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Abstract

Deep learning has elicited breakthrough successes on a wide array of machine learning

tasks. Outside of the fully-supervised regime, however, many deep learning algorithms

are brittle and unable to reliably perform across model architectures, dataset types,

and optimization parameters. As a consequence, these algorithms are not easily

usable by non-machine-learning experts, limiting their ability to meaningfully impact

science and society.

This thesis addresses some nuanced pathologies around the use of deep learning for

active and passive online learning. We propose a practical active learning approach for

neural networks that is robust to environmental variables: Batch Active learning by Di-

verse Gradient Embeddings (BADGE). We also discuss the deleterious generalization

effects of warm-starting the optimization of neural networks in sequential environments,

and why this is a major problem for deep learning. We introduce a simple method that

remedies this problem, and discuss some important ramifications of its application.
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Chapter 1

Introduction

1.1 Deep Learning Strengths and Weaknesses

In recent years, terms like deep learning and machine learning have moved from

research jargon to regular vernacular. Cutting-edge deep learning research consistently

garners attention from the media [1, 2, 3], behemoth technology companies allocate

significant resources toward machine learning endeavors [4, 5], and the economic and

sociological consequences of artificial intelligence systems are frequent topics of debate

among policymakers and pundits [6, 7, 8, 9].

Is this hype warranted? The recent excitement around deep learning may lead one

to believe it is a relatively new technology, but this is not the case: neural networks

have existed, in some form, along with the tools typically used to optimize them, for

over half a century [10, 11].
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The popularity of deep learning today is due largely to the availability of both

powerful computation and huge, annotated datasets. In 2010, researchers at Stanford

released the ImageNet database, consisting of 1.2 million images of 1,000 object

classes, collected using extensive manual effort [12]. Since its inception, the ImageNet

project has run an annual software contest to evaluate image-classification algorithms

on the ImageNet database. In 2012, a deep neural network termed AlexNet drasti-

cally outperformed competing strategies, reinvigorating an otherwise relatively stale

landscape of deep learning research [13].

AlexNet was an engineering triumph, demonstrating that neural network training

could be significantly accelerated by GPUs. Since AlexNet, the ImageNet competition

has been consistently won by convolutional neural networks of varying architecture,

often trained with very specific hyperparameter and regularization settings. According

to some measurements, recent winning models surpass even human performance [14].

An optimistic takeaway from the ImageNet competition is that neural networks

can perform extremely well on machine learning problems. A more honest message,

however, is that the success of these models relies more than we would like on their

inclusion of meaningful inductive bias (like convolution), the availability of massive

amounts of annotated data (like ImageNet), and the identifiability of high-performing

hyperparameters (like learning rates and regularization settings).

Searching for optimal model architectures and hyperparameters is an iterative

process, generally requiring both human expertise and large amounts of computation.

This poses a problem: we want deep learning to enable breakthrough technologies and

accelerate scientific innovation, but engineers and scientists may not have the expertise
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to easily benefit from research in this space. If deep learning is to make a meaningful

impact on society and science, it is necessary to take steps towards making its

performance less reliant on ideal hyperparameters and large amounts of labeled data.

1.2 Contributions

In this thesis, we attempt to robustify the use of neural networks for sequential

learning scenarios. In particular, we identify and seek to remedy some nuanced

pathologies around the use of deep learning in these passive and active online learning

regimes.

In Chapter 2 we discuss a motivating example, designing a machine learning

solution to a statistical genomics problem. We use convolutional neural networks

and canonical correlation analysis to identify meaningful relationships in paired

genotype and phenotype data. At the end of the chapter, we note that in this space,

labeled data are expensive to acquire, limiting the size of datasets we use and, as a

consequence, the effectiveness of models trained on them.

Chapter 3 introduces an algorithm intended to alleviate problems of this variety.

Our hyperparameter-free, batch-mode active learning approach, which we call BADGE,

is built to request labels only for examples that are most informative to the model.

We propose a novel embedding for unlabeled data that somewhat decouples each

sample’s identity from the learner’s uncertainty about its label. Once in this space,

we use a sampler that can strike a balance between batch diversity and predictive

uncertainty. We show that while the relative performance between baseline acquisition
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functions is often sensitive to things like model architecture, data type, and batch

size, BADGE is consistently high performing.

