. We thendemonstrate application

of to both synthetic data where the manifold geometry is known as well as to actual object images

undergoing a variety of warpings. We compare its performance, both in e ciency and generalization

error, with conventional SVMs using data augmentation techniques. Finally, we discuss some natural

extensions and potential future work on and its applications.

3.2 MaximumMargin Manifold Machines with Hard Margin

In this section, we rst consider the problem of classifying a set of manifolds when they are linearly

separable. This allows us to introduce the simplest version of the algorithm along with the appro-

priate de nitions and QSIP formulation. We analyze the convergence of the simple algorithm and

prove an upper bound on the number of errors the algorithm can make in this setting.
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3.2.1 Hard Margin QSIP

Formally, we are given a set of manifolds ⊂ R , = , . . . , with binary labels = ± (all

points in the samemanifold share the same label). Each is de ned by a parametrization⃗ = (⃗ )

where⃗ ∈ , is a compact subset ofR , (⃗ ) : R → R is a continuous function of⃗ ∈ so

that the manifolds are bounded: ∀⃗ , ∥ (⃗ )∥ < by some . We would like to solve the following

semi-in nite quadratic programming problem for the weight vector ⃗ ∈ R :

: argmin
⃗

∥⃗ ∥

. . ∀ , ∀⃗ ∈ : ⟨⃗ ,⃗⟩ ≥
(3.1)

This is theprimal formulationof theproblem,wheremaximizing themarginκ = ||⃗ || is equivalent

to minimizing the squared norm ||⃗ || .We denote the maximummargin attainable by κ∗, and the

optimal solution as ⃗ ∗. For simplicity, we do not explicitly include the bias term here. A non-zero bias

can be modeled by adding an additional feature of constant value as a component to all the⃗. Note

that the dual formulation of this QSIP is more complicated, involving optimization of non-negative

measures over themanifolds. In order to solve the hardmarginQSIP,we propose the following simple

algorithm.

3.2.2 Algorithm

The algorithm is an iterative algorithm to nd the optimal ⃗ in (3.1), based upon a cutting

planemethod for solving theQSIP. The general idea behind is to start with a nite number of

training examples, nd the maximum margin solution for that training set, augment the training set

by looking for a point on the manifolds that most violates the constraints, and iterating this process

until a tolerance criterion is reached.

At each stage of the algorithm there is a nite set of training points and associated labels. The

training set at the -th iteration is denoted by the set: =
{(
⃗ ∈ ,

)}
with = , . . . , | |

examples. For the -th pattern in , is the index of the manifold, and is its associated label.
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On this set of examples, we solve the following nite quadratic programming problem:

: argmin
⃗

∥⃗ ∥

. .∀⃗ ∈ :
〈
⃗ ,⃗

〉
≥

(3.2)

to obtain the optimal weights ⃗ ( ) on the training set . We then nd aworst constraint-violating

point⃗ + ∈ + from one of the manifolds such that

{ + , ⃗ + } : argmin
,⃗∈

〈
⃗ ( ),⃗

〉
< − δ (3.3)

with a required tolerance δ > . If there is no such point, the algorithm terminates. If

such a point exists, it is added to the training set, de ning the new set + = ∪
{(
⃗ + , +

)}
.

The algorithm then proceeds at the next iteration to solve + to obtain ⃗ ( + ). For = , the

set is initialized with at least one point from each manifold. The pseudocode for is shown

in 2.

In step 4 of the algorithm, a point among the manifolds needs to be found with the worst

margin constraint violation. This is particularly convenient if themanifolds are given by analytic para-

metric forms,where this point couldbe computed analytically as for the case ofmanifoldswith balls

or ellipses. However, for the algorithm to converge it is su cient that a constraint violation point is

found. Thus, local optimization procedures such as gradient descent may be used to search for such

a point. However, the speed of convergence in the latter stages of might be improved by a

larger di ference in the constraint violation of the point found in this step.

3.2.3 Convergence of

The algorithm will converge asymptotically to an optimal solution when it exists. Here we

show that the ⃗ ( ) asymptotically converges to an optimal ⃗ ⋆. Denote the change in theweight vector
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Algorithm 2 Pseudocode for the algorithm.

1. Input: δ (tolerance), manifolds and labels { , = ± }, = , ..., .

2. Initialize the iteration number = , and the set = {(⃗ ∈ , )}with at least
one sample from each manifold .

3. Solve for ⃗ ( ) in : min ∥⃗ ∥ such that ⟨ ⃗,⃗ ⟩ ≥ for all ( , ) ∈ .

4. Find a worst point + ∈
+
among the manifolds { + = , ..., } with a mar-

gin smaller than − δ:

⃗ + = argmin
⃗∈ + , + = ,...

+

〈
⃗ ( ),⃗

〉
< − δ

5. If there is no such point, then stop. Else, augment the point set: + = ∪{(
⃗ + ,

+

)}
.

6. ← + and go to 3.

in the -th iteration as ⃗ ( ) = ⃗ ( + ) − ⃗ ( ). First we have the following lemma:

Lemma 1. The change in the weights sat fi ⟨ ⃗ ( ), ⃗ ( )⟩ ≥ .

Proof. De ne ⃗ (λ) = ⃗ ( ) + λ ⃗ ( ). Then for all ≤ λ ≤ , ⃗ (λ) satis es the constraints on

the point set : ⟨⃗ (λ),⃗ ⟩ ≥ for all (⃗ , ) ∈ . However, if ⟨ ⃗ ( ), ⃗ ( )⟩ < , there

exists a < λ′ < such that ∥⃗ (λ′)∥ <
∥∥⃗ ( )

∥∥ , contradicting the fact that ⃗ ( ) is a solution to

.

Next, we show that the norm
∥∥⃗ ( )

∥∥ must monotonically increase by a nite amount at each

iteration.

Theorem 2. In the iteration of algorithm, the increase in the norm of ⃗ ( ) lower bounded

by
∥∥⃗ ( + )

∥∥ ≥
∥∥⃗ ( )

∥∥ +
δ , where δ = − +

〈
⃗ ( ),⃗ +

〉
and ∥⃗ + ∥ ≤ .
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Proof. First, note that δ > δ ≥ , otherwise the algorithmstops. Wehave:
∥∥⃗ ( + )

∥∥ =
∥∥⃗ ( ) + ⃗ ( )

∥∥ =
∥∥⃗ ( )

∥∥ +
∥∥ ⃗ ( )

∥∥ +
〈
⃗ ( ), ⃗ ( )

〉
≥

∥∥⃗ ( )
∥∥ +

∥∥ ⃗ ( )
∥∥ due to Lemma 1. Nowwe consider

the point added to set + = ∪
(
⃗ + , +

)
. At this point, we know +

〈
⃗ ( + ),−→ +

〉
≥ ,

+

〈
( ),−→ +

〉
= − δ , hence +

〈
⃗ ( ),⃗ +

〉
≥ δ . Then, from the Cauchy-Schwartz

inequality,
∥∥∥ ⃗ ( )

∥∥∥ ≥
δ

∥⃗ + ∥
>

δ
>

δ
(3.4)

Since the optimal solution ⃗ ⋆ satis es the constraints for , we have
∥∥⃗ ( )

∥∥ ≤ κ∗ . We thus have

a sequence of iterations whose norms monotonically increase and are upper bounded by κ⋆ . Due

to convexity, there is a single global optimum and the algorithm is guaranteed to converge,

asymptotically if the tolerance δ = , and in a nite number of steps if δ > .

As a corollary, we see that this procedure is guaranteed to nd a realizable solution if it exists in a

nite number of steps.

Corollary 3. The algorithm converg to a zero error classifier in less than
(κ⋆)

iterations, where

κ⋆ the optimal margin and bounds the norm of the points on the manifolds.

Proof. When there is an error, we have δ > , and
∥∥⃗ ( + )

∥∥ ≥
∥∥⃗ ( )

∥∥ + (See (3.4)). This

implies the total number of possible errors is upper bounded by
(κ⋆)

.

With a nite tolerance δ > , we obtain a bound on the number of iterations required for conver-

gence:

Corollary 4. The algorithm for a given tolerance δ > will terminate after a finite number

of iterations, with less than
(κ⋆δ)

iterations where κ⋆ the optimal margin and bounds the norm

of the points on the manifolds.

Proof. Again,
∥∥⃗

∥∥ ≤ ∥⃗ ⋆∥ =
(κ⋆)

and each iteration increases the squared norm by at least
δ .
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We can also bracket the error in the objective function af er terminates:

Corollary 5. With tolerance δ > , after terminat with solution ⃗ , the optimal value

∥⃗ ⋆∥ of bracketed by:

∥⃗ ∥ ≤ ∥⃗ ⋆∥ ≤
( − δ)

∥⃗ ∥ . (3.5)

Proof. The lower bound on ∥⃗ ⋆∥ is as before. Since has terminated, setting ⃗ ′ = ( −δ)⃗

would make ⃗ ′ feasible for , resulting in the upper bound on ∥⃗ ⋆∥ .

3.3 with Slack Variables

In many classi cation problems, the manifolds may not be linearly separable due to their dimension-

ality, size, and/or correlations. In these situations, will not even be able to nd a feasible

solution. To handle these problems, the classic approach is to introduce slack variables. Naively, we

could introduce a slack variable for every point on the manifolds as below:

: argmin
⃗ ,ξ (⃗ )

∥⃗ ∥ +
∑

=

∫
⃗∈ ξ (⃗ )

. . ∀ , ∀⃗ ∈ : ⟨⃗ ,⃗⟩+ ξ (⃗ ) ≥ ,

ξ (⃗ ) ≥

The parameter represents the tradeo f between tting the manifolds to obey the margin con-

straints while allowing some set of points to be misclassi ed. This approach cannot be used when

training data consists of entire manifolds as in general, it would require replacing the sum over a nite

number of training points in the cost function, to an integral with an appropriate measure over the

manifolds. Thus, we formulate an alternative version of the QSIP with slack variables below.
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3.3.1 QSIP with Manifold Slacks

In this work, we propose using only one slack variable per manifold for classi cation problems with

non-separable manifolds. This formulation demands that all the points on each manifold ⃗ ∈

obey an inequality constraint with one manifold slack variable, ⟨⃗ ,⃗⟩+ ξ ≥ . As we see below,

solving for this constraint is tractable and the algorithm has good convergence guarantees.

However, this single slack requirement for each manifold by itself may not be su cient for good

generalization performance. Indeed, our empirical studies show that generalization performance can

be improved if we additionally demand that some representative points⃗ ∈ on each manifold

also obey themargin constraint: ⟨⃗ ,⃗ ⟩ ≥ . In this work, we implement this intuition by specify-

ing appropriate center points⃗ for each manifold . This center point could be the center of mass

of the manifold, a representative point, or an exemplar used to generate the manifolds 1. For simplic-

ity, we demand that these points strictly obey the margin inequalities corresponding to their mani-

fold label, but we could have alternatively introduced additional slack variables for these constraints.

Formally, the QSIP optimization problem is summarized below, where the objective function is min-

imized over the weight vector ⃗ ∈ R and slack variables ξ⃗ ∈ R :

: argmin
⃗ ,ξ⃗

(⃗ , ξ⃗) = ∥⃗ ∥ +
∑

= ξ

. . ∀ , ∀⃗ ∈ : ⟨⃗ ,⃗⟩+ ξ ≥ (manifolds)

∀ :
〈
⃗ ,⃗

〉
≥ (centers)

∀ : ξ ≥

3.3.2 Algorithm

With these de nitions, we introduce our algorithm with slack variables below.

The proposed algorithmmodi es the cutting plane approach to solve a semi-in nite, semi-

de nite quadratic program. Each iteration involves a nite set: =
{(
⃗ ∈ ,

)}
with =

, . . . , | | examples that is used to de ne the following sof margin SVM:
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Algorithm 3 Pseudocode for the algorithm.

1. Input: δ (tolerance), manifolds and labels { , = ± }, and centers⃗

2. Initialize the iteration number = , and the set = {(⃗ ∈ , )}with at least
one sample from each manifold .

3. Solve for ⃗ ( ),ξ⃗( ): min ∥⃗ ∥ +
∑

= ξ such that µ⟨ ⃗,⃗ µ⟩ + ξ µ ≥ for all(
⃗µ, µ

)
∈ and ⟨ ⃗,⃗ ⟩ ≥ for all .

4. Find a point ⃗ + ∈
+
among the manifolds { = , ..., } with slack violation

larger than the tolerance δ:

+

〈
⃗ ( ),⃗ +

〉
+ ξ

+
< − δ

5. If there is no such point, then stop. Else, augment the point set: + = ∪{(
⃗ + ,

+

)}
.

6. ← + and go to 3.

: argmin
⃗ ,ξ⃗

∥⃗ ∥ +
∑

= ξ

. . ∀
(
⃗ ,

)
∈ :

〈
⃗ ,⃗

〉
+ ξ ≥

∀ :
〈
⃗ ,⃗

〉
≥ ( )

∀ : ξ ≥

to obtain the weights ⃗ ( ) and slacks ξ⃗( ) at each iteration. We then nd a point ⃗ + ∈ +

from one of the manifolds so that:

+

〈
⃗ ( ),⃗ +

〉
+ ξ( )

+ = − δ (3.6)

where δ > δ. If there is no such a point, the algorithm terminates. Otherwise, the point⃗ +
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is added as a training example to the set + = ∪
{(
⃗ + , +

)}
and the algorithm proceeds to

solve
+
to obtain ⃗ ( + ) and ξ⃗( + ). Note that embodies the fact that for the algorithm

to converge, it is not necessary to nd the point with the worst constraint violation at each iteration.

3.3.3 Convergence of

Herewe show that the objective function
(
⃗ , ξ⃗

)
= ∥⃗ ∥ +

∑
= ξ is guaranteed to increase

by a nite amount with each iteration. This result is similar to 59, but here we demonstrate a proof in

the primal domain over an in nite number of examples. We rst have the following lemmas,

Lemma 6. The change in the weights and slacks satisfy:

〈
⃗ ( ), ⃗ ( )

〉
+

∑
ξ⃗( ) ≥ (3.7)

where ⃗ ( ) = ⃗ ( + ) − ⃗ ( ) and ξ⃗( ) = ξ⃗( + ) − ξ⃗( ).

Proof. De ne ⃗ (λ) = ⃗ ( ) + λ ⃗ ( ) and ξ⃗(λ) = ξ⃗( ) + λ ξ⃗( ). Then for all ≤ λ ≤ , ⃗ (λ)

and ξ⃗(λ) satisfy the constraints for . The resulting change in the objective function is given

by:

(
⃗ (λ), ξ⃗(λ)

)
−

(
⃗ ( ), ξ⃗( )

)
=

λ

[〈
⃗ ( ), ⃗ ( )

〉
+

∑
ξ( )

]
+ λ

∥∥∥ ⃗ ( )
∥∥∥ (3.8)

If (3.7) is not satis ed, then there is some < λ′ < such that
(
⃗ (λ′), ξ⃗(λ′)

)
<

(
⃗ ( ), ξ⃗( )

)
,

which contradicts the fact that ⃗ ( ) and ξ⃗( ) are a solution to .

Lemma 7. In each iteration of algorithm, the added point
(
⃗ + , +

)
must be a support
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vector for the new weights and slacks, s.t.

+

〈
⃗ ( + ),⃗ +

〉
+ ξ( + )

+ = (3.9)

and

+

〈
⃗ ( ),⃗ +

〉
+ ξ( )

+ = δ (3.10)

Proof. Suppose +

〈
⃗ ( + ),⃗ +

〉
+ ξ( + )

+ = + ϵ for some ϵ > . Then we can choose λ′ =

δ
δ +ϵ < so that ⃗ (λ′) = ⃗ ( ) + λ′ ⃗ ( ) and ξ⃗(λ′) = ξ⃗( ) + λ′ ξ⃗( ) satisfy the constraints for

+
. But, from Lemma 6, we have

(
⃗ (λ′), ξ⃗(λ′)

)
<

(
⃗ ( + ), ξ⃗( + )

)
which contradicts

the fact that ⃗ ( + ) and ξ⃗
( + )

are a solution to + . Thus, ϵ = and the point
(
⃗ + , +

)

must be a support vector for + . (3.10) results from subtracting (3.6) from (3.9).

We also derive a bound on the following quadratic function over nonnegative values:

Lemma 8. Given > ,δ > , then ∀ ≥

( − δ) + ≥ min

(
δ , δ

)
(3.11)

Proof. The minimum value occurs when ⋆ = [δ − ]+. When ≥ δ, then ⋆ = and the

minimum is δ . When < δ, the minimum occurs at
(
δ −

)
≥ δ. Thus, the lower

bound is the smaller of these two values.

Theorem9. In each iteration of algorithm, the increase in the objective function for

lower bounded by
( ) ≥ min

(
δ

, δ

)
(3.12)
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where ( ) =
(
⃗ ( + ), ξ⃗( + )

)
−

(
⃗ ( ), ξ⃗( )

)
.

Proof. (Sketch) First, if ⃗ ( ) ̸= , Lemma 6 completes the proof. If ⃗ ( ) = , then ξ( ) = δ

from Lemma 7 and ξ( )
̸= = since ξ⃗( ) is the solution for . So for ⃗ ( ) = , ( ) =

δ .

The addedpoint⃗ + is fromaparticularmanifold + . If ξ( )
+ ≤ , wehave +

〈
⃗ ( ),⃗ +

〉
≥

δ (∵ Lemma 7). Then,
∥∥ ⃗ ( )

∥∥ ≥ δ , yielding ( ) ≥ δ .

We next analyze ξ( )
+ > and consider the nite set of points (⃗ ν , + ) ∈ , coming from

the + manifold. Each of these points obeys the constraints:

+

〈
⃗ ( ),⃗ν

〉
+ ξ( )

+ = + ϵ( )
ν (3.13)

+

〈
⃗ ( + ),⃗ν

〉
+ ξ( + )

+ = + ϵ( + )
ν (3.14)

ϵ( )
ν , ϵ( + )

ν ≥ (3.15)

We consider the minimum value of the thresholds: η = minν ϵ
( )
ν .

If η > , none of the⃗ν points are support vectors for . In this case, we de ne a linear

set of slack variables: ξ (λ) = ξ( ) for = , and ξ (λ) = ξ( ) + λ ξ( ) for ̸= , and

⃗ (λ) = ⃗ ( ) + λ ⃗ ( ), which satisfy the constraints for . Then, this implies

〈
⃗ ( ), ⃗ ( )

〉
+

∑

̸=
ξ⃗( ) ≥ (3.16)

which implies ( ) ≥ min
(

δ , δ
)
.

If η = , at least one support vector lies in + . Consider ε = min
ϵ
( )
ν =

ϵ( + )
ν ≥ .

We then de ne ξ (λ) = ξ( ) + λ
(

ξ( ) − ε
)
for = , and ξ (λ) = ξ( ) + λ ξ( ) for
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̸= , and ⃗ (λ) = ⃗ ( ) + λ ⃗ ( ). Then, there exists ≤ λ ≤ λ for which ξ⃗(λ) and ⃗ (λ)

satisfy the constraints for , so that

〈
⃗ ( ), ⃗ ( )

〉
+

∑
ξ⃗( ) ≥ ε (3.17)

Wealsohave a support vector (⃗ ν , + ) ∈ , with
〈

⃗ ( ),⃗ν
〉
+ ξ( ) = ε, then

∥∥ ⃗ ( )
∥∥ ≥

(δ − ε) by using Lemma 7.

