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Abstract

Proteins—molecular machines that underpin all biological life—are of significant
therapeutic and industrial value. Directed evolution is a high-throughput experi-
mental approach for improving protein function, but has difficulty escaping local
maxima in the fitness landscape. Here, we investigate how supervised learning in
a closed loop with DNA synthesis and high-throughput screening can be used to
improve protein design. Using the green fluorescent protein (GFP) as an illustrative
example, we demonstrate the opportunities and challenges of generating training
datasets conducive to selecting strongly generalizing models. With prospectively
designed wet lab experiments, we then validate that these models can generalize to
unseen regions of the fitness landscape, even when constrained to explore combina-
tions of non-trivial mutations. Taken together, this suggests a hybrid optimization
strategy for protein design in which a predictive model is used to explore difficult-
to-access but promising regions of the fitness landscape that directed evolution can
then exploit at scale.

1 Introduction

Proteins play critical roles in cells, including catalyzing reactions, sensing, signaling, and providing
structure. Consequently, engineered proteins are of high therapeutic and industrial value, with
a growing number of applications as medicines and industrial catalysts. A protein’s function is
determined by its 3D structure, which is formed from a folded chain of amino acids. The challenge
for protein engineers is to discover the sequence of amino acids that encodes a protein with desired
function.

Despite advances in in silico prediction of protein folding, creating novel proteins from first principles
remains limited to simple folds and static structures [1]. Instead, most protein engineers focus on
improving existing proteins through directed evolution, structure-guided mutagenesis, and screening.
Optimizing a protein’s function can be described as seeking the tallest peak in its fitness landscape
[2], or searching the space of possible sequences for optimal function. Directed evolution is adept at
searching a local neighborhood and climbing nearby peaks [3], but other functional neighborhoods
may be separated by thin ridges or valleys that are only accessible by evolution over millions of years
[4]. Therefore, a model with a sufficiently good approximation of the fitness landscape may guide the
discovery of rare, high-functioning sequences that are otherwise inaccessible to directed evolution.
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Figure 1: Workflow for ML-guided protein design. a) Simulated annealing of a model approximated fitness
landscape proposes candidate sequences for exploration beyond the reach of directed evolution. b) The true
landscape is iteratively revealed through synthesis and testing of proposed sequences. Model-guided designs can
either be false discoveries, optimal, or near-misses (functional but not optimal). Directed evolution reveals the
local neighborhood of model-guided designs and optimizes near misses.

In this work, we explore the potential and challenges of closing the loop between machine learning
and high-throughput wet lab experimentation to navigate a protein’s fitness landscape and ultimately
optimize protein function (Figure 1). We demonstrate our ideas empirically using the green fluorescent
protein (GFP) (Figure 2) as a representative test case, where we define the fitness of a specific GFP
amino acid sequence to be its fluorescence—an easily measurable function.

In particular, we make the following contributions:

1. We investigate the challenges of selecting models for protein design that can generalize to
unseen parts of the fitness landscape. Specifically, we first perform wet lab experiments to
generate new, diverse datasets that we use to design several train-dev-test splits to compare
models. We find that a novel, but simple model architecture we call Composite Residues
performs best with respect to our generalization objectives.

2. We demonstrate the Composite Residues model’s ability to generalize using prospectively
designed wet lab experiments. These experiments confirm the model’s ability to generalize
to unseen parts of the landscape not only in terms of total-mutations-made, but also in terms
of its ability to access difficult-to-reach regions of the landscape.

3. In an analysis of all wet lab validated gain-of-function mutants, including those obtained
from a control directed evolution experiment, we demonstrate that non-trivial mutations—
mutations that are hard to make while preserving function—have a high variance impact
on protein function. Thus, while on average they negatively impact function, a significant
minority of non-trivial mutations are predicted to significantly boost function.

4. We show with experiments that optimizing protein function via predictive modeling cannot
easily “beat” directed evolution when given the same set of input sequences to optimize.

Taken together, we posit that a good optimization strategy for finding the highest functioning
sequences may be to use supervised predictive models to explore difficult-to-reach, but functional
sequence neighborhoods that directed evolution can then exploit in parallel and at scale (Figure 1).