In Chapter 4 we discuss how, while some active learning acquisition functions

are more efficient than others, the primary computational bottleneck in deep active

learning is model train time. This is because virtually all deep active learning work

retrains the network from scratch each time new data are appended to the training

set [15, 16, 17]. The more efficient approach, which is to initialize network parameters

to those found in the previous round of active learning, tends to cause significantly

worse generalization performance in comparison to randomly-initialized models. We

show that this is not just a problem in active learning, but also passive online learning.

We propose a simple hybrid initialization that remedies this inefficiency without

sacrificing performance.

We defer our discussion of related work to Chapter 5. Finally, Chapter 6

overviews our findings and identifies interesting avenues for future work. The main

chapters of this thesis have been published or are in preparation in the following

venues:

[Chapter 2]: Jordan T. Ash∗, Gregory Darnell∗, Daniel Munro∗, and Barbara

E. Engelhardt. Joint analysis of gene expression levels and histological images

identifies genes associated with tissue morphology. Nature Communications,

2020.

[Chapter 3]: Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John

4



Langford, and Alekh Agarwal. Deep batch active learning by diverse, uncertain

gradient lower bounds. In International Conference on Learning Representations,

2020. (talk)

[Chapter 4]: Jordan T. Ash and Ryan P. Adams. On Warm-Starting Neural

Network Training. arXiv preprint, 2020.
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Chapter 2

A motivating example

The success of deep learning in the past several years has spurred a plethora of

exciting research on its application to problems in medicine [18, 19, 20, 21]. This

chapter broadens research in this space by introducing a machine learning approach

for studying associations between paired genotype and phenotype data.

Our goal is to associate histological image phenotypes with high-dimensional

genomic markers; the limitations to incorporating histological image phenotypes in

genomic studies are that relevant image features are difficult to identify and extract

in an automated way. We use convolutional autoencoders and sparse canonical

correlation analysis (CCA) on histological images and gene expression levels from

paired samples to find subsets of genes whose expression values in a tissue sample

correlate with subsets of morphological features from the corresponding sample image.

6



2.1 Introduction

Histological and histopathological images—high-resolution microscopic images of

healthy or diseased tissue samples that have been sectioned and stained—are essential

for identifying and characterizing complex phenotypes. Pathologists study tissues

using histological imaging techniques for scientific research on cellular morphology

and tissue structure and for medical practice. For example, visual inspection of

biopsied tissue is a major component of cancer diagnosis, since cancer is known to

affect the morphological properties of tissues, including extracellular structure and

cell size, shape, and organization [22].

There has been considerable research in computationally analyzing pathological

image data to develop automated cancer diagnoses. Earlier approaches typically

involved the extraction of predetermined morphological, textural, and fractal image

features from histological images [23]. The resulting image feature vectors then are

used to classify the pathological status of the sample [24]. Because this feature

extraction relies on human-defined features, challenges arise as a result of cross-tumor

heterogeneity and the variance inherent in histology and pathology [25].

Complementary to visual inspection of histological images, gene expression can be

measured to study cellular activity on the molecular level. Bulk gene expression levels

have been used to characterize and understand cellular differences between sample

tissues [26], disease phenotypes [27], environments [28], or exposures [29]. Current

work has mainly focused on finding genotypes and gene expression levels associated

with disease phenotypes [30, 26]. Single cell imaging studies have begun to study

the connection between expression and cellular morphology [31, 32], but throughput,
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number of transcripts imaged, number of cells, and image analysis pose challenges

to this technology as an all-purpose solution currently. More generally, analyses to

identify sets of genes whose expression levels are correlated with cellular physiology

and tissue phenotypes would enable investigation into both basic cellular biology and

drivers of cellular morphology associated with disease. Here, we are interested in

identifying genes and genotypes associated with stained images of tissue sections.

Association studies involving histological image data, in contrast to predictive and

diagnostic studies, have not been broadly undertaken, despite their importance. This

is largely because it is not clear how to identify biologically relevant features auto-

matically from histological images. Previous work on this subject involved extracting

hand-engineered features from images and computing pairwise correlations with gene

expression data [33]. Methods exist to analyze histological images automatically, but

often these methods extract image features that are not associated with genomic

features [34].

In this work, we address this difficulty in a framework called ImageCCA, which

relies on the automatic extraction of image features using a convolutional autoencoder

(CAE) [35]. A CAE is an unsupervised deep learning method that produces a small

set of numeric features that can be used to characterize an image [35]. These image

feature representations are intended to capture variance in the image as a whole, but,

as discussed later, we can also produce image features that are predictive of class

labels, such as tumor versus healthy samples.