Then, by using Lemma (8) on ε, we get

( ) ≥ min

(
δ , δ

)
(3.18)

Thus, we obtain the nal bound combining results from two cases of η.

Since the algorithm is guaranteed to increase the objective by a nite amount, it will termi-

nate in a nite number of iterations if we require δ > δ for some positive δ > .

Corollary 10. The algorithm for a given δ > will terminate after at most ·max
(

δ , δ

)

iterations where the number of manifolds, L bounds the norm of the points on the manifolds.

Proof. ⃗ = and ξ = is a feasible solution for . Therefore, the optimal objective

function is upper-bounded by
(
⃗ = , ξ⃗ =

)
= . The upper bound on the number of itera-

tions is then provided by Theorem (9).

We can also bound the error in the objective function af er terminates:

Corollary 11. With δ > , after terminat with solution ⃗ , slack ξ⃗ and value =
(
⃗ , ξ⃗

)
, then the optimal value ⋆ of bracketed by:

≤ ⋆ ≤ + δ. (3.19)
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Proof. The lower bound on ⋆ is apparent since includes constraints for all

. Setting the slacks ξ = ξ , + δ will make the solution feasible for resulting in the

upper bound.

3.4 Experiments

3.4.1 Synthe c Manifolds

Random balls As an illustration of our method, we have generated manifolds consisting of ran-

dom -dimensional Euclidean balls with a given radius. Each manifold is described by a center

vector⃗ ∈ R and basis vectors
{
⃗ ∈ R , = , ...,

}
. The points on the manifold can be

parameterized as =
{
⃗
∣∣∣⃗ = ⃗ +

∑
= ⃗

}
where is the radius of the ball and⃗ ∈ R

are normalized so that
∑

= = .

Simula ons We compare the performance of to the conventional point SVMwith samples uni-

formly drawn from the ball manifolds. Performance is measured by generalization error as a func-

tion of the number of samples used by the algorithm.

For these manifolds, the worst constraint-violating point can easily be computed by taking the

derivative of the constraint
[
⃗ ·

(
⃗ +

∑
= ⃗

)]
+ ξ ≥ with respect to⃗ for all . This

results in the analytic solution , = − ⃗ ·⃗√
∑

=

(
⃗ ·⃗

) . For problems with non-separable man-

ifolds in , we used an additional single margin constraint per manifold given by the center⃗ .

We used the following parameters in the simulations shown below: embedding dimension =

, manifold dimension = , radius = . With these parameters, the critical manifold

capacity for linear classi cation is estimated to be = . 60, hence we consider = to

test and = for the simulations.

The results are presented in gure 3.2 for the separable case and non-separable case.
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Figure 3.2: Generaliza on error of the solu on for ball manifolds, shown as a func on of the total number of
training samples per manifold (red solid) compared with that of conven onal point SVM (blue dashed). = ,

= , = , and (a) = is used for and (b) = for with = . (a)-(Inset) δ is
shown for the added point in . The cri cal capacity with these parameters is ≈ .

3.4.2 ImageNet Dataset

Image-based Object Manifolds We also apply the algorithm to a more realistic class of object

manifolds. Here each object manifold is de ned by the in nite set of images created by applying 2-D

a ne transformations on a single template image. In order to create object manifolds, template

images were sampled from the ImageNet 2012 data set for which exact object bounding boxes are

available 10, and each image was cropped and scaled such that the object occupies the middle ×

pixels of the template image.

Each sample from the objectmanifold is a × gray-scale image created by applying a 2-D a ne

transformation on the template image. Those transformations are de ned as a composition of seven

basic transformations: horizontal or vertical translation, horizontal or vertical scaling, horizontal or

vertical shear, and rotation. The range of each basic transformations was chosen so that the largest

pixel displacement was equivalent to 8 pixels. The composition of these seven basic transformations

thus de nes a 7-D highly non-linear object manifold for each object.
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Simula ons We compared the performance of to point SVM in classi cation of samples from

the object manifolds. Performance is measured as above by generalization error as a function of the

number of samples each algorithm uses. We used object manifolds with up to = sam-

ples drawn from each manifold, using % of the samples as training set and % as a testing set.

Rather than performing classi cation directly on image pixels the samples were projected to the space

de ned by their = largest principal components. For this data set the classi cation problem

is separable for = and non-separable for = .

Point SVM (de ned as above) was trainedwith varying numbers of training set samples,

with obtained through cross validation. The training was repeated times with di ferent samples

to estimate the variability of the generalization error. was trained with a constraint per manifold

given by the center of mass at the training set

and obtained through cross-validation. At each iteration of the algorithm, the worst-violating

constraint point was found using local search. Initialized with a random sample from each manifold,

it was compared to a set of neighboring samples in the space of potential transformation ( =

was used throughout). This process is iterated until a set of localminimawere found, and these points

were candidates to be added to the active set of the algorithm.

Figure 3.3-b compares the generalization error for a separable classi cation problem (at = )

while Figure 3.3-c compare those for a non-separable classi cation problem (at = ). Those repre-

sentative results illustrate that in both cases achieve a very low generalization error (compared to

point SVM) already at very small number of samples.

3.5 Discussion

We described and analyzed a novel algorithm for nding the maximum margin solution for classify-

ing manifolds. The algorithm, called , is based upon a cutting-plane method and iterates between

adding the worst violating point to a nite training set, and updating a maximum margin solution.
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Figure 3.3: Image-based object manifolds. (a) Basic affine transforma on: a template image (middle) surrounded with
changes along 4 axes defined by basic affine transforma on. A × square marking the object bounding box was
added to the template image for illustra on purposes. (b-c) Generaliza on error of the solu on for 7-D image-
based object manifolds, shown as a func on of the number of training samples per manifold (solid line) compared with
that of conven onal point SVM (blue squares). At = the problem is separable for = (b) and non-separable
for = (c).

There are two versions of the algorithm, one without slack variable appropriate for separable mani-

folds, and a slack version for non-separable manifolds. We proved the convergence of , and pro-

vided bounds on the number of iterations required and the deviation from the optimal objective func-

tion. On experiments with both synthetic manifolds and with actual image manifolds, our empirical

results demonstrate the e ciency of and the superior performance in terms of generalization error,

compared to conventional SVM’s, using data augmentation techniques with many virtual examples.

Ongoing work includes theoretical research to understand how explicitly scales with the number

of manifolds and the embedding dimensionality.

There is natural extension of to nonlinear classi ers via the kernel trick, as all our operations

involve dot products between the weight vector ⃗ and manifold points (⃗ ). At each iteration,

the algorithm would solve the dual version of the problem which is readily kernelized. In

addition, the algorithm relies upon nding a point on amanifoldwith su ciently strong violation

of the constraints. Since a local minimization of the constraint violation at each stage is su cient in

the relaxed version of the algorithm, we expect that this step of will be practical for simpler kernel
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functions. However, we note that with in nite-dimensional kernels such as RBF’s, the full manifold

optimization problem becomes a fully in nite quadratic programming problem, no longer a QSIP

which requires further theoretical work to establish the existence and properties of optimal solutions.

Beyond binary classi cation, variations of can also be used to solve other machine learning

problems including multi-class classi cation, ranking, one-class learning, etc. In this work, we have

shown how can be used to classify imagemanifolds at pixel input representations. We can also use

this algorithm to evaluate the computational bene ts of manifold representations at successive layers

of deep networks in both machine learning and in brain sensory hierarchies. We also anticipate using

to build novel hierarchical architectures that can incrementally reformat the manifold representa-

tions through the layers for better overall performance in machine learning tasks.

We anticipate this work will make an important contribution to the understanding of how neural

architectures can learn to process high dimensional real-world signal ensembles and cope with large

variability due to continuous modulation of the underlying physical parameters.
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Chapter 4

Linear Classifica on of General Manifolds

4.1 Introduc on

In chapter 2, we applied methods from statistical mechanics of spin glasses to solve the problem of

linear, max margin, classi cation of manifolds with simple geometries such as lines, as well as and

balls embedded in embedded in a linear subspace with dimensions , where is much smaller

than the ambient dimension . In chapter 3, we presented a new e cient algorithm for nding max

margin linear classi er of manifolds.

In this chapter, we return to the theory and consider the problem of linear classi cation of general

manifolds, again with embedding dimension much smaller than . To set the stage of more complex

geometries, we begin by considering the classi cation of -dimensional ellipsoids. The results

from the analysis of ellipsoids are readily extended to the case general smooth convex manifolds. We

thenmove to consider classi cation of non-smooth low dimensional manifolds, which exhibit a more

complex solution structure. characterized by variety of ’support’ structures. Nevertheless, we derive

a set of mean eld equations that apply to general low dimensional smooth as well as non-smooth

manifolds, including also manifolds consisting of nite number of points (point clouds). We identify

key geometric descriptors of the manifolds: the e fective manifold dimension and the e fective
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manifold radius , two geometric ’order parameters’ which determine the capacity of linear classi-

cation of general manifolds (when their dimensionality is high), and provide an iterative algorithm

that can e ciently solve for and , as well as general manifold capacity α . Finally, we em-

phasize that although the datamanifoldsmay not be convex, any hyperplane that separates themmust

also separate their convex hull. Hence, all geometric properties discussed in this chapter refer to convex

manifolds.

Note that in general, the capacity of manifolds embedded in dimension can be upper and lower

bounded by

+
< α < (4.1)

This is because in the limit where extents of a manifold in all embedding dimensions go to zero,

a manifold becomes a point, whose perceptron capacity is α = 7. In the limit where extents of

a manifold in all embedding dimensions go to in nity, then the linear classi er w has be in the

subspace orthogonal to all directions of the manifolds60. Since of the -dimensionalmanifolds

occupy dimension, the classi cation becomes point classi cation in − dimension, resulting

in the maximum number of manifolds linear separable = ( − ), resulting in the capacity

/ = + . These asymptotic bounds of a manifold capacity apply for arbitrary manifold shapes.

Now let us focus on simplest extension of classi cation of balls, classi cation of -dimensional

ellipsoids.

4.2 Ellipsoids

4.2.1 Model

Consider the problem of linearly classifying -dimensional ellipsoids (Figure. 4.1) in -dimensional

ambient space, where each point within the µth ellipsoid is expressed as
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Figure 4.1: Linear Classifica on of Ellipsoids (Illustra on). In -dimensional ambient space, the solu on hyperplane
(blue plane) has to separate between red -dimensional ellipsoids and blue ellipsoids with margin κ. Margin κ is
the distance between the closest point on the ellipsoids and the solu on hyperplane. We refer to all points of such
distance to the solu on hyperplane as “margin planes” (grey planes). Different pa erns are used to denote different
support configura on of manifolds. Solid pa ern: ellipsoids embedded in the margin plane, diamond pa ern: ellipsoids
touching the margin plane with one point, striped pa ern: interior ellipsoids (ellipsoids that are in the interior space
sha ered by margin planes).

{
xµ +

∑

=

uµ, µ = ±
}

(4.2)

For each µ, xµ ∈ R is N-dim vector representing the center of the ellipsoid, the set of D N-dim

vectors, uµ ∈ R , for = , ..., , are the ellipsoid’s basis vectors. The vectors⃗ ∈ R parametrize

the points on the manifolds and obey the constraint

(⃗ ) ≤ (4.3)

where,
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(⃗ ) =
∑

=

− − (4.4)

represent the ellipsoid’s radii in the th direction, relative to the center norm. In order to evaluate

the ability of the perceptron to classify the ellipsoids, we need to specify their statistical properties.

Herewe assume that each component of xµ,uµ are independentGaussian randomvariableswith unit

variance. With these assumptions, and assuming large , the norm of the centers is (approximately)
√

and the u ’s are (approximately) orthogonal vectors with norms
√

.

We assume the ellipsoids are assigned binary labels (which are therefore the same for all points on

the ellipsoid) denoted as µ = ± . We search of a set of weight vectors w ∈ R that obey the

following inequalities,

µw

(
x µ +

∑

=

uµ
)

≥ κ ∥w∥ ∀⃗ , (⃗ ) ≤ (4.5)

Themaximumκ that admits a solutionwwill be called themargin of the system. Here we assume the

labels for themanifolds are assigned randomly i.i.dwith probability half for µ = ± . The casewhere

the fraction of positive and negative labels are not equal (sparse labels) will be covered in Chapter 5.

4.2.2 Fields of the Closest Point

To classify all the points on the ellipsoids correctly, a necessary and su cient condition is that the

weight vector w, satis es the constraints on the ’worst’ points on each ellipsoid , namely the ones

which are closest to the separating plane de ned by w. To nd this point for the µth manifold we

de ne the elds µ = ∥w∥− µw · xµ, which are the eld (the protection on w) induced by the

manifold’s center, and µ = ∥w∥− µw ·uµ = , ..., , which are the elds induced by the basis
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vectors of the manifold. In terms of these elds, 4.5 can be written as

µ + (⃗ µ) ≥ (4.6)

where

(⃗ ) = ˜(⃗ ) · ⃗ − κ (4.7)

where

˜(⃗ ) = arg min
⃗, (⃗ )=

{⃗ · ⃗} (4.8)

gives the point on the manifold which has the smallest (signed) projection on the hyperplane w. In

order to evaluate ˜(⃗ ), we di ferentiate
∑

= + λ (⃗ ) with respect to , where λ is a Lagrange

multiplier enforcing the manifold constraint, yielding in the case of ellipsoids,

˜ = −√∑ = −∥∥∥⃗ ◦ ⃗
∥∥∥

(4.9)

where ◦ denotes element-wise product, and ||⃗ ◦ ⃗ || is the norm of the -dimensional vector

whose components are { }. To evaluate , we note that ˜ · ⃗ = −
∥∥∥⃗ ◦ ⃗

∥∥∥, hence,

(⃗ ) = −
∥∥∥⃗ ◦ ⃗

∥∥∥− κ (4.10)

4.2.3 Mean Field Theory

We consider a thermodynamic limit where , → ∞ whereas α = / , D, and ⃗ are nite.

Following Gardner’s framework, we compute the average of ln , where is the volume of the space
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of the solutions, which in our case, can be written as:

=

∫
wαδ(w − ) µ= µ(

µ + (⃗ µ)) (4.11)

where is the Heaviside function. We use replica theory, ⟨ln ⟩ = lim →
⟨ ⟩− , where ⟨⟩ refers

to the average over the ’quenched random variables: the input parameters, x µ and uµ and the labels,

to evaluate ⟨ln ⟩ via the replica symmetric saddle point equations. The saddle point approximation

is exact in the thermodynamic limit and the replica symmetric ansatz holds for convex problems such

as ours. These equations are expressed in terms of the order parameter, = ⟨wα · wβ , α ̸= β,

wherewα andwβ are two typical solutions of the classi cation problem.

The ’free energy’ associated with ⟨ ⟩ is given by,

⟨ ⟩ , , ∼ [ ( )] = [ ( )+α ( )] (4.12)

where,

( ) = ln( − ) +
( − )

(4.13)

is the entropic term representing the volume ofw subject to the constraint that = wα ·wβ . ( )

embodies the constraints imposed by the classi cation task and is expressed in terms of the elds µ

and ⃗µ. In the considered limit, these elds can be written as sums of two random elds, where

and⃗ are the quenched component resulting from the quenched random variables, namely the input

vectors xµ and uµ, while the and⃗ are the elds representing the variability of di ferentw’s within

the volume of solutions for each realization of inputs and labels:

µ =
√ µ +

√
− µ, ⃗µ =

√ ⃗µ +
√

− ⃗µ (4.14)
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and,

( ) = ⟨ln ( , ,⃗ )⟩ ,⃗ (4.15)

where the average wrt ,⃗ denotes integrals over the gaussian variables ,⃗ with measures and

⃗ = π , respectively, and

( , , ) =

∫ ∞

−∞

∫ ∞

−∞
⃗

[(√
+
√

−
)
+

(√ ⃗+
√

− ⃗
)]

(4.16)

Finally, is determinedby solving ∂
∂ = . Solutionwith < indicates a nite volumeof solutions.

For eachκ there is amaximumvalue ofαwhere a solution exists. Asα approaches thismaximal value,

→ indicating the existence of a unique solution, which is the max margin solution for this α. We

focus on the properties of themax margin solution, i.e., on the limit → .

4.2.4 The Capacity Limit

We de ne

= − (4.17)

and study the limit of → ∞. In this limit, the leading order for term is = and can be

evaluated by a saddle point approximation of the and⃗ integrals,

ln ( ,⃗) = − min
,⃗ ,
√

+ +
(√

⃗+⃗
)
>

[
+ ∥⃗ ∥

]
(4.18)
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Scaling the variables and such that →
√

and →
√

and using the fact that (⃗ ) is

linear in the magnitude of⃗ to write ln ( ,⃗) = − ( ,⃗) ,

( , ) = min
,⃗ , + + (⃗ +⃗ )>

[
+ ∥⃗ ∥

]
(4.19)

where (⃗ ) = −
∥∥∥⃗ ◦ ⃗

∥∥∥− κ (Eqn. 4.10). Finally,

⟨ln ⟩ =
[

− α⟨ ( ,⃗)⟩ ,⃗

]
(4.20)

so the capacity, de ned by vanishing ⟨ln ⟩is given by,

α− (κ) = ⟨ ( ,⃗)⟩ ,⃗ (4.21)

where the subscript stands for ellipsoids. For each⃗ the nature of the solution to themin operation

in 4.21 depends on yielding three regimes of with qualitatively di ferent contributions to the

capacity, as described below.

Regime 1 (Interior Manifolds): − κ >
∣∣∣⃗

∣∣∣

where,

⃗ =⃗ ◦ ⃗ (4.22)

In this case, the solution is = = and does not contribute to Eq. 4.21.

For values of − κ ≤
∣∣∣⃗

∣∣∣, the solution obeys

+ +
(⃗

+⃗
)
= (4.23)

meaning that the closest point is on the margin plane. This regimes is divided into two cases:
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Regime 2 (Touching Manifolds): < − κ <
∣∣∣⃗

∣∣∣

where,

= −
√∑

− (4.24)

Here, + +
(⃗

+⃗
)
= but = + > κ, implying that the ellipsoid center is an interior

point; in other words, the ellipsoid touches the margin plane only at a single point. Thus, for a given

and⃗we need to solve

min
⃗

[
+ ∥⃗ ∥

]
(4.25)

where = − −
(⃗

+⃗
)
. Di ferentiating with respect to⃗ yields,⃗ = ∂⃗ = ∂⃗ {⃗ · ⃗},

namely,

⃗ = ⃗ (4.26)

where from now on, unless otherwise speci ed,⃗will be a shorthand of ˜(⃗ ) = ˜(⃗ +⃗).Note that

this is a self consistent equation for⃗ due to 4.26. This yields also, = ⃗ · (⃗ + ⃗)− κ, hence

=
(κ− −⃗ ·⃗)

( + )
(4.27)

Finally, + = ( + ) yielding,

( , ) =
(κ−⃗ ·⃗ − )

+
(4.28)

To conclude the evaluation of we need to calculate⃗. Eq, 4.9, for the ellipsoid, yields,

= − ∥∥∥⃗
∥∥∥

(4.29)
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with ⃗ ≡ ⃗ ◦ ⃗ = (⃗ + ⃗) ◦ ⃗ . Substituting in the above equation, one obtains,

= −
||⃗ ||+

(4.30)

which yields an equation of⃗(⃗ ) in terms of ||⃗ || and . These two scalars are related through

= − −
(⃗

+⃗
)
= −κ− + ||⃗ || (4.31)

where ||⃗ || = ⃗ · (⃗ + ⃗) and is given by Eqn. 4.10. Finally, an equation for can be derived

from the ellipsoid constraint (⃗ ) = ,

=
∑

− (4.32)

To summarize, Eqns. 4.30 -4.32 yields⃗(⃗ , )which we use to evaluate , Eq. 4.28.