2 Biological Background

Proteins are composed of chains of 20 naturally occurring amino acids, which are in turn encoded as
a sequence of DNA. The protein’s biological function is a direct consequence of its structure, and
therefore ultimately its sequence. How a change, or mutation, in the amino acid sequence encoding a
protein affects its function is determined by which amino acid is being mutated as well as its adjacent
amino acids in 3D space. Consequently, combinations of mutations may affect function in non-linear
ways (epistasis), resulting in a complex, multi-modal fitness landscape that is difficult to optimize.
Moreover, even for a small 100 amino acid protein the sequence space is immense (20100), and the
vast majority of sequences are non-functional [5].

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2018. ; https://doi.org/10.1101/337154doi: bioRxiv preprint 

https://doi.org/10.1101/337154
http://creativecommons.org/licenses/by-nc-nd/4.0/


side view
top view top view

amino acids shown top view
electron density map

glowing 
chromophore

Outer barrel 
facing amino 
acids

Inner barrel 
facing amino 
acids

Figure 2: Structure of GFP. Left) side and top views of the GFP backbone illustrated as a “ribbon.” Right) Top
views of GFP illustrating the orientation and interaction of amino acids inside and outside of the barrel. The
electron density map better illustrates the natural occupancy of the amino acids.

To explore a protein’s fitness landscape, we can leverage various molecular biology techniques to
generate, read, and characterize the function of proteins by manipulating their respective coding DNA
sequence. However, technological trade-offs in specificity and cost constrain the scope of sequences
that can be characterized in any one experiment. Gene-length DNA synthesis remains expensive and
limited to ≈100-1000 sequences per round of experiments. However, random mutagenesis (e.g., by
error-prone PCR) of a given template DNA sequence is inexpensive and allows generating a library
of DNA sequences in the local neighborhood of the template. Protein function can be measured
in parallel, high-throughput assays where individual DNA sequences are physically linked to their
function.

In the case of GFP, functional variants of the protein allow the cells to “glow.” Cells with differentially
functional GFPs can be separated using Fluorescence-Activated Cell Sorting (FACS) combined with
next-generation sequencing to characterize libraries of ≈ 105 sequence-function pairs [6, 7].

In addition to a high-throughput assay, GFP offers several natural, intuitive controls to aid development
of model-guided protein engineering methods. The protein consists of a barrel-shaped structure
protecting a chromophore formed by three amino acids (Figure 2). The excitation-emission properties
of GFP are directly affected by the identity of chromophore and inner-barrel amino acids, but are
ultimately subject to the global stability determined by all 238 amino acids [8].

3 Related Work

Several studies have applied machine learning to predicting protein structure from sequence (e.g.
[9, 10]). However, our work is focused on learning models that predict protein function directly from
sequence so that we can use them to guide wet lab experiments toward a design goal [11].

Previous work leveraging machine learning methods to engineer proteins focused on variations of
linear regression [12, 13], Gaussian process (GP) regression [14, 15], and other kernel-based methods
to model the relationship between sequence and fitness to produce improved proteins.

Romero et al. demonstrated the utility of GP regression models for optimizing protein function
[14]. This was effective for leveraging their training set of hundreds of protein variants; however,
exact inference with GPs is impractical for applications beyond a few thousand training points [16].
Furthermore, kernel-based methods are fundamentally interpolative and are thus limited in their
ability to explore beyond training data.

Fox et al. detailed an iterative, model-guided method for improving the function of an enzyme [13].
The authors performed 18 rounds of generating diversity, screening, and modeling to iteratively
accumulate mutations that contributed to improved enzyme function. Despite using a purely additive
model, Fox et al. observed that the combined effect of the final 35 mutations was not predicted by an
additive model. By refitting a linear model only to the latest round of experiments, they were able to
compensate for the simplicity of their model and traverse global non-linearity in the fitness landscape.

Learning models that can represent non-linear interactions may decrease engineering times and
help to uncover proteins with unprecedented performance. Additionally, by pairing recent advances
in high-throughput DNA synthesis and sequencing with multiplexed molecular biology, it is now
possible to obtain the necessary quality and volume of data for principled model development. To our
knowledge, no previous work on model-guided protein engineering has explored how to design and
generate datasets that best complement modeling. In this work, we use high-throughput experimental
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capabilities not only to train models, but also to investigate when and why they generalize and how
that ultimately affects engineering efforts.