We use sparse canonical correlation analysis (CCA) to identify correlated sets of

genes and learned histological image features. CCA finds linear mappings from paired

8



samples into a shared low-dimensional space for which these observations maximally

correlate [36]. Because we expect only a small subset of genes to contribute to a

particular kind of morphological variation, we use a sparse form of CCA to identify

small subsets of genes and image features whose values correlate most strongly

with each other. CCA can be thought of as jointly modeling and partitioning the

contributors to variance in the gene expression levels and image features. A single

CCA component—capturing variation in samples due to a subset of genes and image

features—implicitly removes this variation from signals captured in other components.

We interpret the variation captured in CCA components by examining both the

enriched molecular functions of their selected genes and the cellular morphology of

their selected image features.

This chapter proceeds as follows. First, we give an overview of ImageCCA for

the joint analysis of paired gene expression and histological image data. Next, we

apply this framework to three datasets with histological images and gene expression

levels on paired samples. We demonstrate the biological significance of the resulting

associations using functional analyses of the subsets of genes that correlate with

image features.

2.2 ImageCCA for gene-image associations

ImageCCA correlates extracted image features with paired gene expression levels to

faclilitate the study of associations between cellular morphology and gene expression

levels. In our scenario, the model has access to paired samples X ∈ {x1, x2, ..., xn} and
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Y ∈ {y1, y2, ..., yn}, where X is a dataset of images of tissues and Y is a corresponding

dataset of gene expressions. Each image xi ∈ Rd×d×3 is a color (three channel), d× d-

pixel photograph of cells from a particular tissue. Gene expressions for those same

cells are represented in the corresponding sample yi ∈ Rm, where each dimension

denotes the amount by which a particular gene is expressed.

The goal of ImageCCA is to correlate image features with gene expression data.

Solving this problem successfully would allow us to garner insight into the genetic

underpinnings of cellular morphologies. We propose to learn concise image represen-

tations of each image xi, then to use sparse canonical correlation analysis to correlate

this learned representation with the corresponding sample yi.

2.2.1 Representation Learning

Our method has both supervised and unsupervised variants, which differ only in

the way image representations are learned. In the unsupervised variant, image

representations are learned using a convolutional autoencoder (Figure 2.1).

The CAE is used to embed these images into a 1,024-dimensional space [13].

Embeddings from the CAE are learned with the objective of reconstructing the

original image as accurately as possible—the model’s loss is the `2 distance between

original and reconstructed images, relying on the 1,024 representative image features

learned by the encoder. The low-dimensional representation encodes visual properties

of images without regard to annotations like cancer status or tissue type. In this

feature space, images with similar morphological features tend to be closer to each
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Figure 2.1: A convolutional autoencoder trained to reconstruct tissue samples from
the BRCA dataset. Each convolutional layer of the encoder includes 5 × 5 filters
followed by 2× 2 max pooling and rectified linear (ReLU) activations. The final layer
of the encoder, which produces our embedding, is fully connected to a layer of 1024
units. Each convolutional layer in the decoder is upsampled 2× before again applying
ReLU nonlinearities. The first convolutional layer of the decoder is linearly projected
and reshaped from the bottleneck layer.

other in Euclidean space, while images with dissimilar features tend to be farther

apart (Figure 2.3).

Many of the datasets we consider also include annotations for each image, specify-

ing, for example, cancer type. The feature representation from the CAE quantifies

many types of histological variance, but we are often interested primarily in the

morphological differences between these kinds of pathological states. To capture these

differences in our embeddings, we added a multilayer perceptron (MLP) to the pre-

trained encoding portion of the CAE, and trained the MLP to distinguish histological

images according to the labels in the dataset. The MLP adds a supervision signal

to the feature extraction process. The modified image representation will identify

features that are useful for classification—for example, distinguishing morphological
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features of tumors versus healthy tissues—rather than for image reconstruction. In

this setting we use penultimate layer activations of the MLP to represent samples.