Regime 3 (Embedded Manifolds): − κ <

Here⃗ =⃗+⃗ = , and = + = κ, implying that the center as well as the entire manifold

is on the margin plane, hence

( ,⃗) = ( − κ) +
∥∥⃗ ∥∥ (4.33)

Finally, combining contributions from regimes 2 and 3, the expression of the capacity is
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α− (κ) =

∫
⃗
∫ κ+ ⃗| |

κ+ (⃗ )

[
(κ−⃗ ·⃗ − )

+

]
+

∫
⃗
∫ κ+ (⃗ )

−∞

[
( − κ) +

∥∥⃗ ∥∥
]

(4.34)

|⃗ | =
√∑

(4.35)

= −
√∑

− (4.36)

In the rst integral,⃗ is given by,

= −
κ+ + ( + )

(4.37)

and (⃗ , ) is evaluated by solving,

=
∑

(κ+ + ( + ))
(4.38)

4.2.5 The Large D limit

If the size of the ellipsoid is not small, we expect the capacity to be small (of order / , see Eqn. 4.47).

On the other hand, when the radii are small the capacity should be order 1 as in the case of points. We

inquire how small ’s should be in order to yield a nite capacity even when is large. The answer

is provided by a scaling analysis, below.
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Large , = ( )

In this limit, || ⃗||,− = ( / ), so integral bounds in the rst term of 4.34 can be taken to±∞.

From 4.32, = ( − / ) and from Eqns 4.31, ≈ ||⃗ || = ( / ) .

= −
( + )

(4.39)

and from the normalization,

≈ ⟨ ⟩ =
∑

=
( + )

≈
∑

=
( + )

(4.40)

where we have replaced ≈ under the summation. Similarly,

≈ ⟨ ⟩ =
∑

=
( + )

= ( ) (4.41)

⃗ ·⃗ ≈ ⟨⃗ ·⃗⟩ = −
∑

=
( + )

= ( / ) (4.42)

Hence,

α− ≈ ⟨⃗ ·⃗⟩
+ ⟨ ⟩ when ≫ , = ( ) (4.43)

which is of order as expected.

E fective Dimensionality and Radius: These results suggest to express the capacity by introducing

the ellipsoid e fective dimension ( ) and radius ( ), as follows,

α− =
+

when ≫ , = ( ) (4.44)

= ⟨ ⟩ =
∑

( + )
/
∑

( + )
when ≫ , = ( ) (4.45)
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=

(
∑

+

)
/
∑

( + )
when ≫ , = ( ) (4.46)

Thus, the capacity of ellipsoids in large equivalent to that of balls with radii and dimen-

sionality .

Large , Large Regime

Finally, when most of the are large, ≫ and

α− = = when ≫ , ≫ (4.47)

In this case,w is orthogonal to the basis vectors with large .

Scaling Regime: Large , ∝ − /

The above results suggest that when the radii are small such that, ∝ − / the capacity becomes

order 1. Thus, the scaling relation ∝ − / denotes the regime of nite capacity, namely the

balance between large dimension and small size that maintains a nite capacity. This regime requires

its own analysis of the various terms that contributes to the capacity. First,

|| ⃗|| ≈ ||⃗ || = ( ) (4.48)

− = ( / ) (4.49)

So the integral bounds in the rst term of 4.34 is from −∞ to κ + ||⃗ || and the second term is

negligible. From 4.32, = ( − ), and ||⃗ || =
√∑

= ( ) and from Eqns 4.31, ≈

κ− + ||⃗ || = ( ). Hence, = ( − ). Then, from 4.30,

≈ −
||⃗ ||

= ( − ) (4.50)
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as expected.

And from this normalization,

≈ ⟨ ⟩ =
||⃗ ||

∑
=

||⃗ ||

∑
= ( ) ( ∗ − ) = ( − ) (4.51)

⃗ ·⃗ ≈
〈⃗

·⃗
〉
= −

∑

||⃗ ||
= − ||⃗ ||

||⃗ ||
= ( ) (4.52)

and from normalization,

=
∑

− ≈
||⃗ ||

∑
(4.53)

implying ||⃗ || = ||⃗ || and⃗ ·⃗ = −||⃗ || . Hence,

α− =

∫ κ+||⃗ ||
−∞ (κ+ ||⃗ ||− )

+ ⟨ ⟩ (4.54)

Although
〈 〉

= ||⃗ ◦ ⃗ || /||⃗ || is a correction of order − , we will keep it because it turns

out to be important to keep in simulations.

We can express these results in terms of the e fective dimensionality and radius introduced above.

In the limit of small s these quantities reduce to,

=

∑
∑ = ( − ) when ≫ , #

(
− /

)
(4.55)

=
(
∑

)∑ = ( ) when ≫ , #
(

− /
)

(4.56)

and,

||⃗ || = (4.57)
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Using these quantities, and the formula for the point capacity, α− (κ) =
∫ κ
−∞ ( − κ) , we

can write,

Capacity for Ellipsoids:

α (κ) = ( + )α (κ+
√

) when ≫ , #
(

− /
)

(4.58)

with and are de ned by Eqns 4.55-4.56 when ≫ , # − / , and
√

behaves

like an additional margin κ =
√

introduced by the ellipsoid structure.

Interestingly, in the scaling regime, the e fective dimension for the ellipsoids is equivalent to another

measure of dimension, , called the participation ratio61–63, de ned by

=

(∑
= λ

)

∑
= λ

(4.59)

where λ is an eigenvalue of single value decomposition (not normalized), whereas for , is a

radius in th dimension of an ellipsoid. and λ are closely related, as both de nitions are measures

for how extended data are in the th dimension. Particularly when − are uniformly sampled from

a sphere, then and λ are proportional to each other (Lemma 12 in Appendix to the chapter) .

Combined Expression for the Capacity in Large

Finally, we note that we can combine the results for all the above regimes can be expressed by a single

set of equations.
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For large ,

α (κ) = ( + )α (κ+ κ ) (4.60)

κ =
√

(4.61)

= ⟨ ⟩ =
∑

( + )
/
∑

( + )
(4.62)

=

(
∑

+

)
/
∑

( + )
(4.63)

Finally, we note that the de nition of the ellipsoid dimension above, , is not invariant to a global

scale of all radii, except in the regime of small . The reason is that the separation of the manifolds

depend not only on their intrinsic geometry but also on their distance from the common origin. Thus

both dimensionality and radii take into account the center norm. Indeed, the size scale appearing in

the de nition of above is the scale of the center norm. This is re ected in the numerical evaluation

of in Figure 4.5 below.

4.2.6 Support Manifold Structures

It is instructive to consider the types of manifold support structures that arise. In general, the fraction

of touching ellipsoids is

=

∫
⃗
∫ κ+ ⃗|| ||

κ+ (⃗ )
(4.64)

The fraction of embedded ellipsoids is

=

∫
⃗
∫ κ+ (⃗ )

−∞
(4.65)
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The fraction of interior ellipsoids is

=

∫
⃗
∫ ∞

κ+ ⃗|| ||
(4.66)

Large D Limit

Here we consider the limit of large , and analyze the behavior of support structures in di ferent

regimes of .

Large , = ( ) In this limit || ⃗||,− = ( / ), so that

=

∫
⃗
∫ κ+ ⃗|| ||

κ+ (⃗ )
=

∫
⃗
∫ ∞

−∞
= (4.67)

, and

=

∫
⃗
∫ κ+ (⃗ )

−∞
=

∫
⃗
∫ −∞

−∞
= (4.68)

and

=

∫
⃗
∫ ∞

κ+ ⃗|| ||
= (4.69)

implying that all of the manifolds are touching the hyperplane in this regime.

Large , ∝ − : Scaling Regime In this limit, || ⃗|| ≈ ||⃗ || = ( ) and− = ( / ).

Therefore,

=

∫
⃗
∫ κ+ ⃗|| ||

κ+ (⃗ )
=

∫
⃗
∫ κ+ ⃗|| ||

−∞
=

〈
− (κ+ |⃗ ◦ ⃗ |})

〉
⃗

(4.70)

=

∫
⃗
∫ κ+ (⃗ )

−∞
=

∫
⃗
∫ −∞

−∞
= (4.71)
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and

= − − =
〈

(κ+ |⃗ ◦ ⃗ |})
〉
⃗

(4.72)

implying that there is no manifold embedded, but most of the manifolds are either touching the

margin plane or in the interior space.

4.2.7 Remarks

It is notable that the capacity of ellipsoids in the high limit (Eqn. 4.44) resembles that of balls

(Eqn. 2.75), with an e fective dimension and radius . The support structures of the ellipsoids

also behave similarly to the spherical balls in Chapter 2, exhibiting three regimes of support struc-

tures (embedded, touching and interior) and in high , non of the manifolds are embedded in the

margin plane, and the fraction of touching manifolds increase like − (κ +
√

). In the next

section, this analogy extends tomore general case of arbitrary smooth convexmanifolds, and we show

the replica treatment of the smooth convex manifolds.

4.3 General Smooth Convex Manifolds

4.3.1 Model

We now consider the problem of linear binary classi cation of points on convex smooth manifolds.

We de ne a smooth convex manifold as a compact convex manifold in Euclidean space with convex

and twice di ferentiable bounding curve. It is useful to parametrize such a manifold as the set of all

points, x inR , of the form

x +
∑

=

u (4.73)
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where x and u are (linearly independent) vectors in R and the -dimensional vector⃗ obeys the

constraint (⃗ ) ≤ , where : R → R is a twice di ferentiable convex function. We will refer to

x as the center of the manifold and to u as its axes. Examples of smooth and non-smooth convex

manifolds are provided (Smooth: Figures 4.1-4.2, Non-smooth: Figure 4.4). Our data consists of

suchmanifolds and their target binary labels denoted as µ, µ = , ..., . We search of a set ofweights

w ∈ R that obey the following inequalities,

µw

(
x µ +

∑

=

uµ
)

≥ κ ∥w∥ ∀⃗ , (⃗ ) ≤ (4.74)

In order to evaluate the ability of the perceptron to classify the manifolds, we need to specify their

statistical properties. As before, we assume that each component of xµ, uµ are independent Gaussian

random variables with unit variance. With these assumptions, and assuming large , the centers have

norm
√

and the u ’s are orthogonal vectors with norms
√

.

Similar to the replica calculation for ellipsoids, we consider the thermodynamic limit , → ∞.

We assume the manifold embedding dimension, is nite in the thermodynamic limit, and that the

function (⃗ ) is independent of .

4.3.2 Fields of the Closest Point

Givenw, we de ne the elds induced by the centers µ and the elds induced by the basis vectors⃗µ

as µ = ∥w∥− µw ·xµ, which are the eld induced by themanifold centers, and µ = ∥w∥− µw ·

uµ = , ..., . Using these elds we can express the constraints 4.74 by Eqn 4.6 and 4.7 correspond-

ing to the point on the manifolds with the smallest projection on the margin hyperplane of w. The

evaluation of ˜(⃗ ) requires the di ferentiation of
∑

= + λ (⃗ ) with respect to , where λ is a

Lagrange multiplier enforcing the manifold constraint, yielding,

= −λ∂ (⃗ ), (⃗ ) = (4.75)
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which needs to be solved for ˜ = ⃗ and substitute in (⃗ ) = ˜(⃗ ) · ⃗ − κ. The relation between the

vector⃗and ˜(⃗ ) is shown in Fig. 4.2(a).

4.3.3 Mean Field Equa ons of the Capacity

We use the replica theory to evaluate the limit where the volume of solutions vanishes. Similar to the

replica calculation of ellipsoids, above, the equation capacity is given by

α− (κ) = ⟨ ( ,⃗)⟩ ,⃗ (4.76)

where stands for manifolds

( , ) = min
,⃗ , + + (⃗ +⃗ )>

[
+ ∥⃗ ∥

]
(4.77)

where

(⃗ ) = ˜(⃗ ) · ⃗ − κ (4.78)

and ˜ is the parameterization of the point on the manifold that is closest to the solution hyperplane

characterized by⃗ (minimizing ), given by 4.75 (Figure . 4.2(a))

Regime 1 (Interior Manifolds): − κ > −⃗ ·⃗(̂ )

In this regime, = = so that the elds and⃗are simply and⃗,⃗=˜(⃗ ) and (⃗ +⃗) = (⃗ ).

This regime corresponds to the case where all manifolds are interior and do not contribute to . The

regime exists until the inequality + (⃗ ) ≥ becomes equality, i.e., − κ =−⃗ ·⃗(̂ ).

Regime 2 (Touching Manifolds): < − κ < −⃗ ·⃗(̂ )

Here, + +
(⃗

+⃗
)
= but = + ̸= κ, implying that the manifold’ center is an

interior point; in other words, themanifold touches themargin plane only at a single point. Thus, for
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a given and⃗we need to solve

min
⃗

[
+ ∥⃗ ∥

]
(4.79)

where = − −
(⃗

+⃗
)
. Di ferentiating with respect to⃗ yields,⃗ = ∂⃗ = ∂⃗ {⃗ ·⃗},

namely,

⃗ = ⃗ (4.80)

(where we have changed notation from ˜to⃗). This yields also, = ⃗ · (⃗ + ⃗)− κ, hence

= (κ− −⃗ ·⃗)( + )− (4.81)

Finally, + = ( + ) yielding,

( , ) =
(κ−⃗ ·⃗ − )

+
(4.82)

= − ( − κ) + (⃗ +⃗) (4.83)

This regime holds as long as the interior elds⃗+⃗ are non zero. The lower limit of this regime is

when is such that these elds vanish, i.e.,⃗ → −⃗ , hence,

⃗+ ⃗(⃗ ) → (4.84)
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so that⃗itself is antiparallel to⃗,

⃗(⃗ ) = − − ⃗ (4.85)

and where = κ− , hence = − yielding for the lower limit of this regime,

= κ−
(⃗ )

(4.86)

where, (⃗ ) is the magnitude of the point⃗∗(⃗ ) de ned by a vector⃗ such that⃗∗(⃗ ) is parallel to⃗.

Thus, (⃗ ) is simply the magnitude of the intersection of⃗with the manifold, Figure 4.2(b).

=
(−⃗ ·⃗ − ( − κ))

+
(4.87)

where the -dim vector⃗ has to be calculated self-consistently through,

⃗ = ˜(⃗ − ⃗) (4.88)

=
−⃗ ·⃗ + κ−

+
(4.89)

Regime 3 (Embedded Manifolds): − κ < −

Here ⃗ = ⃗ +⃗ = , and = + = κ, implying that the center point as well as the entire

manifold is on the margin plane, hence

( ,⃗) = ( − κ) +
∥∥⃗ ∥∥ (4.90)

Putting results from the two regimes, we get:

96



α− =

∫
⃗
∫ κ−⃗ ·⃗ (⃗ )

κ− /

(−⃗ ·⃗ − + κ)

+
+

∫
⃗
∫ κ− /

−∞
([ − κ] + ) (4.91)

where,

⃗ = ˜(⃗ − ⃗) (4.92)

=
−⃗ ·⃗ − + κ

+
(4.93)

and = ||⃗ || . is the magnitude of the intersection of⃗with the manifold.

Here, ˜(⃗ ) is de ned via

˜(ˆ) = argmin ′⃗ ′ · ˆ, (⃗ ′) = (4.94)

Figure 4.2: Geometrical Interpreta on. (a) Rela onship between different fields. = ∥w∥− w · x : field induced
by the center of the manifold x , i.e. the distance between the center x and the solu on hyperplane characterized by
w . ⃗ is the vector of fields induced by basis vectors, i.e. µ = ∥w∥− µw ·uµ. Together, +⃗ ·⃗ determines the
distance between the solu on hyperplane and the closest point on the manifold characterized by the manifold shape
constraint (⃗ ) = . (b) Geometric interpreta on of different regimes. Purple line denotes the range of⃗ (̂ ) when the
manifold is in the touching regime, from the point 1 to point 2. From point 2 to 3 denotes the range of⃗(̂ ) when the
manifold is in the embedded regime.
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4.3.4 Large D Limit

We assume that is large but the size of the manifold is such that ≪
√

,

α− =

∫
⃗
∫ κ−⃗ ·⃗

−∞

(κ−⃗ ·⃗ − )

+
, when ≫ (4.95)

⃗ = ˜(⃗ − ⃗) (4.96)

=
−⃗ ·⃗ −

+
(4.97)

Since⃗ ·⃗ is large we can approximate

=
−⃗ ·⃗
+

= ⃗ ·⃗ (4.98)

and assume self averaging,

=
−⟨⃗ ·⃗⟩
+ ⟨ ⟩ = ⟨⃗ · ⟩ (4.99)

We can introduce manifold dimensions and radii,

Manifold Radius and Dimension We can now express the above results in terms of the e fective

manifold dimensionality and radius. In the limit of large , we can de ne

= ⟨ ⟩⃗ (4.100)

=
⟨⃗ ·⃗⟩⃗

(4.101)
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where⃗ is de ned by the coupled equations

⃗ = ˜(⃗ − ⃗) (4.102)

=
−⟨⃗ ·⃗⟩
+ ⟨ ⟩ (4.103)

so that the capacity can be expressed as

α = ( + )α (κ+
√

) (4.104)

where
√

behaves like an additional margin κ introduced by the manifold structure.

Scaling Regime

In the scaling regime, = ( − ) and is ( ) so⃗− ⃗ ≈ ⃗. In this regime, Eqns. 4.100-4.104

hold but the expression for the manifold radius and dimension are simpler, since⃗ simply becomes

⃗ = ˜(⃗ ) (4.105)

Here, the expressions for e fective radius and dimension is given with Eqn. 4.105,

= ⟨ ⟩⃗ , in scaling regime (4.106)

=
⟨⃗ ·⃗⟩⃗

, in scaling regime (4.107)

with the excess margin

κ =
√

in scaling regime (4.108)

where stands for widths, see Figure 4.3.
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Mean Width Interestingly, the excess margin κ is related to a well known measure of a size of

convex manifolds, known as themean widths64, and is de ned as

GaussianMeanWidth = ⟨ max
⃗ ,⃗ ∈

[⃗
· (⃗ − ⃗ )

]
⟩⃗ ∼

√
= κ (4.109)

where ⃗ and ⃗ are points on a given manifold in R and⃗ is a Gaussian random vector ∼

( ,
⃗
) .