4 Results

4.1 Experimental design and generation of datasets to guide model selection

In order to train and develop models for the purpose of protein design, we sought data that would help
us assess model generalization. We employed wet lab techniques—gene-length DNA synthesis and
error-prone PCR—to create datasets of functional GFP variants diverse in sequence and fluorescence
intensity, complementing an already published local fitness landscape dataset of avGFP [7]. Our
combined dataset of over 600,000 sequence-function pairs covered several distinct and previously
unexplored functional neighborhoods of GFP (Supp. Figure 1). These initial training datasets are
summarized as follows:

1. Sarkisyan (avGFP) - A set of ≈54,000 fluorescence measurements of randomly mutated
variants of avGFP. These variants contained an average of 3 mutations and serve as a
high-quality measurement of the local fitness landscape, or neighborhood, of avGFP.

2. Break-Fix (sfGFP) - sfGFP is a variant of avGFP differing by 14 mutations that are the
result of several directed evolution projects to improve avGFP’s brightness and stability
[17]. To complement the Sarkisyan dataset, we performed an exploration of the fitness
landscape around sfGFP. Specifically, we employed an experimental strategy we refer to
as Break-Fix Evolution to enrich for diverse mutants that maintain function by passing
iteratively mutagenized variants through toggled rounds of positive and negative selection
(Supp. Info. Section 2). We measured the brightness of ≈300,000 sequences quantitatively
at coarse resolution (Supp. Info. Sections 3 and 4).

3. 96 Designed Neighborhoods - The above two datasets represent thorough explorations of
two GFP neighborhoods. To explore more neighborhoods in parallel, we proposed and then
experimentally synthesized 96 “parent” sequences (5–40 mutations relative to sfGFP) using
simulated annealing of a model approximated fitness landscape (Supp. Info. Section 5). To
build this approximation we trained a fully-connected feed-forward neural network on the
Sarkisyan and Break-Fix data based on the reasoning that the model could learn non-linear
interactions among amino acids. We synthesized and characterized the 96 sequences in the
wet lab and found that 43 out of 96 were functional. We then performed local mutagenesis
(Supp. Info. Section 4) of these parents to generate neighborhoods and used Flow-Seq
(Supp. Info. Section 3) to measure ≈200,000 sequence-function pairs.

4.1.1 Model Architectures

With the complete training set, diverse in function and edit distance, we proceeded to empirical model
comparison. The proteins were featurized via their amino acid sequence. Each of the 20 amino
acids was represented as a vector in R15, which can be thought of as a character embedding for
each element of a 238-character string. After flattening this sequences of embeddings, the protein
representation was a 3,570-dimensional vector. We considered three architectures in support of
our design goals. In each case, the amino acid embeddings were jointly learned with the model
parameters.

1. Linear Regression (LR) - Flattened character embedded sequence passed as input to linear
regression. ≈3,900 parameters.

2. Feed Forward Network (FFN) - Flattened character embedded sequence passed as input
to a three hidden layer fully connected network with hidden layer dimensions of 100, 30, and
10. The network employed SELU [18] activations on all nodes, except the output. ≈361,000
parameters.

3. Composite Residues (CR) - We developed the Composite Residues architecture from the
intuition that small, hierarchically organized groupings of interacting amino acids drive
protein function. As such, in this architecture the sequence-length x 15 output matrix of
character embedding is passed through a Composite Residues layer, in which the embedded
sequence is multiplied from the left by a 5 x sequence-length pooling matrix. The rows of
the resulting 5 x 15 compressed sequence represent "composite" amino acid residues. This
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matrix is then flattened and passed to a 5-dimensional fully connected hidden layer with
SELU activations that interprets the learned groupings and feeds an output node. Further
details can be found in Section 6 of the Supplemental Information. ≈1,900 parameters.

For each model class, the specific architectures described above were arrived upon through several
empirical iterations of hyperparameter tuning and model assessment using Sarkisyan as a training
set and Break-Fix as a test set, and vice versa. For each architecture, we also compared the effect of
having a linear versus sigmoid activation on the final output node. The models were trained using
mean-squared error (MSE) in log relative fluorescence units.