Pre-trained Encoder

Decoder

Filters: 8

Filters: 16

Filters: 32
Filters: 128 Filters: 64

Output: 
128 x 128 x 3

Encoder

Bottleneck:1024

Filters: 64 Filters: 128
Filters: 32

Filters: 16

Filters: 8

Input: 
128 x 128 x 3

Classifier

Layer Size: 
100

Layer Size: 
Number of 

Classes

Bottleneck:1024

Filters: 64 Filters: 128
Filters: 32

Filters: 16

Filters: 8

Input: 
128 x 128 x 3

Figure 2.2: Architecture of the feature extraction model for supervised ImageCCA.
The pre-trained encoder is attached to two fully-connected layers to allow for classifi-
cation. The first classification layer features 128 ReLU units, and the second has as
many neurons as there are classes with softmax activation (for multi-class problems)
or a single sigmoid unit (for binary classification problems).

2.2.2 Canonical Correlation Analysis

Canonical Correlation Analysis identifies linear mappings from paired samples into a

shared low-dimensional space for which these observations maximally correlate [36].

CCA is given an n× d matrix of image embeddings Xe (representing n samples of

dimensions d produced by the encoding portion autoencoder), and a corresponding

n×g matrix of gene expression levels Y (representing n samples of dimension g). The

first iteration of CCA aims to identify vectors a1 and b1 that maximize corr(Xea1, Y b1).

The procedure is repeated k ≤ min{d, g} times. Proceeding iterations i of CCA

12



Figure 2.3: Embeddings of GTEx histological images (discussed later) learned by a
CAE. Samples are visualized using t-SNE. Images with similar morphological features
are closer together, with muscle tissues forming a cluster distinct from the remaining
tissue types in the upper left corner

follow this same procedure, under the additional constraint that the i-th set of

CCA components, Xai and Y bi, are uncorrelated with previous components (i.e.

Xai ·Xaj = 0, Y bi · Y bj = 0, ∀i 6= j).

In its typical form, CCA results in canonical variates ai and bi that are dense. We

employ a sparse version of CCA which incorporates L1 penalties λ1 and λ2 respectively

on the values in ai and bi. The advantage of the resulting sparsification is twofold.

First, it regularizes the components, better ensuring corr(Aai, Bbi) to be large even

when samples in A and B are different from but similarly-distributed to those in Xe

and Y respectively. Second, it makes results more interperatable—for the i-th set of

canonical variables, non-zero elements of bi correspond to genes that best correlate
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with learned image features that have non-zero elements in ai. This interpretability

informs our discussion in the next section.

2.3 Results

We applied ImageCCA to three datasets. In each, we use Gene Ontology (GO) [37]

analysis to identify functions of the group of genes selected by sparse CCA (genes

that correspond to non-zero values of bi) for a particular component. GO terms were

identified using the topGO [38], org.Hs.eg.db [39] and GO.db [40] R packages. We

present these GO terms and show examples of images that most strongly represent

the image features selected by that same component.

2.3.1 Tissue Datasets

BRCA First, we applied our method to data from the Cancer Genome Atlas

(TCGA) Breast Invasive Carcinoma (BRCA) study [41]. We used 1,541 histological

images from 1,106 tissue biopsy samples, taken from 1,073 breast cancer patients. Of

these, 1,502 image samples were of primary tumors, 7 were of metastatic tumors, and

32 were of normal tissue. Primary and metastatic tumor samples were grouped into

a single tumor class label, in contrast to a normal label, to train the classifier in the

supervised version of our approach. Details of the data collection and preparation

can be found in the original study [41].
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c CCA variable 1 CCA variable 24CCA variable 21

muscle system process             2.2e-16
muscle contraction                    2.2e-16

contractile �ber                    2.2e-16
sarcomere            2.2e-16

actin binding            2.2e-16
cytoskeletal protein binding           2.2e-16

sexual reproduction             2.2e-16
male gamete generation                   2.2e-16

cilium                               2.2e-16
microtubule cytoskeleton           2.2e-16

microtubule motor activity           5.5e-12
motor activity            9.3e-11

nervous system development         2.2e-16
chemical synaptic transmission      2.2e-16

neuron part                    2.2e-16
synapse             2.2e-16

gated channel activity           2.2e-16
ion channel activity           2.2e-16

Figure 2.4: Results using ImageCCA for three different datasets. We report images
sampled from those with the most extreme (top and bottom 10%) CCA variable
values, and top two GO terms that are most enriched with the corresponding genes
with extreme loading values in the same component. BP is Biological Process;
CC is Cellular Component; MF is Molecular Function. The p-values reported are
uncorrected Fisher’s exact test. Panel a: the first component of the BRCA ImageCCA
results; Panel b: the first component of the LGG ImageCCA results; Panel c: Three
interesting components of the GTEx ImageCCA results.
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Figure 2.4a shows the top CCA component was enriched for genes involved in cell

adhesion found in the proteinaceous extracellular matrix with molecular functions

related to ion channel binding and collagen binding. The p-values reported for all