The relationship between the manifold dimension and manifold radius and Gaussian

MeanWidth is illustrated in Fig. 4.3.

Figure 4.3: Rela onship between the Gaussian Mean Width the Effec ve Manifold Radius and Dimension in the
Scaling Regime. (a) Effec ve Radius = ⟨

∥∥˜(⃗ )
∥∥ ⟩⃗ is the mean of max projec on points ˜(⃗ ) along the ran-

dom direc ons⃗, while the effec ve dimension is defined as
⟨|⃗ ·̃ (⃗ )|⟩⃗

. (b) Gaussian Mean Width is defined as

= ⟨
{
˜ (⃗ )− ˜ (⃗ )

}
·⃗⟩⃗ , and in this defini on, =

√
.
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Figure 4.4: Embedding (support) structures of non-smooth manifolds: manifolds. (a) Interior manifolds. (b) Touching
with a point. (c) Touching with a line. (d) Touching with a facet. (e) Embedded in the margin plane.

4.4 General Manifolds

Smoothnetworks are simple in that they can touch ahyperplaneby a single point or be fully embedded

in it. This is not true for non-smooth manifolds, as there are many facets that can be partially embed-

ded due to the non-smoothness. In other words, a non-smooth manifold can touch the hyperplane

by a point, line segment, a facet, or multiple facets (Fig. 4.4).

4.4.1 Capacity of Smooth and Non-smooth Manifolds

Given the complicated geometric relations between non smooth manifolds and the margin planes,

explicit expression for the capacity that delineates the di ferent regimes in⃗ and is cumbersome and

depends on the speci c details of the manifold at hand. Here we note that for any manifold, we can

write down the capacity in the following universal form
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Universal mean eld equation for manifold capacity

α− =

∫
⃗
∫ κ−⃗ ·⃗ (⃗ )

−∞

(−⃗ ·⃗ − + κ)

+
(4.110)

where,⃗ is de ned via

⃗ = ˜(⃗ − ⃗) (4.111)

=
−⃗ ·⃗ − + κ

+
(4.112)

The key point is that the solution for⃗ changes its nature as decreases (for a given⃗) and au-

tomatically dissects the range of integration over to the speci c domains (touching with points,

lines, facets, etc). Note that the fully embedded regime is also incorporated in 4.110. In this regime,

⃗+⃗ =⃗− ⃗ = , and = κ− , hence,⃗ =⃗/(κ− ) , which in the embedding regime will

be a point inside the convex manifold in the direction of⃗, see Fig. 4.2(b).

4.4.2 Large Approxima on for a General Manifold

In the case of smoothmanifolds, we have shown that in the limit of large the capacity can be approx-

imated by Eqns. 4.110-4.103. Here we note that the same approximation applies to general, smooth as

well as non-smooth manifolds. Speci cally, we approximate the capacity as
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Capacity for General Manifolds in high :

α = ( + )α (κ+ κ ) (4.113)

κ =
√

(4.114)

= ⟨ ⟩ (4.115)

=
⟨⃗ ·⃗⟩

(4.116)

where

⃗ = ˜(⃗ − ⃗) (4.117)

=
−⟨⃗ ·⃗⟩
+ ⟨ ⟩ (4.118)

and averages are over gaussian − vectors⃗. As is the case of smooth manifolds, in

the scaling regime where is ( − / ), and are given via⃗ where⃗ is simply ˜(⃗ ) , hence

they coincide with and and are related to the Gaussian Mean Width as in the smooth case

above (Figure 4.3).

4.5 Numerical Inves ga ons

4.5.1 Numerical Solu ons of the Mean Field Equa ons

In simple cases analytical expressions can be used to solve numerically the mean eld equations, as

is the case of ellipsoids discussed above. Here we show how to use the analytical formulae to solve
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the mean eld equations for the ellipsoids. For a general manifold, calculating⃗ ·⃗ and for⃗ on

the manifold for each⃗ and can be done by iterative methods. Here we present such an algorithm,

adequate for general manifolds in the large regime. In the limit of large ,
∣∣⃗ ·⃗

∣∣ ≫ | | ,κ, and

we can use Eqns 4.113-4.118. Furthermore, in this limit,⃗ ·⃗, and are self averaged with respect to⃗.

The pseudocode for the algorithm is given in Alg. 4 below.

Itera ve Numerical Solu on

In order to solve for and (Eqn 4.117- 4.118), we use an algorithm for each⃗, that essentially iterates

between updating given the current estimate of⃗, using Eqn 4.118 and updating the estimate of⃗

given the new estimate of and the current estimate of⃗, Eqn 4.117.

Solving eq. 4.117: First we note that evaluating the operation in Eqn 4.117 can be done ex-

plicitly in simple cases (in particular, for convex smooth manifolds with known parametrization). In

general, one can search numerically for the max projection points (or signed min projection points).

If the manifold is non-smooth and has a nite number of vertices, then one can simply iterate over all

vertices. Otherwise, a local search using a gradient can be done, and since the search is on the convex

hull, the local search guarantees the convergence to the global optimum. This appears as a

function in Alg. 4.

Note that ⃗ we are solving is not simply a max projection point on⃗, but a max projection on

⃗ = ⃗ − ⃗ (Eqn. 4.117). The solution⃗ may come from anywhere inside of the convex hull or the

surface of the manifold, hence we allow the search on⃗ to be a linear combination of the vertices. To

search for⃗, in the next step we de ne⃗ = η⃗ + ( − η)⃗ − which is a linear sum of⃗ − in the

previous step − and themax projection in the direction of⃗ at time ,⃗ . If the di ference between

⃗ and⃗ − is smaller than a given tolerance ϵ , then⃗ converged, as well as . Otherwise, continue to

the + th step, where the new⃗ is computed with the new⃗. The algorithm for this is summarized

in the pseudocode (Alg. 4).

In the following sections,we showthe speci cmanifold examples andhowthe input of (⃗ , )

, as well as the details of the max projection search di fer based on the type of the problem.
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Algorithm 4 Iterative method for approximating capacity of general manifolds in high
[α , , ] = function manifold_capacity( , ,η, , ϵ , )
Input: {Manifold dimension , number of ′ , learning rate η, max iteration , toler-
ance ϵ , the manifold data de ned inR × }
for i=1 to do
⃗ =⃗( ) ∼ ( , I ])
Set = , ϵ = ∞
⃗ = (⃗ , )
while < and ϵ > ϵ

= +
= −⃗ ·⃗

+
⃗ =⃗− ⃗
⃗ = (⃗ , )
⃗ = η⃗ + ( − η)⃗ −
ϵ = ||⃗ −⃗ − ||/||⃗ ||
end
⃗( ) = ⃗
end

=
{
⟨
∥∥⃗ ( )

∥∥ ⟩
}

=
{⟨⃗ ( ) ·⃗ ( )⟩ }

α = ( + )α (κ+
√

)
Output = [α , , ]
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4.5.2 Simula on Results

Ellipsoids

Consider the ellipsoids give by Eqn. 4.2 and constraint, Eqn. 4.4. In this case, the manifold parame-

terization is known, then⃗ = argmax
⃗

⃗ ·⃗ has an analytical solution given by the minus of Eqn. 4.8

and Eqn. 4.9 for ellipsoids. In this case, the input to the max projection operation for ellipsoid, called

should include the radii vector. Pseudocode for is given in Alg. 5.

Furthermore, in the case of ellipsoids, it is possible to solve for analytically in the of the large (i.e.

Eqn.4.40). However, to test the e fectiveness of the iterative algorithm, we proceed to test the iterative

algorithm in the simulations below.

Algorithm 5Maximum Projection Point on Ellipsoid
˜= function (⃗ , )
Input: -dimensional direction vector⃗, = { -dimensional radii vector ⃗ }
for i=1 to do
˜ = √∑

end
Output: The point on the manifold with max projection in⃗ , ˜

Using the iterative methods described above, we calculated the theoretical estimate of linear classi-

cation capacity of ellipsoids, with embedding dimension = in ambient dimension =

. The radii for each ellipsoid is given by the = [ . , . ] for each = , ..., . is

shown in the axis of the Fig 4.5 as ⟨ ⟩ . We compare the capacity estimated by the iterative algorithm

using the mean eld approximation (noted as α ), with the capacities estimated by the expressions

of e fective radius and e fective dimension in di ferent regimes (in the regime of ∼ ( ), Eqns.

4.45-4.46, and in the scaling regime, Eqns 4.55-4.56. We also calculated the simulation capacity in the

similar manner to algorithms for balls described in Chapter 2-3, with the worst point analyt-

ically calculated by Eqn. 4.8-4.9. Using the ambient dimension of = for the ellipsoids, the

critical value of was determined by nding the value of such that the average number of being

separable was half the times of the total number of repetitions.
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The iterative algorithm capacity matches the estimated capacities using e fective radii and dimen-

sions well, as well as simulation capacities described above. In the limit of large , the capacity ap-

proaches / , where the hyperplane is orthogonal to all embedded dimensions of an ellipsoid.

We also compare the measures of dimensions relevant for the classi cation capacity of ellipsoids

(Fig. 4.5). The dimensions calculated from the iterative algorithm ( ,M formanifolds) is compared

with the approximate e fective ellipsoid dimensions in di ferent regimes (Eqn 4.46 and 4.56), and

they agree well. Furthermore, these estimated e fective ellipsoid dimensions match the participation

ratio (4.59), , when is in the scaling regime, and match the actual full embedding dimension

when is large. Intuitively, this means that is a relevant measure for linear classi cation

capacity when ’s are small (∼ − / ). In the case where is large, the embedding dimension

is the relevant measure for the capacity, because the solution has to orthogonalize all embedding

dimensions independent of the structure.

We also compare the ratio between e fective radius and the actual scale of the ellipsoid (in this case

= ⟨ ⟩ ), for calculated from the iterative algorithm and calculated from approximations

in each regime of ∼ − / (scaling) and ∼ ( ) (Fig. 4.5). As before, the agreement between

the , ’s are good. Furthermore, the ratio between e fective radius (for capacity) and the mean

of the radii start out above 1, and decreases with increasing . This means that the larger the ellip-

soids get, the more fraction of ellipsoids get embedded, hence e fective radius contributing to the

e fective increase in the margin κ =
√

gets smaller due to the embedding con guration.

Dimensional Manifolds

Consider the problem of linearly classifying of -dimensional manifolds where the point on the

manifold is given by Eqn. 4.2 where (⃗ ) =
∑

= | / | − = . The explicit expression for

classifying manifolds is considered in60, and in this section we focus on nding their perceptron

capacity as an example of manifolds that are de ned by their vertices (Fig. 4.4). In this case, there are

only vertices (2 extreme points along the direction vectoru ), and nding themax projection point

in the direction of⃗ from the set of points is given by⃗ = argmax⃗ · , simply the search over all
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Figure 4.5: Linear Classifica on of Ellipsoids. (a) Linear Classifica on Capacity of -dimensional ellipsoids, α =
/ , where is the ambient dimension, and is maximum the number of ellipsoids such that ellipsoids are linearly

separable. The embedding dimension of ellipsoids used was = and ∼ [ . , . ] for =
, ..., and = ⟨ ⟩ is shown in the -axis. (Red) Mean field approxima on capacity α , evaluated by the
itera ve algorithm given in Alg. 4 and Alg. 5. (Blue dashed) Approxima on of the ellipsoid capacity as the capacity of a
ball using a large and ∼ ( ) approxima on for and given by Eqns. 4.45- 4.46. (black dashed) Ellipsoid
capacity approximated using and approxima on when is in the scaling regime, given by Eqns. 4.55-4.56.
(Green) Capacity approxima on for large , / , where all of the ellipsoid embedding dimensions are orthogonalized
by the solu on. (Yellow) Simula on capacity computed with = and repe ons. (b) Dimensions of the
ellipsoid. (Blue) Embedding dimension . (Red) Dimension of the ellipsoid evaluated by the itera ve algorithm, .
(Orange) Par cipa on ra o, , given by Eqn. 4.59 using as eigenvalues. (Pink) approxima on in large

∼ ( ) regime given by Eqn.4.46 (Green) approxima on in large and scaling regime given by Eqn. 4.56. (c)
Size (Radius) of Ellipsoids. (Red) Effec vemanifold radius evaluated by the itera ve algorithm, divided by the overall
scale ⟨ ⟩ . (Pink) approxima on in large , ∼ ( ) regime given by Eqn. 4.45(Green) approxima on in
large and scaling regime given by Eqn. 4.55
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vertices whose computation time is linear in the number of points. In this case, the input for the

max projection operation in the iterative algorithm, called , should include the set of

points. Pseudocode for is given by Alg. 6.

Algorithm 6Maximum Projection Point on a set of points
˜= function (⃗ , )
Input: -dimensional direction vector⃗ , A set of points in dimensional basis which
de ne the vertices of the convex hull = { ∈ R × }
= ⃗ · (:, )

˜ = (:, )
Output: The point on the manifold with max projection in⃗ , ˜

Using the iterativemethods described above, we calculated the linear classi cation of capacity of

manifolds, with the embedding dimension = in the ambient dimension = . The radii

for each direction is set to be equal, i.e. = (all vertices are distance away from the center ) for

all = , ... . is shown in the x axis of the Fig. 4.6.

We compare the capacity estimated by the iterative algorithm using the mean eld approximation

(noted as α ), with the capacities estimated as that of a ball using the e fective radius and e fective

dimension of manifolds in the scaling regime. In the scaling regime, the replica analysis gives us

= and = log( ), and the derivations are given in the appendix to the chapter (section

4.7.2). The estimated capacity using the iterative algorithm agrees well with the simulation capacity,

as well as approximations in the scaling regime, and large R regime.

We also compare the measures of dimensions relevant for the classi cation capacity of mani-

folds. The dimension estimated by the iterative algorithmmatches the approximation of ( ) ∼

log( ) in the scaling regime (due to the extreme value theory, details in theAppendix to the chapter),

and in the regime of large it matches the embedding dimension , which in this case is equivalent

to the participation ratio (as all = ).

Furthermore, in the scaling regime, the e fective manifold radius found by the iterative algorithm

is close to , as predicted by the theory (details in the appendix). / transitions from 1 (in the

scaling regime) to a value much smaller than 1 (in the large regime), due to the increased fraction of
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Figure 4.6: Linear Classifica on of Non-smoothmanifolds: -dimensional Manifolds of Radius . (a) Linear Classifi-
ca on Capacity of -dimensional manifolds,α = / , where is the ambient dimension, and is the maximum
number of manifolds such that manifolds are linearly separable. The embedding dimension of manifolds used
was = and the number of subsamples used for tes ng was = , two endpoints in each basis vector di-
rec on. is shown in the -axis. (Red) Mean field approxima on capacity α , evaluated by the itera ve algorithm
given in Alg. 4 and Alg. 6. (Blue dashed) Approxima on of the capacity as the capacity of a ball using as the actual

and = log , which is the approxima on of effec ve manifold proper es in the large regime. (blue markers)
Simula on capacity calculated with = and itera ons to compute the frac on of linear separability. (Green)
Capacity approxima on for large , / , where all of the manifold embedding dimensions are orthogonalized by
the solu on. (b) Dimensions of the manifolds. (Green) Embedding dimension . (Red dashed) Par cipa on ra o,

, given by Eqn. 4.59 using = as eigenvalues. (Blue) Dimension of the manifolds evaluated by the
itera ve algorithm, . (Black marker) approxima on in large regime, log (Deriva on in appendix). (c) Size
(Radius) of manifolds divided by . (Red) Effec ve manifold radius evaluated by the itera ve algorithm, divided
by , compared with unity (Blue).

manifolds that are embedded.

Random Strings

Consider the problem of linearly classifying of random strings, whose intrinsic dimension is 1, but

the embedding dimension is , and the ambient dimension of . Each point on the random string

is parameterized by the vector⃗ whose components are

= { (θ − φ )} ; (4.119)

+ = { (θ − φ )} (4.120)
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Figure 4.7: RandomStrings (Illustra on). (a) RandomString in Neural State Space. The values in each ambient dimension
is given by each neuron’s ac vity. The random string’s degree of freedom is 1, while the embedding dimension is .
Each point on the sample manifold represents neural ac vity of a same object, with different latent variable such as
orienta on of an object. (b) Neural Interpreta on of Random Strings. The random string manifolds given by Eqns.
4.119-4.121 can be interpreted as orienta on tuned neurons with different amplitudes and frequencies. (c) Illustra on
of for th basis vector, which is similar to the amplitude of the neural tuning curve for th neuron.

This can be re-written as

µ = ( )µ +

/∑

=

(θ−φ ) (4.121)

(where the is used as an imaginary
√
− to distinguish from the index ).

Figure 4.7 illustrates an example of a random string. This de nition has an interesting analogy

with the activity patterns of the population of orientation tuned neurons. For instance, the value of

point x in th dimension, can be thought of as th neuron’s activity, where each neuron is tuned

to a di ferent orientation (middle panel). The heterogenous can be thought of as di ferent ampli-

tudes of the neural activity. In this analogy, if you take an object at one angle, then all neurons will

have di ferent levels of activations, and the slice of the activity patterns correspond to a point on a

random string, parametrized by θ, which is essentially the angle of an object. If you change the ori-

entation of the stimulus, then the activity patterns correspond to a di ferent slice, which corresponds

to a di ferent point on a θ-parametrized random string. Once you rotate the stimulus the full ,̊
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Figure 4.8: Linear Classifica on of -dimensional Random Strings. (a) Linear Classifica on Capacity of -dimensional
Random Strings,α = / , where is the ambient dimension, and is the maximum number of random strings such
that random strings are linearly separable. The embedding dimension of random strings used was = and the
number of subsamples used for tes ng was = . , overall scale of the random string, and the radius of
the -dimensional ball that the random string is on, is shown in the -axis. (Red dashed) Mean field approxima on
capacity α , evaluated by the itera ve algorithm given in Alg. 4 and Alg. 6. (Yellow marker) Simula on capacity
calculated with = and itera ons to compute the frac on of linear separability. (b) Dimensions of the
Random Strings. (Green) Embedding dimension . (Red dashed) Par cipa on ra o, , given by Eqn. 4.59 using

= as eigenvalues. (Blue) Dimension of the random strings evaluated by the itera ve algorithm, . (Black
marker) 1+log . (c) Size (Radius) of random strings divided by . (Red) Effec ve manifold radius evaluated by the
itera ve algorithm, divided by , compared with unity (Blue).

then the activity pattern comes back to the original slice, and you come back to the original point on

the random string. Note that this particular random string lies on the surface of a ball, whose radius

is =
√∑ /

= .

What should be an e fective dimension of this string with heterogenous scales ⃗ ? And, if these

strings are in random positions and directions, what should be their capacity? To test this, we cal-

culated the classi cation capacity of samples of random strings in embedding dimension , ambient

dimension = , where the number of samples used was = , such that θ = π , and

= for all .