4.1.2 Model selection is sensitive to train-dev-test split and performance metric

Proper development (“dev”) and test datasets as well as choice of performance metrics are key
factors for arriving at useful models. A good development dataset—an out-of-sample dataset used
to benchmark the model during training—should overlap in distribution not only with the training
data, but also with the target test cases to which we hope to generalize. Models can only be directly
compared within a train-dev-test dataset split and model selection should be based performance on
dataset splits that are most consistent with the design (generalization) objective.

In the protein design domain, the characteristics of an effective dev set have not been previously
explored. We enumerated several natural characteristics to consider: edit distance to a reference point
(e.g., wild-type avGFP), phenotype distribution (e.g., dark vs bright), and positional distribution of
amino acids.

With these considerations in mind, we created 4 different train-dev-test splits:

1. Sarkisyan 85-5-10 - Random split of the Sarkisyan dataset with 85% train, 5% dev, and
10% test.

2. Sarkisyan-Break-Fix - Train and dev data from Sarkisyan (random 90% train, 10% dev).
Test data from Break-Fix.

3. 96-Designs-Sarkisyan - Train-dev on the 96 Designed Neighborhoods data (random 90%
train, 10% dev). Test on Sarkisyan.

4. 96-Designs-Kamchatka-Holdout - Train on 96 Designed Neighborhoods data with one far
neighborhood (15 mutations from sfGFP and most other parents) held out as the test set,
which we nicknamed “Kamchatka” based on its spatial location in a 2D PCA projection of
our dataset (Figure 3, upper-right panel). We also synthesized an "ancestral" sequence of
Kamchatka that had 3 of its founding mutations and measured its neighborhood. We used
this ancestral neighborhood as the dev set.

We trained the models described in the previous section, and performed comparisons within each
train-dev-test split (Figure 3, Supp. Info. Section 7). In addition to the mean squared error (MSE),
we computed the false discovery rate (FDR) on the held-out test set using a reasonable binarization
threshold. FDR is a critical metric for protein design as it is directly related to money and effort lost
on non-functional sequences.

We performed five training replicates of each model by using a different random weight initialization
each time. For a given model architecture, we built min- and mean-ensembles of the replicates to
test their potential for learning different, but complementary distributions. Here, for example, a
min-ensemble would return the minimum predicted value of all replicate models for a given input.

The train-test-split analysis in Figure 3 illustrates the challenges of identifying proper dev and test
sets for protein engineering. In the naïve random train-test-split (Sarkisyan 85-5-10), a linear model
with sigmoid activation (LR-sigmoid) strongly out-performed the other models. In fact, LR-sigmoid
performed reasonably well on all datasets considered. However, among the more non-standard
train-test-split designs employing the 96 Designed Neighborhoods, we found the Composite Residues
architecture with a sigmoid activation (CR-sigmoid) to perform comparably to LR-sigmoid according
to MSE, and out-perform LR-sigmoid according to FDR. This was especially true of the Composite
Residues min-ensemble. However, on 96 Designed Neighborhoods with Kamchatka hold-out, even
the FFN model was competitive with CR-sigmoid, emphasizing the challenge of model selection for
protein design.

With the goal of discovering new, distant variants of GFP that remain functional, we considered
FDR to be more important as it controls the amount of experimental capital used on non-functional
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Figure 3: Variations of train-dev-test split design guide model selection. (Top) The three experimentally-
generated datasets are visualized using the first two principal components of a PCA (see also Supp. Figure 1).
Top panels indicate distribution of train (blue), dev (pink), test (green) data points. Black points are all remaining,
unused points. (Bottom) Four train-dev-test splits were chosen for comparing six model architectures across two
performance criteria, MSE and FDR. Box plots indicate quartile boundaries of replicate performance. Triangle
and square points indicate the min- and mean-ensembled performance of the replicates, respectively.

sequences. We selected the CR-sigmoid model to continue our explorations as it performed well
on train-test-splits most in line with our generalization objectives. Additionally, we found that the
Composite Residues model weights offered intuitive biophysical interpretation, which assured us
further of the model’s ability to generalize (Supp. Info. Section 6).