GO terms are from Fisher’s exact test. Figure 2.4a also displays images associated

with the most extreme positive and negative values of the component, demonstrating

dramatic differences in the structure of stained tissues. In particular, images with

high magnitude positive values have well-differentiated nuclei (dark purple spots) and

minimal extracellular connective tissue, whereas images with high magnitude negative

values have few nuclei and a dramatic presence of extracellular connective tissue

(pink colors). This component appears to capture differences in the extracellular

connective tissue structure, reflected in the extreme-valued histological images and

the GO functional terms enriched in the subset of non-zero genes. Components

estimated using supervised ImageCCA, which refines learned representations using

an MLP stacked on the pre-trained encoder, are well correlated with those from their

unsupervised counterpart (Figure 2.5a).

LGG Next, we applied ImageCCA to samples from the TCGA Brain Lower Grade

Glioma (LGG) study data, which includes both primary and recurrent tumor types [42].

These data include 484 images from 401 tissue biopsy samples taken from 392 lower

grade glioma patients. Of these, 471 images were derived from 388 primary tumor

samples, and 13 images were derived from 13 recurrent tumor samples. The class

labels used for supervised ImageCCA were primary tumor and recurrent tumor.
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In the unsupervised setting, ImageCCA components selected an average of 228

genes and 31 image features. In the supervised setting, these components selected an

average of 399 genes and 5 image features.

Figure 2.5: Results using a CAE with an MLP, to add supervision to estimate an
image embedding. We report images sampled from those with the most extreme (top
and bottom 10%) loading values, and top two GO terms that are most enriched with
the corresponding genes with extreme loading values in the same component. BP
is Biological Process; CC is Cellular Component ; MF is Molecular Function. The
p-values reported are uncorrected Fisher’s exact test. Panel a: the first component of
the BRCA data; Panel b: the first component of the LGG data.

We performed GO term enrichment tests with the subsets of non-zero genes for

each unsupervised LGG component. Enriched terms for the first component are
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indicative of RNA metabolism (Fig 2.4b). In particular, this component included

genes enriched for RNA processing, lipid particle organization, and regulation of DNA

metabolic process.

Table 2.1 shows GO annotations for the first 9 CCA components computed with

ImageCCA. The second component included genes enriched for synaptic transmission,

synaptic signaling, trans-synaptic signaling, and cell-cell signaling. This second

component included 77 genes and 38 image features. Many of the genes in this list

are only expressed in brain tissues.

GTEx Finally, we ran our method on data from the Genotype-Tissue Expression

(GTEx) project [26]. These data include 2,221 samples from 499 different individuals

of 29 different types of non-diseased tissue. Each component included an average of

1,054 genes and 148 image features. We did not run ImageCCA in the supervised

setting for GTEx.

In the GTEx dataset, many of the unsupervised ImageCCA components capture

image features and genes specific to a tissue. For example, the first component

differentiates skeletal muscle tissue on one extreme from pancreatic tissues on the

other extreme via muscle-specific genes (Figure 2.4c); the two tissue types have

distinct morphology.

The twenty-first component from unsupervised ImageCCA distinguishes cerebel-

lum and cerebral cortex tissues from other tissue types (Figure 2.4c). The extreme

valued cerebellum and cerebral cortex images include tissues with uniform neurons

and densely packed nuclei, while images on the other extreme are either skeletal

or pancreatic muscle. Genes in this component are enriched for terms related to
18



Table 2.1: Enriched GO terms for genes selected by sparse CCA in the LGG data.
Enriched Biological Process GO terms were found separately for each gene set
contributing to the first nine CCA components for the LGG data. Only the four
most enriched terms per gene set are shown. Uncorrected p-values for the Fisher’s
exact test are reported.