We nd that the classi cation capacity α = α found by an iterative algorithm matches the

simulation capacity of random strings (Figure 4.8(a)). In the case of random strings, the manifold

e fective dimension (also found via the iterative algorithm) has a very low e fective dimension in

the scaling regime, due to the fact that it is a string whose intrinsic dimension is merely and is not
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Figure 4.9: Effec ve Proper es Random Strings for Different Number of Samples Per Manifold. (a) Random String
Dimension versus the Number of Samples Per Manifold ( ), for = , = , = . ( /

√
)). Both

par cipa on ra o, (red) and the effec ve manifold dimension found by the Mean Field itera ve algorithm, ,
saturates around = , indica ng that = used in the Figure 4.8 is already a saturated, -independant
proper es. (b) Random String Radius versus the Number of Samples Per Manifold (m). The effec ve manifold radius
( ) found by the Mean Field itera ve algorithm saturates around = .

lling the space spannedby basis vectors, althoughwhen is large, the solutionhas to orthogonalize

the manifolds and the e fective dimension approaches the embedding dimension , and it is re ected

in the found via the iterative algorithm (Figure 4.8(b)). Note that in this case, since all has

the same size, = . Furthermore, is in the scaling regime, and goes to a value much

smaller than in the large regime, re ecting the fact that many of the random strings must be

orthogonalized by the solution, and thereforemore of them are embedded, resulting in smaller /

seen by the centers.

In the simulations for Figure 4.8, we used = training samples per each manifold. In the

above gure we nd that the manifold dimensions and radius is in the saturated regime as a

function of , due to the fact that the samples are coming from a string, and the sampling is already

dense at = . This is essentially like doing a local search for the worst points (although not

explicit), because we are in the densely sampled regime.
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4.6 Discussion

We have presented a mean eld theoretic calculation of linear classi cation of general manifolds, ex-

tending Gardner’s replica theory of classi cation of random isolated points 8,23 and the recently devel-

oped theory of classi cation of random balls60. This theory characterize the capacity as the inverse

rate of reduction in the entropy of the weight vector space by the separability constraints per mani-

fold. These constraints are expressed in terms of special points on the manifolds that have minimum

projections on self consistent −dimensional eld vector. Importantly, we were able to derive a set

of universal mean eld equations applicable to all low dimensional convexmanifolds, 4.110-4.112. The

key point is that for a given manifold geometry, the position of the worst point on the manifold rep-

resented by⃗ = ˜(⃗ − ⃗) changes as the eld on the center represented by spanning the sequence

of increasingly large overlap between the manifold and the the margin plane. This sequence depends

of course on the details of the geometry of the convex manifold. These equations cannot be solved

analytically except for the simplest geometries. We have developed an iterative algorithm to solve these

self consistent equations, and in our experience, their converge is remarkably fast even when dealing

with dimensional manifolds with in the range of − .

Of particular interest is the case of manifolds with high dimension ( ≫ ) In this case, the key

parameters are Manifold Radius, and Dimensionality . The manifold capacity is equivalent

to that of balls with dimensionality and radius equal to and respectively. These quantities

appear in the capacity mainly through the excess margin κ =
√

. The reason for this com-

bination is the following. Consider rst, an dimensional ball. The margin is not dimensionless but

depends on the norm of the inputs. Thus, if we demand a margin κthis is equivalent to demanding a

margin κ+
√

from the centers, since, if the distance of the points on the circumference of the ball

from the center is
√

. Now when the ball is low dimensional, a reduction in the required excess

margin occurs due to the tilt of the ball with respect to the hyperplane, so that the projection of the

center should increase only by a factor
√

/ =
√

. A similar argument holds for a general

manifold in this limit.

We have noted that the geometric parameters and are not intrinsic geometricmeasures but
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depend also on the overall size of the manifolds relative to the center norm. Thus, if the manifold is

increased by scaling all the points by a global factor, say , relative to the center, then when grows,

eventually approaches the full embedding dimension , re ecting the need of a solution to be

orthogonal to the entire manifold subspace. Conversely, when decreases, eventually the manifold

reaches the scaling regimewhere capacity is nite despite the high dimension, and
√

approach

the Gaussian MeanWidth value
√

= . , see 4.3 The change in the Manifold Dimen-

sion as increases may be dramatic. For instance, in the random string example (as well as balls),

increases from ∼ log for small (the scaling regime) to = for large , see 4.8b.

In conclusion, the generality of the theory developed in this Chapter opens the door for applica-

tions of the derived results and methods for the investigation of neuronal representations of percep-

tual manifolds in biological as well as arti cial neuronal networks. However, in order to do so, some

limitations of the current theory might need to be relaxed. For instance, the present results deal with

random labels where the two classes are of roughly equal size. In many real problems this may not

be the case. Another issue is the assumption of random orientation of the manifolds. It would be

important to understand the role of correlation between the manifolds. Also, it will be interesting

to explore extensions to manifold representations which are not linearly separable. These issues and

others are discussed in the next Chapter.

4.7 Appendix

4.7.1 Equivalence between and λ

Lemma 12. If ⟨ − ⟩ = then, ∝ λ .

Proof. From the de nition we know that ⟨ ⟩ = . Consider the covariance of the manifold data

frommany realizations of⃗
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= x +
∑

ui

Then,

= ⟨{ − ⟨ ⟩} { − ⟨ ⟩} ⟩ =
∑

⟨ ⟩u u

λ are by de nition,

λ = ⟨ ⟩

Hence,

λ =

4.7.2 Effec ve Dimension of manifolds

In the scaling regime,⃗(⃗ ) for manifolds is the -th vertex where = argmax . So,⃗ ·⃗ = max .

Given normally distributed ’s, the max value is centered in large

max ∼
√

log (4.122)

due to the extreme value theory. Hence, we obtain

= log (4.123)

= (4.124)
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for manifolds in the scaling regime.
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Chapter 5

Extensions

5.1 Correlated Manifolds

So far, we have considered randomly oriented manifolds. In real world data we expect that the man-

ifolds will be correlated; in particular, that the subspaces spanned by the di ferent manifolds will be

partially aligned. We rst consider the simple case of dimensional spheres that all share the same

subspace in the ambient dimensionR .

5.1.1 Parallel Spheres

Consider a perceptron classifyingparallel -dimensional discs, embedded in dimensions. The train-

ing data is given by:

x µ +

√ ∑

=

u ∀ |⃗ | ≤ (5.1)

where as before the components of x µ andu are i.i.d. normally distributed randomvariables. For

reasons that will be clear later on, it is convenient to scale to /
√

. It is also convenient to rotate
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the axes so that u are along the standard rst axes, so that the corresponding elds are

µ(⃗ ) = √ µ

(
w xµ +

√ ∑

=

)
> ∀ |⃗ | ≤ (5.2)

where here we restrict ourselves to zero ( xed) margin.

Minimizing with respect to , we get

= − µ /

√∑
(5.3)

Therefore, the minimum of LHS of 5.2 is

min µ( ) = √ µw xµ −

√√√√ ∑

=

(5.4)

Thus, the constraints are reduced to

√ µw xµ > κρ (5.5)

where

κρ =
√
ρ (5.6)

and

ρ =
∑

=

(5.7)

which is an average of dot products between the solution w and direction vectors (in a rotated

coordinate). Let us call ρ the overlap parameter.

Note that the total variance of each manifold is / while the square distance between center

pairs is: . Thus, their ratio is / . In contrast, in the random spheres, the total variance of

each manifold is whereas the square distance is as before . Hence the ratio is / .
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It is important to note that if ≪ then the solution vector w can be orthogonal to all mani-

folds by zeroing the corresponding components for any size of the manifold , without sacri cing

signi cant degrees of freedom. In this case, we expect the capacity to be the same as for the capacity

with the centers only, in the reduced dimension of − .

Thus, the problem of parallel manifolds is interesting only when ≈ ( scales with ). Let us

de ne the relative dimension parameter , such that

= (5.8)

In this regime, zeroing all components ofw is costly, so we expect that the nature of w depends on

and . Note that in this case (since ≫ ) the relevant scale of the radius should be radius over
√

. In our normalization above it means that is of order .

Capacity

The basic constraint 5.5 is equivalent to aGardner’s theory withmarginκwhich however is not a xed

parameter but assumes self consistent value, set by the order parameter ρwhich measures the overlap

between w and the manifold subspaces. To evaluate ρ (Eqn. 5.7) we need to evaluate the entropy of

the solution space given the constraint that the solutions’ average projection on the commonmanifold

subspaces is ρ . We denote this entropy (per ) by (ρ). The analog of 4.20 is

⟨log ⟩ = (ρ)− αα− (κρ) (5.9)

where α refers to the capacity for points. As before, in the capacity limit, ⟨log ⟩ vanishes and

from 5.9 it follows that the capacity is

α|| = α (κρ)
− (ρ) (5.10)
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where the symbol || stands for parallel manifolds and the entropy term is

(ρ) =
( − + ) + ( − )

(5.11)

where is related to ρ through,

ρ =
( − + )

[( − + ) + ( − )]
(5.12)

Di ferent overlap ρ yields di ferent capacities, so optimizing the capacityα|| with respect to ρ yields

the following equation (for ρ or ), as α|| is the maximum possible capacity

( − )
√

√
( − + ) + ( − )

= α||

(
κρ (−κρ) +

exp− κρ√
π

)
(5.13)

Since there are 3 equations (Eqns 5.10-5.11, 5.12 and 5.13), and 3 unknowns (α||, , ρ), one can solve

for α|| or ρ.

Phase Transi on

The solution for the capacity above shows dependence on the overlap parameter ρ, which needs to be

solved via as a function of . It turns out that there are two regimes of solutions for ρ, one where

ρ decreases with increasing , up to < , and another where ρ = for > . Qualitatively,

this means that for the parallel manifolds whose radii are smaller than , the overlap between w

and manifold subspace is nonzero, and the overlap increases with increasing . However, when the

manifold is beyond a critical value , all manifold subspaces are orthogonal to w and the overlap

becomes , due to the tradeo f between orthogonalizing and sacri cing the degrees of freedom. The

geometric intuition for two di ferent phases is given in Fig. 5.1 (a)-(b).

Let us consider the value of ( ) such that ρ = κ → as → +. At this value, the solution

must be orthogonal to the manifold, thereforeα = ( − ) (Fig. 5.1(c), Regime > ). Also, for

ρ to vanish, = − , yielding,
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( ) =

√
π

( − )
(5.14)

Thus for > ( ), α|| = ( − ) and κρ = ρ = . See Figure 5.1-(c). As the gure 5.1shows,

the predictions agree well with numerical simulations.

Field Distribu on

Since the eld distribution is determined by the set of constraints on the elds, in our case they should

be equivalent to the distribution of elds in the Gardner’s theory with margin given by 5.6 (see 5.9).

Thismeans that as long as ρ > i.e. < ,w is not in the null space of anymanifold. The fraction

of manifolds that touch the margin is given (as in the Gardner theory) by

= (κ) (5.15)

and the fraction that are interior is (−κ).When > ,w is in the null space of themanifolds.

Half of the manifold center are on the margin plane and half are not. See Figure 5.1(d).
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Figure 5.1: The Phase Transi on of Linear Classifica on of Parallel Manifolds. (a) When < , manifolds are either
interior (solid) or touching the margin planes (striped). (b) When > , manifolds are either interior or embedded
in the margin planes (diamonds). (c) Phase transi on of overlap and capacity at cri cal radius , for classifica on of
parallel balls with = in ambient dimension = . The overlap (ρ , Eqn. 5.7) between the manifold axes
and thew deno ng the solu on hyperplane vanishes as the ball’s radius approaches . The capacity α also
goes through phase transi on as well, however the value of capacity is stays large, as the embedding dimensions by all
manifolds are limited to . (d) Phase transi on of manifold configura ons at crucial radius . When < , most
manifolds are either interior or touching the margin plane (as shown in (a)), and when > , most manifolds are
either embedded or touching the margin plane (as shown in (b)). The simula ons and theory show good agreement.

5.1.2 Discussion

We can generalize this analysis to partially parallel correlated balls, where only a fraction of dimensions

( = < ) are shared between them and the rest of the subspaces ( = − ) are random.
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In this case, in the regime where the shared subspaces are orthogonalized, the problem remains as the

classi cation of balls in the null space of the shared subspaces. In this case, the solution will take the

form of

α|| = α (κρ, ρ, ρ)
− (ρ) (5.16)

where α is the capacity of balls and κρ is the e fective margin in the null space due to the radii

in the parallel subspaces and ρis the e fective radius in the null space due to the random directions

and ρ is the e fective ball dimension in the null space due to the random directions. Furthermore,

the problem can be generalized to other types of correlations (i.e. correlation between the manifold

subspace and the center of themanifold, or the correlation between centers.) We hope to explore these

issues of various types of correlations to take into account the structures in the realistic data.

5.2 Mixtures of Shapes

Figure 5.2: Linear Classifica on of Mixtures of Shapes (Illustra on). The linear classifica on capacity of mixtures of
shapes is given by Eqn. 5.17.

So far, we have discussed the classi cation of manifolds with same shapes and sizes. In this section, we

generalize the problem to the classi cation ofmanifolds with different shapes and sizes. Suppose there
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are different manifold types, and each of these types have the capacity of α where = , ..., (

for shape).

In this problem, the self-consistent term (the free energy term) is an average of each of the

classi cationproblemofmanifolds of the shape . Recall that of each shapedetermines the capacity

for each shape, through α− .

Then, the linear classi cation capacity of the mixtures of di ferent manifold types can be simpli-

ed to

α− = ⟨α− ⟩ (5.17)

where = , ..., refers to the index for each manifold type.

This remarkably simple and general theoretical result opens doors to the treatment of a vastly di-

verse set ofmanifold classi cation problems, from classi cation ofmanifolds di ferent shapes and sizes

to di ferent ratios of labels.

5.3 Class Imbalance

So far, we have covered the binary classi cation of manifolds where the number of positively labeled

manifolds is equal to thenumberofnegatively labeledmanifolds. Herewe consider the class imbalance

problem, where the number of positive labels is far less than the number of negative labels, or vice

versa. This is also known as classi cation with sparsity in the labels. In the theory of classi cation of

points, increasing the sparsity of labels has been known to increase the point classi cation capacity

by orders of magnitude (7). In this section, we ask the question whether increasing the sparsity of

manifold labels also improve the manifold classi cation capacity.

Note that classi cation of manifolds with sparse labels is an important example of classi cation

with inhomogeneous manifolds (Section 5.2). Notice that sparsity term is de ned as the fraction of

positively (or negatively) labeled manifolds out of the total number of manifolds, so a large sparsity

actually refers to a small (Fig. 5.3).
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One important thing to note is that in the balanced binary classi cation case where the number of

positive and negative labels are equal ( = . ), the bias term, , of the linear classi cation

µ

{
w

(
x µ +

∑

=

uµ
)

+

}
≥ κ||w|| (5.18)

was ignored because the optimal bias term which maximizes the classi cation capacity with bal-

anced labels is = . However, in the sparse label case, this is no longer true, and the nonzero bias

term needs to be included in the evaluation of the capacity, and the bias term needs to be optimized.

5.3.1 Sparse General Manifolds

Using the similar analysis as the calculation of perceptron capacity formixtures of shapes (Section 5.2),

we average the inverse of capacities for the positive and negative labels, and arrive at the expression for

the manifold capacity with sparse labels.

SparseGeneralManifolds With this, we can express capacity of generalmanifoldswith label sparsity

as

α− (κ, ) = α− (κ+ ) + ( − )α− (κ− ). (5.19)

where

= argmax α (κ, , )

and

α− (κ, , ) = α− (κ+ ) + ( − )α− (κ− )
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Sparse D-dimensional Balls As an example, we can express capacity of -dimensional balls of

radius with label sparsity as

α− (κ, , , ) = α− (κ+ , , ) + ( − )α− (κ− , , ). (5.20)

where needs to be found so that it maximizes the capacity with sparsity , i.e.

= argmax α (κ, , , , ) (5.21)

where

α− (κ, , , , ) = α− (κ+ , , ) + ( − )α− (κ− , , ). (5.22)

This result implies that similarly to the case of the points, the manifold capacity increases signi -

cantly with the increased sparsity (reduced ) (Fig. 5.3).

Frac on of Support Structures In a similar manner to the replica calculation of fraction of support

structures in60, the fraction of support structures for sparse labels can be calculated. Note that due

to the asymmetry in the number of positive and negative labels and the non-zero bias, the terms with

majority labels and non-majority labels are di ferent. We give here the expression for the fraction of

support structures for -dimensional balls. First, manifolds with non-majority labels, which consists

of of the total manifolds can be either embedded, touching, or in the interior side of the shattered

space. All together, they consist of the rst (non-majority) term of the capacity expression with coef-

cient , in Eqn. 5.20.

With this, we can derive the fraction of support structures of manifolds with sparse labels. Unlike

the problem with dense labels, the minority manifolds (red manifolds in Fig. 5.3(a)) and the majority

manifolds (blue manifolds in Fig. 5.3(a)) have di ferent behaviors.
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First, fraction of embedded manifolds with non-majority labels is

=

∫ ∞
χ ( )

[∫ κ+ −

−∞

]
(5.23)

Then, fraction of manifolds with non-majority labels that touch the margin plane is

=

∫ ∞
χ ( )

[∫ κ+ +

κ+ −

]
(5.24)

The rest of thenon-majoritymanifolds are those in the interior space shatteredby themarginplanes

=

∫ ∞
χ ( )

[∫ ∞

κ+ +

]
(5.25)

Note that + + = . Similarly, the fraction of embedded manifolds with

majority labels is

= ( − )

∫ ∞
χ ( )

[∫ κ− −

−∞

]
(5.26)

The fraction of manifolds that touch the margin plane with majority labels is

= ( − )

∫ ∞
χ ( )

[∫ κ− +

κ− −

]
(5.27)

The fraction of the manifolds with majority labels that are in the interior space shattered by the

margin planes is

= ( − )

∫ ∞
χ ( )

[∫ ∞

κ− +

]
(5.28)

Like with the sparse case, Note that + + = − . The example of this

theoretical prediction is tested in Fig. 5.3(c), where we show that it matches well the fraction of sparse

manifold structures in the case of manifolds (lines).
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Simula ons The linear classi cation capacity for dimensional balls with sparsity has been evalu-

ated numerically and theoretically. For the numerical evaluation, algorithm (Chapter 3) has been

used with sparse labels. For the fraction of support structures, line manifolds with sparse labels

were used. For the theoretical evaluation, the Eqn. 5.20 and Eqn.5.23 - 5.28 has been used, and agree

well with the simulations.

Figure 5.3: Linear Classifica on of Balls with Sparse Labels. (a) (Illustra on) The solu on hyperplane (grey) separates
manifolds, where the frac on of posi vely labeled manifolds out of the total number of manifolds are given by ≪
. (b) Capacity of balls with sparsity = . (blue) and = . (red). Theory (line) matches simula ons
(markers) well. (c) Support configura ons of line segments with sparsity = . , for majority labels (denoted as
, solid line in the legend) and non-majority (sparse) labels (denoted as , dashed line in the legend). Theory matches

simula ons well. As is increased, the frac on of embedded line segments becomes 1, and the transi on happens at
smaller in manifolds with non-majority label compared with manifolds with majority labels.