4.2 Models trained on local fitness data can generalize non-locally

We next designed wet lab experiments to test the ability of the min-ensembled Composite Residues
model to generalize to unseen parts of the fitness landscape.

Unrestricted exploration of the fitness landscape – Examining the brightness of the 96 Designed
Neighborhoods parents as a function of number-of-mutations revealed that on average 20+ mutations
could be made to the protein without completely impairing function (Figure 4a, green circles). By
contrast, random mutagenesis—an experimental baseline—typically destroyed function after five
mutations ([7], and our sfGFP Break-Fix data). This suggested that even the non-optimal FFN model
could generalize to unseen parts of the fitness landscape.

We next experimentally verified that the min-ensembled Composite Residues model could likewise
move through the landscape when required to make at least 15 mutations to one of the 96 Designed
Neighborhoods parent sequences via unrestricted simulated annealing (Supp. Info. Section 5). We
found that in testing these proposed unrestricted mutants, the CR model not only achieved this
objective, but also improved upon or maintained brightness near wild-type sfGFP (Figure 4a, green
squares).

Examining the properties of these designed sequences in the context of structure, we noticed functional
mutants were enriched for outer-barrel mutations (Figure 4b). Even though the model was not
provided with the structure, it was able to learn that outer-barrel amino acids tended to be more
mutable without impairing function (matching literature and intuition). Thus, perhaps one trivial
way to generalize to unseen parts of the fitness landscape might simply be to progressively mutate
permissible amino acids.

Restricted exploration of the fitness landscape - generalization to non-trivial mutants – To test
whether the min-ensembled CR model could explore more difficult-to-reach regions of the landscape,
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(a) (b)

(c)

chomophore

Figure 4: Locally trained Composite Residues model can generalize to non-local parts of the landscape. (a)
Normalized brightness (log-scale) vs number of mutations for experimentally generated random mutants (black),
non-trivial mutants designed by CR-sigmoid (orange), and unrestricted mutants (green). Green circles indicate
parents of initial 96 Designed Neighborhoods. Green squares correspond to unrestricted mutants designed using
the Composite Residues model starting from the bright 96 Designed Neighborhoods parents. (b) Inner-barrel
facing mutations are enriched in functional non-trivial mutants relative unrestricted mutants. Gray dashed line
shows the expected number of inner-barrel mutations assuming random mutagenesis. (c) Atomic space-filled
structure of GFP with core exposed and amino acids colored according to positional entropy ratios. Right plot
shows the distribution of positional entropy ratios (functional-to-nonfunctional) for all amino acids (grey line),
inner-barrel facing (orange), and outer barrel facing (green). Red vertical line depicts a hard threshold for
defining non-triviality.

we defined a measure of how non-trivial each amino acid is to mutate based on local mutagenesis data.
Specifically, we calculated the Shannon entropy at each sequence position of all bright sequences and
divided it point-wise by the Shannon entropy at each position of all dark sequences. This entropy
ratio should be closer to zero for immutable amino acids, and closer to one for permissible amino
acids. Indeed, inner-barrel amino acids tended to have lower entropy ratios than outer-barrel ones
(Figure 4c).

We used these non-triviality scores to bias simulated annealing sampling of the CR model and
proposed 76 new GFP sequences enriched for non-trivial mutations (Supp. Info. Section 5, Figure
4b). Wet lab validation confirmed these model-designed non-trivial mutants maintained function
better than random mutagenesis (Figure 4a).

4.3 Non-trivial generalization may be critical for protein design

We next investigated how the above lessons and ways of thinking about generalization might impact
protein design. In parallel to evaluating designed sequences, we performed two rounds of (wet lab)
directed evolution, selecting for brighter sequences in each round (Supp. Info. Section 8). Directed
evolution produced a number of gain-of-function (GoF; brighter than sfGFP) mutants. Several
ML-proposed designs were of comparable brightness, but were not statistically brighter (Supp. Figure
5).