Note that in Fig. 5.3(c), when starts out small, most of the non-majority manifolds are touching,

andmost of themajoritymanifolds are interior, and as is increased, the phase transitionwheremost

of the sparse manifolds become embedded happens rst, and then, the phase transition where most

of the non-sparse manifolds become touching happens.

5.3.2 Small Regime

Let us focus on the = , the classi cation of lines with sparsity . What is the behavior of the line

capacity α , in the case of extreme sparsity, i.e. → ? The dominant term analysis in di ferent

regimes of gives the following analytical approximations for capacity with κ = .
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1. = ( )

α− ( , ) = ( + ) | log | (5.29)

2. − / ≫ ≫

α− ( , ) = | log | (5.30)

3. − ≫ ≫ − /

α− ( , ) ≈ −
π

(5.31)

4. ≫ − , → ∞

α− ( , ) = + | log | (5.32)

It is interesting to note that in the limit of large , the capacity does not depend on the anymore.

Object Recogni on Limit, = /

Particularly interesting regime is when the sparsity is equivalent to / where is number of mani-

folds. This is analogous to the one-vs-all task in the multi-class classi cation problem, where the out-

put unit is activated only when the input comes from the correct class out of the possible classes.

Can we estimate the capacity of object manifolds, in this relevant sparse object recognition limit?

Using our theory, the minimum network size ∗required in order to classify one manifold out of

given manifolds can be estimated to be

∗ = /α

(
=

)
(5.33)

where we can use / as sparsity .

One can also estimate the largest allowed size of the manifolds if one is given with the network size

and the number of object manifolds . That is, solve for and such that

= αB(κ, , , ) (5.34)
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which can be found numerically.

Simula on Results and Discussion We tested below the capacity of line segments, in the one-vs-all

object recognition task limit. In the simulations where critical ∗(number of classes/manifolds) had

to be found, we xed the network size, = and = , and was varied to nd ∗ at which

the probability of nding a linear classi er goes from 1 to 0, given 100 repetitions. The theoretical

prediction matches the simulation capacity well (Fig. 5.4(a)).

Figure 5.4: Line Classifica on of Line Segments in Object Recogni on Limit ( = / ). (a) Capacity (α ( = / )) as
a func on of size for different network sizes. (b) Minimum network size required for linear separability ( ∗) as a func-
on of number of manifolds/objects ( ), for different sizes (c) Capacity as a func on of number of manifolds/objects

( ).

If we want to classify = classes, whose object manifolds are 1 dimensional, with one-

versus-all task, howmany neurons are required for the problem to be linearly separable? Figure 5.4(b)

provides an answer to that question with our theoretical estimate of minimum required network size
∗. In the limit of point, = , roughly ∗ = is enough to classify 1000 objects. However, if

> , at least ∗ = is required to be linearly separable.

Notice that the capacity in the units of load ( / ) shows an interesting behavior in the limit of

large inFigure 5.4(c). Notice that in large , the capacity is dominatedby / and the improvement

due to sparsity is smaller than when is small. In other words, if the manifold sizes are large, making

the labels sparse does not improve the capacity as much as when the manifold sizes are small. There-

fore, the e fect of size of the manifold ( ) on the capacity is more dramatic in the case of classi cation
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with sparsity in the object recognition limit (compared to the dense label classi cation).

5.4 Building Mul Layer Networks of Sparse Classifiers

In the section 5.3, we showed how introducing the sparsity in the manifold labels improves substan-

tially the classi cation capacity of manifolds. Here we show that we can use this feature to solve dense

classi cation task. The general idea is as follows. Suppose we have an input neural layer with size

representing manifolds and a dense classi cation task (i.e. label sparsity is∼ . ), such that a linear

classi er applied directly to this input layer fails to classify all stimuli correctly, namely, the manifolds

in the input representations are not linearly separable.

To solve the task we add a single hidden layer with binary units (Fig. 5.5(a)). We would like to

generate a hidden layer representation of the manifolds that is invariant, namely that all inputs from

a given manifold are mapped to a single activity pattern in the hidden layer. If we can achieve this,

the invariant representations in the hidden layer can easily be linearly separable. In order to generate

this invariant representations in the intermediate layer, we generate random sparse labels for each

manifold, and learn the connection from the input layer to the intermediate layer as a sparse linear

classi cation in each unit in the intermediate layer, which we assume is below the capacity and there-

fore can be implemented without error. In the following subsection below, we analyze the range of

parameters and the performance of this two layer network.
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Figure 5.5: Sparse Intermediate Representa on Enhances the Invariant Processing of Manifolds. (a) Input layer with
dimension , where input vectors are drawn from a set of manifolds. The weight matrix, , from the input to
the intermediate layer is constructed so that each node in the intermediate layer is ac vated in invariant manner by
randomly chosen fP manifolds (where is sparsity). This yields a sparse representa on where all inputs from the same
manifold ac vates the same fM intermediate nodes. Output node classifies the manifolds with desired dense binary
labels. (b) Perceptron capacity of manifold classifica on, α = / versus manifold ball dimension at = , for
different sparsity ( ) and margin (κ). The X marker denotes the working point for simula on in (c-d). (c-d): Robustness
to noise. (c) Probability of error at output layer, versus the standard devia on of the input addi ve Gaussian noise
(σnoise) for different intermediate layer sparsity . Input manifold dimension and radius are: = and = .
For simula on, = = , and number of manifolds = (which is five mes the single layer capacity,

SL = αSL ≈ , forκ = , for thesemanifolds). Markers indicate the simula on results for the error for different
sparsi es. Robustness to noise is achieved by ensuring a significant margin κint at the intermediate nodes; the margins
κint are shown as ver cal lines. (dashed) simula on (solid) analy cal predic on. Higher sparsity ( = . ) ensures
larger margin, andmore robustness to input layer variability. (d) Outputmargin (κout) versus the smoothness parameter
( ) of the sigmoid in the intermediate layer ( + − / )− , for different number of manifolds, . = is the binary
limit. For the simula on, = , = , = . , = , = was used. Values of are an order of
magnitude larger than the single layer capacity of the input layer which is SL ≈ . (ver cal lines) intermediate layer
margins. For the same , smaller number of manifolds ( = ) allows larger margin, and higher robustness to the
smoothing of the intermediate layer responses and the resultant manifold variability.
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5.4.1 Capacity of Two-Layer Network with Sparse Invariant Representa on

As a simple example, we focus on input manifolds of dimensional balls with radius such that

(number of balls) is larger than the linear classi cation capacity of such balls, α ( , ). We rst

compute theperceptron capacity formanifoldswith sparse labels, parametrized as abovebyκ , and

, α (κ, , , ) , where is the fraction of positive examples. Similar to classi cation of points4,7,

the perceptron capacity of manifolds with sparse ≪ , is much higher than when the labels are

dense ( = . ) (Fig. 5.5(a)). Consider now the task of invariant classi cation of manifolds where the

task labels are dense, (e.g., = . , and κ = ). If the number of manifolds relative to the size

of the input layer, is above α (κ, , , . ), then the single layer architecture will be unable to

solve the linear classi cation task. However, we can use the improved perceptron capacity for sparse

labels (Fig. 5.5(b)), to construct an intermediate representation of nodes, each one of them trained

for a randomly chosen sparse labeling of the manifolds. These sparse labels are unrelated to the task

labels; they are used solely for building the intermediate representation. As long as / is below the

perceptron capacity for sparse classi cation ofmanifolds, the resultant intermediate layer generates an

invariant representation. The subsequent single layer readout at the output layer can then perform

the required dense classi cation as long as / < α (κ, = . ), namely the perceptron capacity

for dense labels of points. The overall capacity for classi cation ofmanifolds of this two-layer network

is given by α ( , , = . ) = min ( , α ( , , )) / , where stands for two layer,

much higher than that of the single layer ( ), αSL = α ( , , , . ) (for ≥ ) (Fig. 5.5(c-d)

captions). In addition, below the zero-margin capacity, αD ( , , = . ), the maximum margin

κout at the output node is given by α (κout, . ) = / .

5.4.2 Robustness to Noise

This two-layer architecture shows not only enhanced capacity, but can also enhance the system’s ro-

bustness to noise. To achieve robustness, the sparsity of the intermediate representation should be
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su ciently large to have a signi cant margin, κint > in their representation (where subscript ’int’

stands for intermediate layer), i.e, / < α (κint, , ). Then adding noise may cause the sparse

representation in the intermediate layer to be only approximately invariant to the input manifold de-

grees of freedom, nevertheless the e fect on the performance will be small provided the noise level is

small compared with κint. We demonstrate this in two cases. First, additive full-rank Gaussian noise

was introduced to the input layer. As shown in (Fig. 5.5(c)) the two layer network is robust to a range

of noise values, and networks with sparser intermediate representations have output error probabil-

ities close to zero for a larger range of noise. For output noise in the intermediate layer we haven’t

analyzed the performance explicitly, but we present the heuristic analysis based on the idea that the

level of robustness to noise in each unit should be determined by the size of each intermediate unit’s

classi cationmarginκint. The details of the numerics are given in the appendix to the chapter (Section

5.8.1).

Next, stochasticity in the activation of the intermediate binary units is modeled by changing their

activation function to smooth sigmoidal units with gain parameter / . Smooth rate functions are

also more representative of biologically realistic rate-based models of neural networks. Fig. 5.5(d)

shows that for a broad range of the output readout was able to correctly classify themanifolds. The

critical value of above which classi cation fails is roughly given by the margin of the intermediate

layer. These examples show how to construct a network able to classify manifolds with small error

even when the intermediate layer is not completely invariant to the manifold representation.

5.4.3 Discussion

In this section, we have shown that by using classi ers of manifolds with sparse labels, a two layer net-

work can be constructed with enhanced manifold processing capacity and robustness to noise. Thus,

our theory provides a biologically plausible simple feedforward network model that is capable of pro-

cessing object relation information in an invariant manner. The current theory can be extended to

in several important ways. Here we focused on training the network weights with full manifolds and

adding an additive noise af er training, but the network weights can be trained with subsamples of
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manifolds, or with noisy realizations of manifolds. Here we focused on the intermediate layer non-

linearity to be a sigmoid function, but other types of nonlinearities such as ReLu can be considered,

which can have a di ferent e fect on the reformatted shape of the manifold. Intermediate layer invari-

ance can be achieved by di ferent methods such as max-pooling or polynomial nonlinearities, and we

hope to explore the role of such processing on the reformatting of the manifolds using the manifold

capacity framework in the future.

5.5 Kernel Extensions

In section 5.4, we showed how an additional intermediate layer with sparsity can improve the output

readout capacity for manifolds. This is an example where a nonlinearity in each unit in the intermedi-

ate layer created a new representation that is easier to be read out by the output unit. In this section, we

show another example of how nonlinear processing reformats the input manifolds so that the output

linear separability is improved, by using kernels.

Traditionally, nonlinear kernels have been used in the SVMdual framework to allow for nonlinear

classi cation of points9. Here we show that when input patterns are on manifolds, how nonlinear

kernels achieve the non-linear classi cation can be analyzed as improvedmanifold classi cation capac-

ity of reformatted manifolds in the kernel feature space (Fig. 5.665). We also extend algorithm

provided in Chapter 3 to show that an iterative method with the same principle can be used to nd a

kernel-SVM solution for manifold classi cation (kernel- ).

5.5.1 Manifold Capacity under a Quadra c Kernel

The e fect of the kernel operationon the geometric properties of themanifolds depends on the kernels.

As a simple example of a non-linear kernel, we study the improved classi cation capacity of manifolds

with quadratic kernels. We extend our theory to provide upper and lower bounds for the classi cation

capacity of manifolds with dimensionality in input space af er their transformation to a quadratic

feature space.
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Consider arbitrary manifolds embedded in -dimension, where each point in the manifold can be

expressed as x = x +
∑

= u , where x is a -dimensional center vector and u ( = , ..., )

are the basis vectors, and parametrized by⃗, where corresponds to the th basis vector. The feature

space of a homogenous quadratic kernel is { , ≤ } which has = ( + ) / unique com-

ponents. The feature space,
(
x +

∑
= u

) (
x +

∑
= u

)
, can be expanded as +

∑ (
+

)
+

∑
=

∑
= . This is -dimensional vector with a center

and ( + ) / basis vectors. The basis vectors consist of the two classes: where there are

( + ) / of them, and
(

+
)
where there are of them. Therefore, for input space

dimension , the ambient dimension in this feature space is = ( + ) / . On the other hand,

the dimensionality of the manifolds in feature space is ( + )/ .

In order to illustrate the e fect of kernels on the learning of classi er of the manifolds, we present 2

simple examples. Quadratic kernels applied to lines and circles. The geometric illustration of

how lines and circles with radius map from input space to quadratic kernel’s feature space is

provided in Fig. 5.6(a),(c). For = , the (zero margin) capacity increases from to ( + ) ,

as given by the capacity for classifying points. On the other hand, for = ∞, the weight vector has

to be orthogonal to all the dimensions spanned by the reformatted manifolds, yielding the capacity

= ( + )
( + ( + )) in this limit. For an intermediate , the capacity will be a fected by the extent

and geometry of the manifolds in feature space. The predicted bounds are compared with numerical

simulations in Fig. 5.6. These considerations can be easily generalized to polynomial kernels with

higher degree.

5.5.2 Kernel- Algorithm

General Framework The Kernel- algorithm applies the same logic as the algorithm in the

chapter 3, but in the dual SVM framework. The separating hyperplane is represented implicitly by

dual coe cients α⃗ and point examples (x , ) and a bias , and the eld induced by an input x is

given as
∑

α (x, x ) + . The Kernel- algorithm iteratively calls a quadratic optimization

solver on a nite number of labeled examples in the dual framework. Given a current estimate of α⃗
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Figure 5.6: Manifold Classifica on with a Quadra c Kernel. (a) Classifica on of Lines embedded in -dim input space
(black versus red, bo om) maps to curves (black vs. blue, top) embedded in = ( + ) / dim kernel feature
space. (b) Line capacity in input space (red), and quadra c kernel space (blue), shown as (number of manifolds) over

, and the bounds on the kernel capacity: α = ( = ) and α = / ( = ∞, = ) (dashed lines). (c)
Classifica on of circles (black v. red, bo om) maps to manifolds (black vs. blue, top). (d) Manifold capacity
of circles in input space (red) and quadra c kernel space (blue), and the bounds on the kernel capacity: α =
( = ) and α = / ( = ∞, = ). In both the line and 2D circles, the manifold capaci es are improved by
the quadra c kernel opera on.

and , the algorithm searches for the point on the manifolds with the worst margin. If the margin of

the new point is worse than the previous estimate, the point set is augmented, i.e. the kernel matrix is

increased by one column and row, and the dual SVM solver is run to update values for α⃗ and . The

pseudocode for kernel- is given by Alg. 7.

In general, nding the point with the worst margin in the kernel feature space may be hard as the

convexity of the input manifolds may be lost by the nonlinear kernel operation. If the manifolds are

given by nite sets of points, then, the search over all points to nd the worst point can be performed,

where each search is upper bounded by the number of examples. If the input manifolds are uncount-

able sets of points, where the complete parameterization for the shape (⃗ ) = is given, then the

search for the worst point is limited to nding the worst⃗∗, and sometimes⃗∗ may be found analyti-

cally. If the parameterization is not available, then one may need to nd the worst point with a local

search using a gradient, but if there is no estimate of the convex hull, this operation is not necessarily

a convex problem, which may be investigated further in the future.

With certainmanifolds and kernel functions, theworst point operation can still be done e ciently.

As an illustrative example, we demonstrate an example of the maximum margin classi cation of line
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Algorithm 7 Pseudocode for kernel-
[α⃗, ] = function kernel-M4( , ,ϵ )
Input: kernel type , data manifold parameters , tolerance ϵ
Initialize: α⃗, , δ
=

while δ > ϵ do
1. = +
2.α =maxα ≥

∑
= α −

∑
=

∑
= α α (x , x ) for ∀ν < and andα =

.
3. Compute and .

4. Search for the new pattern such that ( )
|| || =

{min⃗ ,µ µ (
∑

α (x , xµ(⃗ )) + )}.
5. δ = ∥( ) − ∥

end
Output: α,

segments and circles under a homogenous quadratic kernel, (x , x ) =
(
x x

)
. For these

examples, we can reduce the worst point operation to a nite set of analytical solutions, which is as

e cient as regular operation. This computation can also be generalized to -dimensional balls.

-dimensional Balls and Quadra c Kernel

Here we show an example of quadratic kernel- with -dimensional balls with radius . In this

case, nding the smallest distance to the solution plane from each point on the manifold in the kernel

space is:

argmin
⃗, µ (⃗ )=

∗(⃗ ) = argmin
⃗, µ (⃗ )=

µ

⎛

⎝
∑

=

α (x , x(⃗ )) +

⎞

⎠ (5.35)

where x = xµ +
∑

= uµ, and µ(⃗ ) = is the shape constraint of the µth ball.

139



Now, the closet point in the -dimensional ball manifold µ can be found by considering

⃗∗ = argmin⃗

⎡

⎣ µ

⎛

⎝
ν∑

=

α

⎛

⎝xl, xµ +
∑

=

uµ
⎞

⎠+

⎞

⎠+ λ

⎧
⎨

⎩
∑

=

−

⎫
⎬

⎭

⎤

⎦ (5.36)

This is in general hard, but analytically solvable for quadratic kernel and a ball. For a homogenous

quadratic kernel (x , x ) =
(
x x

)
, we solve for⃗∗ by taking a derivative of (⃗ ).

The worst point⃗∗ on the µth -dimensional balls are found to be

λ
{

µ
}∗

= µ +
∑

′=

µ
′
µ
′

where

µ = µ

ν∑

=

α
[{
x xµ

}(
x uµ

)]

µ
′ = µ

[
ν∑

=

α
(
x uµ

)(
x uµ′

)]

with normalization on ∥⃗ ∗∥ = , and , ′ = { , ..., }, and α⃗ ,⃗ are given. = , ..., ν is an index

of all the training points added so far,

And for line segments, the worst point ∗ on the µ th line is

µ + µ ( µ)∗ = λ ( µ)∗

where

= µ

ν∑

=

α
[{
x xµ

} (
x uµ

)]
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= µ

[
ν∑

=

α
(
x uµ

) (
x uµ

)
]

with normalization on ∥⃗ ∗∥ = .

In general, the solution for⃗∗ has two classes. One iswhere the closest point to thehyperplane in the

kernel space comes from the interior area of the convex hulls of themanifold in the input space (λ =

), and the other is when⃗∗ comes from the convex hull in the input space (nonzero λ). Generally, one

can solve for both cases, and check which⃗∗ gives a smaller eld, by computing Eqn. 5.35 for each µ

and do this over all manifolds, and with candidate points, nd the smallest one again. This is the

step 4 of Alg. 7, for -dimensional balls.

5.5.3 Discussion

In this section, we showed how the role of nonlinear kernel on data manifolds with small manifold

capacity (in other words, linearly non-separable manifolds) in the input layer can be viewed as refor-

matting them to increase themanifolds capacity in the nonlinear feature space, using quadratic kernels

and simple and balls in the input space as examples. Which kernels are best suited for the classi-

cation problem depends on the types of the data, which, in our case, aremanifold structures. We laid

the ground here for future analysis withmanifolds capacity in kernel feature space, by formulating the

iterative algorithm for nding themaxmargin solution formanifolds with kernels and demonstrating

the simple examples of and balls, as well as providing bounds on theirmanifold capacities in in-

put and feature space. Enabled with our theory of capacity of general manifolds (Chapter 4), we hope

to extend our manifold capacity analysis for more complex manifolds to study the role of nonlinear

kernels.
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5.6 Generaliza on Error

So far, we have considered di ferent aspects and extensions of manifold classi cation capacity, mainly

motivated by a linear classi er that achieves zero training error. However, another important aspect of

the linear separability of data manifolds is the generalization error of a linear classi er. This is particu-

larly relevant in more realistic settings, where the manifolds given for training are not full manifolds,

but only a subset of the manifolds. An example of this would be when the training data are convex

hulls of subsamples of underlyingmanifolds. Another relevant case is when there is noise in the input.

By focusing on the distribution of elds arising frommanifold structures, here we show how the our

theory allows for the estimation of generalization error for the manifold classi cation problem.

5.6.1 Generaliza on Error for General Manifolds, Given Weights.

Exact analytical expression for the generalization error for general manifolds is complicated; further-

more, the error depends on the assumed sampling measure on the manifold (whereas the separability

problem is measure invariant). However, in the case of linearly separable manifolds with high we

can use the insight from the above theory (the notions of e fective dimensions and radii) to derive a

particularly simple approximation.

Assume we have obtained a set of weights from learning manifolds either from subsampling or

from full unrealizable manifolds, so that we have a vector w . Then, the generalization error can be

expressed as

ϵµ =

〈 (
− µ −

∑
µ

)〉
(5.37)

where are the eld on the center x and are the elds on the basis vectoru , generated by the

trainedw. The average over⃗ is an integration with constraint (⃗ ) = . In other words,

⟨ (⃗ )⟩⃗ =

∫
⃗ (⃗ )δ( (⃗ )) (⃗ ) (5.38)
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and we assume
∫

⃗ (⃗ )δ( (⃗ ))=1 . An important point to note is that the generalization error is

in general sensitive to the choice of measure to use in this average i.e., (⃗ ) .

The dependence on the weight w is via the elds and ⃗ . Depending on the learning rule used

to generate w, the above elds induced by w in general will not be the same for all manifolds but

will vary with a distribution ( ,⃗) even if all manifolds have the same geometry. For example if w

is trained by the max margin classi cation of subsampled manifolds, ( ) will be the distribution

described in Chapter 4 for nite point manifolds. Therefore, for a given w, the generalization error

can be expressed as a double averaging

ϵ =

〈〈 (
− −

∑
)〉

⃗

〉

,

(5.39)

5.6.2 Gaussian Approxima on in High Dimensional Manifolds.

In high dimensional manifolds, we assume that are distributed as projections of gaussianw on the

u′ . Hence themselves are i.i.d. Gaussian distributed with norm . If we make this assumption we

get,

ϵµ =
〈〈 (

− µ −
)〉 〉

(5.40)

In other words,

ϵ =

〈 (

σ

)〉
(5.41)

where the width of the distribution is roughly

σ ≈ ⟨⃗ ·⃗⟩ ≈ (5.42)

in the crude approximation.

We might want to take into account the fact that the ′ are bounded so they are not unbounded
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Gaussians. We can use the mean width of the manifold
√

(Fig. 5.7(a)) as a measure of the

bound. Finally, we can estimate the generalization error to be

ϵ =

〈
( ( ))−

(√ )

−
(√ )

〉
(5.43)

where we added a normalization so that ϵ = . for = . Note that is the eld from

the center, and and are e fective dimension and e fective radius of a manifold identi ed in

Chapter 4. Intuitively, the generalization error shows the fraction of a manifold on the wrong side of

the hyperplane, which is approximated by the area under one end of the tail of aGaussian distribution

outside of the size of the center eld induced by the solutionw, divided by the area under theGaussian

distribution with tails cut at the size of the mean width from both end (approximately 1 in high

regime). This relation is shown in the Figure 5.7.

The generalization error shows two regimes. In the case where full (underlying) manifolds are lin-

early separable with margin κ, Then the generalization error will eventually vanish as more samples

per manifold , , are presented during the training.

One thing tonote is that aswe increase thenumber of subsamples for training , the size of must

grow, as the hyperplane is always outside the mean width of the subsampled manifolds. According to

the extreme value theory, we expect the max distance between the manifold center and extreme tail to

grow like
√

log , like the th maximum value of samples of Gaussian iid distribution66. In the

limit of large , we obtain,

ϵ ( ) ∼ (κ( ) +
√

log ) ∝ exp[−κ
√

log ]
(5.44)

Interestingly, this decay is faster than the generic power law, ϵ ( ) ∝ − of generalization

bounds in linearly separable problem and re ects the presence of nite margin of the entire manifold.

This dependence is demonstrated in Figure 5.8 (a1-a2) using ellipsoids.

In the case where the full manifolds are not separable andα is above the capacity, even subsampled

manifolds with points are not necessarily separable. Because the solution hyperplane may intersect
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Figure 5.7: Generaliza on Error from Each Manifold. (a) The solu on hyperplane (dashed line) is determined by the
training samples given by the manifold (Orange manifold), and the distance between the center of the original manifold
(assuming the center of the tes ng manifold and original manifold is the same) and the solu on hyperplane is given
by (along the direc on of w ), the field induced by the tes ng manifold center. The size of the original (tes ng)
manifold, along the direc on of w , is approximated by the Mean Width,

√
. (b) The generaliza on error is

the frac on of samples on the correct side of the hyperplane out of the total samples (which is measure-dependent).
Assuming the projec ons of the manifold alongw are Gaussian, we approximate generaliza on error as ra o between
the blue area and blue plus red area under the gaussian. The width of the gaussian is es mated to be σ =
as a crude approxima on (assuming ’s are Gaussians with norm 1), with the tails truncated at

√
, and the

distance between the peak and the loca on of the hyperplane at (the separa on between correct and incorrect

labels). Rescaling the axis such that σ is 1, we get the expression ϵ ∼ ⟨
( )− (

√
)

(−
√

)− (
√

)
⟩.
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the sampledmanifolds, no longer scales like
√

log . Perhaps for this reason, the dependence of

generalization error given inseparable underlying manifolds is more like conventional general power

law, ϵ ( )− ϵ ( = ∞) ∝ − . This is shown in 5.8 (b1-b2) using ellipsoids.

5.6.3 Numerical Inves ga ons

As a simple example, we computed the generalization error for a binary dense classi cation of el-

lipsoids, where (radius in th embedding dimension) is sampled from an uniform distribution of

[ . , . ], and centers and axes are random Gaussian distribution. From each ellipsoid,

training samples and test samples were sampled, so that − is from a uniform spherical dis-

tribution. With these nite training samples, max margin solution was found using a standard

slack-SVM solver, and generalization error was computed using test samples. Using the centers

of the ellipsoids and themaxmargin solutionw, theoretical estimation of the generalization error was

computed using Eqn. 5.43. We show the results of this simulation in Fig. 5.8.
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Figure 5.8: Generaliza on Error of Ellipsoids Classifica on as a Func on of Number of Subsamples Per Manifold
( ). (a1-a2) In the regime where the full manifolds are separable, the generaliza on error approaches zero as
is increased, at the rate of ϵ ∼ exp[−κ

√
log ]. The manifolds used were -dimensional ellipsoids with

∼ [ . , . ] and = , = , = . , = . (b1-b2) In the regime where the
full manifolds are not separable, the generaliza on error approaches at the rate of ϵ − ϵ ( = ∞) ∼ − . The
parameters for the ellipsoids used for the simula on were = , = , = . , = . In all simu-
la ons generaliza on error was tested with = per manifold. The theore cal predic ons for generaliza on
error patches the generaliza on error calculated by the simula on well in this regime.

We nd that the Gaussian approximation of the generalization error works quite well, and the

estimation matches the generalization error using simulations. We nd that indeed in the separable

case, the ϵ is close to [−κ
√

], and in the inseparable case, ϵ ( ) − ϵ ( = ∞) is

approximately / .
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5.6.4 Discussion

Here we demonstrated how the insights from the manifolds capacity theory can be used to compute

the crude approximation of generalization error in the high embedding dimension, which works sur-

prisingly well in the case of classi cation of ellipsoids. Clearly, we made some assumptions for the

sake of the approximation (i.e. are Gaussians). The fully general replica theory of generalization

error for manifolds will require considerations of the actual manifold geometry, and the measure of

the samples on the manifold, (⃗ ), and using the manifold-dependent distribution of elds and

from the replica theory.

5.7 Analysis of GoogLeNet Manifolds

So far, we have considered various extensions of the theory of manifold classi cation for the analy-

sis and application to real data. In this section, we show how our manifold capacity theory can be

applied to realistic data, by analyzing manifold representations in conventional deep networks as an

illustrative example. In the recent years, the performance of the arti cial systems for visual classi ca-

tion tasks has been focused on the generalization error of the nal layer on the test dataset. However,

the underlying goal for training such system is to create representations such that di ferent objects are

easy to distinguish from each other. This idea is closely related to our notion of manifold classi ca-

tion capacity. Using our theory, we analyze how data representations reformat across di ferent layers

of GoogLeNet67 , one of the widely used deep networks for a popular visual recognition task, Ima-

geNet 10 classi cation task. Using di ferent object classes of ImageNet dataset as manifolds, we show

how the quantities that contribute to the manifold classi cation capacity, i.e. e fective dimension,

e fective radius, Gaussian mean width, and various correlations, change across the hierarchy of the

layers.
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5.7.1 Methods

We de ned an object manifold as convex hulls of training samples from di ferent object classes from

ImageNet classi cation task dataset 10. ImageNet Dataset has 1000 object classes with roughly 1000

training samples in each object class. Here, we computed the center ofmass of each class (such thatµth

manifold’s center isxµ andmeanof the centers are set to be the origin), and selected a small set of object

classes ( ) such that their center-to-center overlap, or center-to-center correlation, (ρ = ˆµ · ˆν)

is smaller than a threshold value. The correlation between centers of the image object manifolds are

surprisingly high, and there is a tradeo f between a low threshold value ρ and the number of object

classes . In our simulation, we used = and ρ was roughly 0.3.

To study how ImageNet object manifolds reformat in a network that is guaranteed to achieve a

high classi cation performance, we chose GoogLeNet67, a winner of ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). We used pre-trained GoogLeNet weights available via MatCon-

vNet framework68 to extract and analyze the ImageNet Object Manifolds in di ferent layers. As the

network size is extremely large, we focused on the layers af er the pooling layers. We randomly selected

units from the total units from each layer, and computed , using the set of points (de-

ned in Chapter 4, Eqns 4.106-4.107). We also computed correlation coe cients between the centers

of manifolds in each layer, as well as the overlap between centers and their own axis (self center-axis

correlation) and centers and axis of the rest of the object manifolds (cross center-axis correlation).

In the case of center-axis correlation, because object manifolds are high dimensional and have di fer-

ent sizes of extents along di ferent embedding dimensions, the overlap measures were scaled with the

eigenvalue of the covariance matrix of the object manifold.

− = ⟨x̂µ · x̂ν⟩µν

where

− =

〈
λµ

||λ⃗µ||
x̂µ · ûµ

〉

,µ

;µ = , ..., = , ...,
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− =

〈
λµ

||λ⃗µ||
x̂ν · ûµ

〉
; ν = , ..., , µ ̸= ν, = , ...,

where λµ are the th eigenvalue of the covariance matrix of the samples of theµ th manifold.

5.7.2 Results and Discussions

In the gure below, we show the summary of the results from the analysis described. We know from

the perceptron capacity of random general manifolds, that e fective dimension and e fective radius

need to be reduced in order to increase the manifold classi cation capacity. We also have an ongoing

theoretical work indicating that correlations between manifolds reduce the e fective ambient dimen-

sion of the data, resulting in the reduced critical number of manifolds that can be separated.

Figure 5.9: Analysis of Manifold Proper es in Different Layers of Deep Networks. Using the ImageNet Dataset for
different class as object manifolds, effec ve manifold proper es were analyzed in different layers of GoogLeNet. (a)
Effec ve Dimension and Effec ve Radius for different layers of GoogLeNet. (c) Half of Gaussian MeanWidth
(

√
) for different layers of GoogLeNet. (c) Correla on between manifold centers (d) Correla on between each

manifold center and its axes, averaged over manifolds. (e) Correla on between each manifold center and the axes of
the other manifolds, averaged over manifolds.
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Interestingly, we nd that the mean of the e fective radius of ImageNet object manifolds de-

crease systematically while being processed by the layers of the deep network (Fig 5.9(a)). Particularly,

the most dramatic improvement in appears in the early part of the processing. On the contrary,

themean e fective dimension of ImageNetmanifolds doesn’t decrease as signi cantly (Fig 5.9(a)).

The values of at di ferent layers are quite close to log throughout (where is the number of

training samples in each object class), and this may imply that the e fective dimension of object man-

ifolds is determined by the number of training samples of the data. Further investigations on what

determines of the realistic data is ongoing work.

Recall that
√

, half of the Gaussian mean width, is directly related to the capacity of man-

ifolds. There is a systematic drop in the size of
√

across layers, where the most dramatic im-

provement is in the early stage and there is a consistent improvement in the rest of the layers (Fig

5.9(b)). Supposedly the utility of the deep structure of the network is increasing the manifold capac-

ity, by reducing the Gaussian mean width.

Note that in and
√

, the best values are in the output (readout) layer, and the worst

values are in the input (pixel) layer (Fig 5.9(a)-(b)).

Center-center correlations ( − ) also show systematic decrease across layers (Fig 5.9(c)), imply-

ing that deep network gradually decorrelates the centers of the object manifolds. Note that when

there is more correlation between the centers, the total space spanned by the manifold centers will be

more skewed (compared to spherical), and the e fective ambient dimension spanned by the centers

will be smaller, making the maximum critical number of manifolds smaller63. Therefore, the deep

networkworks towards increasing themanifold capacity by reducing the correlation between the cen-

ters. Other types of correlations (such as center to axes, within themanifold, − , or acrossmanifolds,

− ) show not as strong trends across the layers, and we hope to address this further in the future.

5.7.3 Future Work

In the future, we hope to connect the relationship between the theory and the experimental manifold

capacity, and take into account various types of classi cations, such as classi cation with sparse labels
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in the object recognition limit. Many deep networks have similar computational building blocks (i.e.

convolution, max pooling, ReLu, dropouts, sparsity, etc), and we hope to address the role of each

computational building block in terms of how they change the data manifolds. The change in the

manifold shapes and manifold capacity during the learning is also an important future direction, in

order to study what di ferent types of learning can achieve in each layer, with a quantitative measure

(manifold capacity). Finally, we hope to analyze the manifold representations in neural data, particu-

larly in di ferent areas of the brain (i.e. object representations in di ferent stages of the visual hierarchy

in the cortex2).

5.8 Appendix

5.8.1 Mul -Layer Networks with Sparse Intermediate Layer

In this section, we show the details for the numerical demonstrations shown in Section. 5.4.

Training Two-Layer Network with Sparse Intermediate Layer

Input layer activity is dimensional and organized as manifolds such that they can be described as

zµin = x µ +
∑

= uµ ∈ R where subscript ’in’ denotes input layer, xµ,uµi ,s, are from 2.

We draw a set of i.i.d., random sparse binary labels { µ} (where = , ..., , being the dimen-

sionality of the intermediate layer) with probability of being . The output of the -th nodes in the

intermediate layer is binary , with =
[
V( ) · zin +

]
where ( ) is Heaviside step function.

The weight vector to the th node,V( ) , and bias, are found as a max margin (SVM) solution for

-dimensional balls to the set of labeled pairs {zµin,
µ}, using the same method as in Algorithm 1.

In Fig. 5.5, the network size used was = = . Initial training data for the SVM solver for

spheres had = samples per manifold, and thenmore points were added until the iteration con-

verged (Algorithm 1). The output node is a linear readout of the intermediate layer representation,

= sign
[
¯ · ¯+

]
. [We use overline to denote -dim vectors.] Theweight vector from second

layer to the output node, ¯ , and bias, (where subscript stands for nal), is trained as an SVM
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solution to set of the labeled pairs, {zµ, µ }, with the task dense labels µ = ± with = . . For

details, see Algorithm 8.

Robustness to Input Noise

Once the two layered network is fully trained (without additive noise), we evaluate the probability of

error in the output by adding additive full-rank gaussian noise (with standard deviation of σnoise) to

each input node and measuring the output node classi cation error as a function of the variance of

the noise. For 5.5 (c), about 100 samples per manifold ( ) were used and number of trials was 5. For

details, see Alg. 8.

Robustness to Noise in the Intermediate Layer

We test the robustness to the introduction of smooth sigmoidal units in the intermediate layer, by

rst evaluating the intermediate weight matrix to generate a sparse binary representation in the

intermediate layer. Af er training of the intermediate layer, we replace the Heaviside step function of

the intermediate layer nodes with ( ) =
(

+ − /
)− , which can be interpreted as the result

of smoothing the binary function by stochastic noise. The readout weights are calculated as SVM

solutions to the the densely labeled task pairs {zµ, µ }where zµ are the intermediate layer sigmoidal

responses to sampled inputs. For 5.5(d), about samples per manifold were used and number of

trials was 5. The e fect of the smoothness of the intermediate level on the classi cation performance of

the binary output unit is measured as a function of the gain parameter . For details, see Algorithm

8.
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Algorithm 8 Pseudocode for Two-Layer Network for Invariant Manifolds Classi cation
Initialize:

x µ, ~uµ ∼ ( , ) ( µ = , ..., ) [Sample centers and direction vectors]
µ
out ∼ sign {Unif(− , )} (µ = , ..., ) [Sample dense labels formanifolds for output

layer]

Train V (Input to Intermediate Layer):
,µ ∼ Unif (− , ) and ||⃗ ,µ|| = = ... , = , ..., , µ = ... . [Sample

coe cient vectors from each manifold]
repeat: for = , ..., [for each node in intermediate layer]

( µ)( ) ∼ ( µ) = δ( µ − ) + ( − )δ( µ + ). (µ = , ..., ) [Sample sparse
labels for manifolds for intermediate layer]

V( ), ( ) = (x µ, ~uµ, ( µ)( ) , , ) [ : algorithm for balls, see Chapter
3]

end

Train w (Intermediate to Output Layer):
,µ ∼ Unif (− , ) and ||⃗ ,µ|| = for all , , µ

z ,µ =x µ +
∑

=
,µuµ for all µ, [Sample points on each manifold ( rst layer

activity)]
,µ =

[
V( ) · zin ,µ +

]
for all = , ..., and , µ [Intermediate layer activity]

¯ , = svmsolver(¯ ,µ, ,µ) [Find SVM solution with Intermediate layer activity and
dense labels.]