We examined the mutational composition of these GoF sequences. With a few exceptions, both
designed and evolved sequences tended to have more trivial than non-trivial mutations. Using the
CR model, we computed the predicted background-averaged impact on brightness for each mutation
within a sequence (Figure 5a, Supp. Info. Section 10). We observed that trivial mutations tended to
have small effect sizes hovering around neutral. Suprisingly, however, we noticed that even though
non-triviality was defined on a loss-of-function basis (i.e. mutations at a non-trivial position tended
to break protein function on average), a significant minority of non-trivial mutations were predicted
to have a strongly positive impact on brightness (Figure 5a).

One GoF mutant had only two non-trivial mutations, one with positive background-averaged impact
(sequence position 141) and the other with negative background-averaged impact (position 169). We
examined the predicted effect of each mutation whether it occurs alone or in the context of the other
mutation (Figure 5b, left). This revealed a predicted non-linearity in which the individual impact of
the mutation at 169 was negative without the mutation at 141, but was neutral or positive when 141
was in the background. Similarly, in the context of the 169 mutation, the predicted impact of the
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(a) (b)

Figure 5: Non-trivial mutations exhibit higher variance effect on function. (a) Predicted background-averaged
impact on brightness for all mutations in all brighter-than-sfGFP mutants. (b) Example of non-additive effect of
two mutations learned by the model and visualized on GFP structure.

mutation at 141 was significantly enhanced (i.e. positive epistasis). Further, we found that amino
acids 141 and 169 are in close physical proximity (Figure 5b, right). Moreover, they co-localize at
the lid of the GFP barrel, which is a likely folding nucleus important for proper GFP maturation [19].

We conclude that though non-trivial mutations tend to have a negative phenotypic impact, they induce
greater phenotypic variance and thus offer opportunity for making relatively large improvements in
function with only a few mutations. This suggests pursuing non-trivial mutations aggressively in
terms of training dataset design, modeling effort, and sequence proposal may be valuable for protein
design.

5 Discussion

Our study has practical implications for how to effectively combine high-throughput molecular
biology and machine-learning for protein engineering. At first glance, directed evolution appears
to be a wet lab baseline to challenge with a machine-guided approach. While directed evolution
only performs local optimization of the fitness landscape, it achieves unparalleled scale and performs
local exploitation well because it can screen millions of mutants per evolution cycle. Nevertheless,
we observed that an appropriately selected model can perform exploration by making non-trivial
leaps into the fitness landscape that directed evolution alone cannot do. Taken together, this suggests
a hybrid optimization strategy in which, per design cycle, a model is used to non-locally explore
promising regions of the fitness landscape that directed evolution can then optimize and exploit.

Given model-guided exploration of the fitness landscape may be a valuable goal, we showed several
ways in which we could think about the generalization of our models. The simplest demonstration of
generalization is to show that a model can effectively propose functional protein sequences that are
many mutations away from a reference point and locally associated training data. A more difficult
demonstration is to show the same model can effectively propose functional protein sequences that
contain many non-trivial mutations. We observed that, perhaps due to their extensive structural
involvement, non-trivial amino acids may be points of high leverage with respect to function opti-
mization. We speculate that this may be because such mutations fundamentally change or reconfigure
the protein, thereby enabling access to different and possibly higher functional optima.

Of course, the discussion so far assumes there is a model in hand with which to assess generalization.
A key contribution of this work is to highlight the difficulty of selecting a strongly generalizing model
in the protein engineering domain. We found that model selection depended heavily on train-dev-test
split design. Interestingly, the model with the fewest number of parameters, Composite Residues, was
the one that generalized the best in our evaluations. This, in part, is a consequence of the relatively
simple out-of-sample hypotheses the model can make. However, we also argue that the superior
performance of Composite Residues is attributable to its architecture, which succinctly captured
realistic modularity in how groups of amino acids might biophysically cooperate to impact protein
function.

While we have developed our proof-of-concept using GFP, we expect that the methods, design
principles, and lessons learned extend broadly to other proteins. All proteins fold according to the
same thermodynamic laws, and have variably mutable amino acids that offer differing amounts of
leverage over the protein. From a machine learning perspective, this makes protein engineering an
exciting domain for developing new methods as the effect of mutational combinations range from
purely additive to highly non-linear. Importantly, unlike many other design domains (e.g., chemical
design [20]), synthesizing protein designs is largely a digital exercise (i.e. ordering sequences of
DNA), and testing them experimentally can often be done massively in parallel.
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