Test Robustness to Input Noise (for σnoise)
,µ ∼ Unif (− , ) and ||⃗ ,µ|| = for all , , µ

z ,µ =x µ +
∑

=
,µuµ + η , where η ∼ ( , σnoise ) for all µ, [Sample

points on each manifold with additive Gaussian noise (input layer activity with noise)]
,µ =

[
V( ) · zin ,µ +

]
for all , , µ

,µ = sign
[
¯ · ¯ ,µ +

]

return: ϵ =

〈 (
,µ − ,µ

) 〉

,µ,trials
Test Robustness to Noise in the Intermediate Layer (for ≥ )

,µ ∼ unif (− , ) and ||⃗ ,µ|| = for all , , µ
z ,µ =x µ +

∑
=

,µuµ for all µ,
,µ =

[
V( ) · zin ,µ +

]
for all , , µ [Use smooth sigmoid for intermediate layer]

¯ , ,κmargin = svmsolver(¯ ,µ, ,µ) [SVM solution for intermediate layer activity and
labels]
return: κoutput ← κmargin [Output margin with SVM solution]154



Chapter 6

Appendix A: Symbols and Nota ons

6.1 Nota ons

Ambient Dimension for Data

Number of Manifolds

Embedding Dimension

κ Margin

Radius of a ball

th radius of an ellipsoid ( = , ... for dimensional ellipsoid)

α = / Load (Number of Manifolds, /Ambient Dimension, )

α Critical capacity (general expression)

α ,α Gardner’s perceptron capacity for points

α Capacity for Line Segments
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α ,α Capacity for Balls

α Capacity for Balls

α Capacity for Ellipsoids

α Capacity for General Manifolds

α Capacity for General Manifolds α found via iterative algorithm

α|| Capacity for Parallel Manifolds

µ, Index of the µth ( th) manifold

x Point on a manifold

x Center of a manifold

ui th basis vector of a manifold ( = , ..., )

v -dimensional vector v for an arbitrary vector

⃗ -dimensinoal vector⃗ for an arbitrary vector

w Solution of a linear separating problem.

bias of a linear perceptron

binary (± ) labels

Volume of space of solutions

eld induced by a center of a manifold x

eld induced by the th axis of a manifold u

eld induced by a data point x
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E fective radius for an ellipsoid

E fective dimension for an ellispoid.

E fective manifold capacity radius for a general manifold (using self-consistent

equations)

E fectivemanifold capacity dimension for a generalmanifold (using self-consistent

equations)

E fective manifold capacity radius for a general manifold (using max projections

on Gaussian vectors, related to the mean width)

E fective manifold capacity dimension for a general manifold (using max projec-

tions on Gaussian vectors)

ϵ ,ϵ Generalization error

ϵ ,ϵ Training error

number of subsamples per manifold

ξ Slack parameter for the th manifold

(⃗ ),˜(⃗ )
⃗, (⃗ )=

⃗ ·⃗

∗ solved via self-consistent equations on and

κ Excess margin for ellipsoids de ned via
√

κ Excess margin for general manifolds de ned via
√

κ Excess margin for general manifolds in scaling regime de ned via
√

Critical radius for phase transition

Embedding dimension per ambient dimension /
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ρ Overlap between the solutionw and axes u ,
∑

= (w · u )

Sparsity of labels (Number of posive (or negative) labels/Total number of labels)

κint Margin in the intermediate layer unit (if intermediate unit is like a binary classi-

er)

Number of subsamples (training samples) per manifold

Intermediate layer size

6.2 Mathema cal Conven ons

∥v∥ norm of a vector v

∥v∥ norm of a vector v

( ) Heaviside step function

⟨ ⟩ Average of a random variable

⟨⃗ ,⃗⟩ Inner product between two vectors⃗,⃗

⃗ ◦⃗ Hadamard (element-wise) product

| | Cardinality (number of elements) of a set

| | Absolute value of a scalar

Gaussian measure, √
π

−

χ ( ) Chi distribution,
−

( )
− −

( )
∫∞ = √

π

∫∞ −

ˆ ⃗/||⃗ ||
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||⃗ ||
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Chapter 7

Appendix B: Gardner’s Replica Theory of

Isolated Points

Consider a perceptron with input points xµ ∈ R and labels µ = ± , µ = , ..., . Assume

that each component ofxµ are Gaussian i.i.d. The weight planew ∈ RN needs to classify all the input

points such that all points are at least κ away from the solution hyperplane. For simplicity, consider

the regime where the number of positive labels and negative labels are equal. [This regime is called

“dense classi cation” regime, where sparsity is = . .] In this regime, optimal bias for maximum

capacity is = by symmetry, so let us ignore the bias term for now.

The problem is now to ndw such that

µ =
µw xµ√ > κ (7.1)

where κ is a margin. µ, which we refer to as a eld from a pattern xµ is a measure of distance

between the pattern xµ and the solution hyperplane denoted byw. Note that the denominator
√

is introduced so that µ does not grow with the network size . In general, if w and x are random,

then the scale ofw x is
√

. For now let us consider κ = case.

Gardner calculated , which is the volume of solutions (weight vectors w), which satisfy the clas-
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si cation constraint Eqn. 7.1 with κ = . If goes to 0, then there is no solution and the network

is beyond capacity. In order to compute , each component of needs to be integrated with a term

that is when the constraint is not satis ed, hence

=

∫
w δ(w − )

∏

µ=

( µ) (7.2)

where δ is a delta function, is aHeaviside step fuction, and the normonw, δ( − ), is imposed

to countw in the same direction only once. Using the expression for the eld (Eqn. 7.1), we get

=

∫
δ( − )

∏

µ=

(
µ µ

√ ) (7.3)

where ( µ) is one if w is a separating solution, and zero if it is not a solution, as the eld (input

to the ( )) will be negative.

Note that involves a product of many random contributions. Products of independent random

numbers are known to possess distributions with long tails for which the average and themost proba-

ble value are markedly di ferent. However, the logarithm of such quantities is a large sum of indepen-

dent terms, hence is expected to have aGaussian distribution so that its average and themost probable

value match. Therefore, the most typical value of is expected to be

∼ exp [⟨log ⟩] (7.4)

Therefore, in order to get the typical behavior, we are interested in the average of log 28. Hence,

we need to calculate

⟨log ⟩ µ (7.5)

which is the average of log over the quenched distribution of patterns. We can do this by the
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following formula:

⟨log ⟩ = lim
→

⟨ ⟩ −
(7.6)

called “replica trick”, originally developed to calculate quenched averages in the theory of disor-

dered solides.

Let us then calculate the expectation of , which, in the case of a natural , can be expanded as

⟨ ⟩ = ⟨
∫ ∏

α=

αδ( α − )
∏

µ

∏

α

( µ
α)⟩ µ (7.7)

where α is an index for each one of the replicas of the original system with the same realization

of random samples. We note that the question of how to go from a natural to the limit of → is

in general a hard problem, and more on this matter can be found in69.

We can replace using the integral representation of the function,

⟨
∫ ∏

α=

αδ( α − )

∫ ∞

κ

,∏

µ,α

α
µ

∫ ∞

−∞

,∏

µ,α

ˆα
µ

π

[ ˆαµ α
µ− ˆα

µ
α µ µ]

√

︸ ︷︷ ︸

⟩ µ (7.8)

But because κ = and ˆ > , we can change the range of the integrals to

⟨
∫ ∏

α=

αδ( α − )

∫ ∞ ,∏

µ,α

α
µ

∫ ∞ ,∏

µ,α

ˆα
µ

π

[ ˆαµ α
µ− ˆα

µ
α µ µ]

√

︸ ︷︷ ︸

⟩ µ (7.9)

(7.10)

Now average over the random patterns µonly a fect the term noted as , that is,

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ⟨
∏

α=

− ˆα
µ

α µ µ
√ ·

− ˆα
µ

α
µ√ ⟩ µ (7.11)
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Now change the product of exponentials to the sum of powers, and taking out terms that don’t

depend on µ, we get

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ⟨

∑
α=

− ˆα
µ

α µ µ
√ ⟩ µ ·

− ˆα
µ

α
µ√ (7.12)

Since α is a vector, we expand the vector dot product α µ as sum of each vector’s elements,

then

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ⟨

∑
α= − ˆα

µ
∑ α µ µ

√ ⟩ µ ·
− ˆα

µ
α
µ√ (7.13)

Then the sum
∑

in the power can be the product of exponentials, then

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ⟨
∏ −

∑
α=

ˆα
µ

α µ µ

√ ⟩ µ ·
− ˆα

µ
α
µ√ (7.14)

Becasue each element is independent, we can take out product over j

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ

∏
⟨

−
∑

α=
ˆα
µ

α µ µ

√ ⟩ µ ·
− ˆα

µ
α
µ√ (7.15)

Now use the fact that
∫

= − / , we get rid of ⟨⟩ ∼
∫

. Note that is like

(
∑

α

(− µ)
ˆα
µ

α

√
)

=

(
∑

α

ˆα
µ

α

√
)

=

(∑
α
ˆα
µ

α
)

(7.16)

So we have:

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ

∏

=

−(∑α=
ˆα
µ

α)
·

− ˆα
µ

α
µ√ (7.17)
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which can be re-written as

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ

∏

=

−
∑

α,β=
ˆα
µ
ˆβ
µ

α β

·
− ˆα

µ
α
µ√ (7.18)

De ne αβ =
∑ α β which is the replica symmetric order parameter.

=
∏

µ=

∫ ∏

α=

ˆα
µ

∫
α
µ

−
(∑

α=

∑
β=

ˆα
µ

−
αβ

ˆβ
µ

)

︸ ︷︷ ︸ ·
− ˆα

µ
α
µ√ (7.19)

De ne

(ˆαµ) =
−

(∑
α,β=

ˆα
µ

−
αβ

ˆβ
µ

)

(7.20)

=
∏

µ=

∫ ∞ ∏

α=

α
µ

[∫ ∞ ∏

α=

ˆα
µ (ˆαµ, ....)

− ˆα
µ

α
µ√

]
(7.21)

(Here we changed the orders of and ˆ.)

By integrating out ˆ, we get

=
∏

µ=

∫ ∞ ∏

α=

α
µ

[
(ˆαµ = α

µ)√det

]
(7.22)

where we used the delta function identity, Eqn. 7.20,( (ˆαµ = α
µ)) and n-dimensional Gaussian

integration with matrix to get √
det

term. We re-write Eqn. 7.22 such that:

=
∏

µ=

∫ ∞ ∏

α=

α
µ

[
(ˆαµ = α

µ)
− log det

]
(7.23)

which is:

=
∏

µ=

∫ ∞ ∏

α=

α
µ

⎡

⎣[ −
(∑

α,β=
α
µ

−
αβ

β
µ

)

︸ ︷︷ ︸]
− log det

⎤

⎦ (7.24)
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where

=
−

(∑
α,β=

α
µ

−
αβ

β
µ

)

(7.25)

Then, can be simplied with ,

=
∏

µ=

∫ ∞ ∏

α=

α
µ

[
− log det

]
(7.26)

Now going back to ⟨ ⟩, in Eqn. 7.9, is now (af er the above calculations):

⟨ ⟩ =
〈∫ ∏

α=

αδ( α − )
∏

µ=

[∫ ∞ ∏

α=

α
µ

− log det

]

︸ ︷︷ ︸

〉
(7.27)

where is given as Eqn. 7.25. We note that the term has two parts

( ) =
∏

µ=

∫ ∞ ∏

α=

α
µ

{
−

(∑
α,β=

α
µ

−
αβ

β
µ

)}

︸ ︷︷ ︸
(7.28)

and

( ) = − log det (7.29)

for later use.

Because it’s an integral of αβ =
∑ α β = αβ( ) which is a complex function of , we

write it in terms of integral of deltas of αβ . Intuitively, is generally thought of as a function of the

overlaps between the solution of weights.

Now, we can re-write the ⟨ ⟩ as functions of αβ , by introducing

∫
αβ ˆαβ

ˆαβ

(
− αβ +

∑ α β
)

(7.30)
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And we get:

⟨ ⟩ =
∫

αβ ˆαβ

∫ ∏

α=

α
[
δ( α − ) (7.31)

− αβˆαβ ˆαβ
∑ α β − log det ( )

]
(7.32)

where ( ) is de ned in Eqn. 7.28.

Let us use the replica symmetric ansatz

αβ = ( − )δαβ + (7.33)

Now going back to evaluating ( ),

( ) =
∏

µ=

∫ ∞∏

α

α
µ[

−
(∑

α,β=
α
µ

−
αβ

β
µ

)

] (7.34)

where, given our ansatz (Eqn. 7.33),

−
αβ = − δαβ +

(
−

( − ) ( + ( − ) )

)
(7.35)

where is a dimension of the matrix. However, we are in the limit → , therefore

−
αβ = − δαβ +

−
( − )

(7.36)

With Eqn. 7.36, Eqn. 7.34 becomes

( ) =
∏

µ=

∫ ∞ ∏

α=

α
µ[

− ( − )

∑
α( α

µ) +
( − )

(
∑

α
α
µ) ] (7.37)
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Let us introduce ′ = √
− (for simplicity), then

( ) =
∏

µ=

∫ ∞ ∏

α=

′α
µ [

−
∑

α( ′α
µ ) + ( − )(

∑
α

′α
µ ) ] (7.38)

Using Hubbard–Stratonovich transformation, / =
∫∞
−∞ √

π
− + , we introduce addi-

tional expansion,

( ) =
∏

µ=

∫
µ

∏

α=

∫ ∞
′α
µ [

−
∑

α( ′α
µ ) +

√
− µ

∑
α

′α
µ ] (7.39)

which, nally, can be simpli ed to

( ) =
∏

µ=

∫
µ

{∫ ∞
′α
µ [

− ( ′α
µ ) +

√
− µ

′α
µ ]

}
(7.40)

In other words,

( ) =
∏

µ=

∫
µ

[
log ( µ, )

]
(7.41)

where

( µ, ) =

∫ ∞
√

π
[

− +
√

− µ
] (7.42)

Now

( ) =

[∫
log ( , )

]
(7.43)

And by simple power expansion,

( ) = log( + ⟨log ( , )⟩) (7.44)
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Expanding log, we get:

( ) = ⟨log ( , )⟩ (7.45)

Note, we are trying to evaluate

⟨log ⟩ = lim
→

⟨ ⟩ −
(7.46)

by using Eqn. 7.27 andwhich has ( ) (Eqn.7.28) and ( ) (Eqn. 7.29). We need to now evaluate

( )with Eqn. 7.29.

Now, noting that logdet αβ is related to the sum of log of eigenvalues,

log det αβ =
∑

log λ (7.47)

where λ , = , ... are eigenvalues of αβ . With the replica symmetric ansatz of αβ is given by

Eqn. 7.33, the rst eigenvalues are + ( − ) and the rest of the ( − ) eigenvalues are − ,

Therefore

log det = log ( − ) +
( − )

(7.48)

where the linear term in is dominant. Then,using Eqn. 7.48, ( ) from Eqn. 7.29 is now,

( ) = exp
(
− log ( − )−

( − )

)
(7.49)

Now, back to the original equation.

⟨ ⟩ =
∫

αβ ˆαβ

∫ ∏

α=

α
[
δ( α − ) (7.50)

− αβˆαβ ˆαβ
∑ α β

( ) ( )
]

(7.51)
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Expanding δ( α − ) to an exponential form with a new variable λα:

⟨ ⟩ =
∫

αβ ˆαβ

∫ ∏

α

λα

∫ ∏

α=

αexp

{
λα( α − ) (7.52)

− αβˆαβ + ˆαβ
∑

α β

⎫
⎬

⎭ ( ) ( ) (7.53)

We change the de nition of ( ) slightly, so that

( ) = ⟨log ( , )⟩ = α ⟨log ( , )⟩ (7.54)

where

α = / (7.55)

is the capacity we wish to get.

Doing the integral over α gives the term:

{− log det[λαδαβ+ˆαβ]} (7.56)

And absorbing into the new variable, that is, use λ ← λ, we get,

⟨ ⟩ =
∫

αβ ˆαβ

∫
λαexp [ ( αβ ,ˆαβ ,λα)] (7.57)

where

= −λα + αβˆαβ − log det [λαδαβ + ˆαβ ] + α ⟨log ( , )⟩ (7.58)

Where the dependence is only on non-local variables like , , → . Let us now evaluate the
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integral using the saddle point approximation,

=

∫
exp [− ( )] ∼ exp [− ( )]

√
π

′′( )
(7.59)

where ( ) is at its minimum at .

In the limit of → ∞, we can use the following ansatz assuming replica symmetry,

αβ = ( − )δαβ + (7.60)

ˆαβ = (ˆ − ˆ ) δαβ + ˆ (7.61)

where we denote ˆ − ˆ as ˆ, and nd the saddle point by taking the derivative of
∂
∂λα

= :

=
λ+ ˆ

− ˆ

(λ+ ˆ)
(7.62)

∂
∂ˆαβ

= :

αβ = ( − ) δαβ + =

(

λ+ ˆ

)
δαβ − ˆ

(λ+ ˆ)
(7.63)

Thus, we get

=
− ˆ

(λ+ ˆ)
(7.64)

Note that doing saddle points withλ andˆ are easier, andwe did these operations rst. Then, from

Eqn. 7.62, we obtain

=
λ+ ˆ

+ (7.65)
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If we go back to the original equation, Eqn. 7.57, and plug in back the saddle points, then, we get

[(λ+ ˆ)− log (λ+ ˆ)] + α⟨log ( , )⟩ (7.66)

which eventually leads us to the expression for the term

⟨ ⟩ = [ ( )+α ( )] (7.67)

where

( ) =

[

− + log ( − )

]
(7.68)

( ) = ⟨log
∫ ∞

√
π

−
(

−
√

−

)

︸ ︷︷ ︸
(
√

− )= (
√

)

⟩ = ⟨log (
√

)⟩ (7.69)

Note that is an entropic term anddoesn’t changewith constraints, but for classi cationwith ad-

ditional constraints (such asmanifolds classi cation), does change andand computing ⟨log (
√

)⟩

becomes important.

Therefore, by L’Hospital’s rule, we get in the limit of → ,

⟨log ⟩ = [ ( ) + α ( )] (7.70)

Note that is an entropic term, and needs to be self-consistent.

∂

∂
=

( − )
(7.71)

α
∂

∂
= α

∂

∂

∂

∂
(7.72)
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Now plugging the expressions back to the self-consistency requirement (∂∂ = α∂
∂ ) we get:

=
α( − )⟨

(
− /

√
π (

√
)

)
⟩ (7.73)

And the nal step for capacity is we send → ( → ∞) because there is only one solution and

in this limit the overlap is 1. With such limit, we get α = , which is the capacity of isolated points

for zero-margin solution.

Remarks. Ifα = then has to be zero from Eqn 7.73. Intuitively, this means that as the number

of points approach zero (or the network size approaches in nity compared to the number of

points ), the problem becomes very easy and there is a lot of solutions, making the overlap between

solutions go to 0.
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