CCA var GO ID term p-value
GO:0006396 RNA processing 1.4e-5

1 GO:0034389 lipid particle organization 2.9e-5
GO:0051052 regulation of DNA metabolic process 6.7e-5
GO:0051054 positive regulation of DNA metabolic processes 8.6e-5
GO:0007268 synaptic transmission 1.3e-23

2 GO:0099536 synaptic signaling 1.3e-23
GO:0099537 trans-synaptic signaling 1.3e-23
GO:0007267 cell-cell signaling 5.6e-18
GO:0007272 ensheathment of neurons 5.4e-8

3 GO:0008366 axon ensheathment 5.4e-8
GO:0042552 myelination 8e-7
GO:0032060 bleb assembly 1.4e-5
GO:0006396 RNA processing 6.5e-11

4 GO:0090304 nucleic acid metabolic process 5.5e-10
GO:0034641 cellular nitrogen compound metabolic pro... 7.5e-9
GO:0006807 nitrogen compound metabolic process 1.1e-8
GO:0035589 G-protein coupled purinergic nucleotide ... 2.8e-7

5 GO:0035590 purinergic nucleotide receptor signaling... 2e-6
GO:0035588 G-protein coupled purinergic receptor si... 2.4e-6
GO:0035587 purinergic receptor signaling pathway 8.3e-6
GO:0044802 single-organism membrane organization 3.6e-6

6 GO:0006810 transport 7.3e-6
GO:1902578 single-organism localization 7.3e-6
GO:0044765 single-organism transport 7.4e-6
GO:0006811 ion transport 8.9e-7

7 GO:0030029 actin filament-based process 9.3e-7
GO:0044765 single-organism transport 1.5e-6
GO:0048771 tissue remodeling 2.5e-6
GO:0010001 glial cell differentiation 1.6e-5

8 GO:0048709 oligodendrocyte differentiation 3.1e-5
GO:0042063 gliogenesis 8.7e-5
GO:0042552 myelination 1.2e-4
GO:0006955 immune response 3.9e-29

9 GO:0002376 immune system process 1.9e-27
GO:0006952 defense response 2e-21
GO:0002682 regulation of immune system process 1.1e-20
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synaptic function , including gated channel activity, chemical synaptic transmission,

and anterograde trans-synaptic signaling, and synaptic membrane. There are 1,360

genes associated with this component, and these genes tend to be expressed primarily

in cerebellum and cerebral cortex.

The twenty-fourth component in the unsupervised ImageCCA distinguishes testis

tissue from muscle tissue (Figure 2.4c). Genes in this component are enriched for terms

related to spermatogenesis, including sexual reproduction, male gamete generation,

spermatogenesis, and gamete generation, and are expressed primarily in testis samples.

2.4 Discussion

In this project, we developed an analysis framework for paired histological images and

gene expression levels to identify the sets of genes that are associated with specific

features of tissue appearance. We applied this framework to three sets of paired

histological image and gene expression data: breast carcinoma samples, lower grade

glioma samples, and GTEx v6 tissue samples. Applying the ImageCCA framework

to these data, and interpreting the components, we were able to find genes known to

influence cellular morphology.

Our results demonstrate that biologically meaningful correlations exist and can

be identified between gene expression levels and features extracted from histological

images. We have shown that the framework introduced here can be applied to both

pathological and healthy tissue samples, and to both single tissue types and a mixture

of types, to detect correlations between gene expression and image features. We
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note that we identify correlations here and do not make causal statements about

the relationship between gene expression and cellular morphology; experiments that

modify cell shape find changes in gene expression levels [43].

Still, the connection between variation in gene expression levels and in the cor-

responding tissue image suggests that one can be used to aid in the analysis and

prediction of the other. A pathologist who visually inspects tissue images for diag-

nostic purposes could confirm each observation using predicted expression values of

the genes linked to the visible feature of interest. Conversely, in some cases clinically

significant values in a patient’s gene expression profile could be used to generate an

encoding of the visual properties of the associated histological image. This study

begins to address the question of how regulation of gene expression in tissues relates

to tissue morphology and downstream organismal phenotypes.

2.5 Making it work

ImageCCA’s results are promising, but its successful application relies on several

important decisions. In this section, we will overview how CCA hyperparameters are

chosen and how we mitigate the effects of having relatively few samples available for

each dataset.

2.5.1 Hyperparameter Tuning

Sparse CCA requires setting three hyperparameters: λ1, and λ2, the amount of

sparsity regularization applied to the image feature and gene expression matrix
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respectively, and k, the number of CCA components. To select values, we performed a

hyperparameter search on the LGG dataset. For held-out data, we used learned CCA

variates to predict the gene matrix from the image feature matrix, or vice versa. In

particular, we consider matrices A and B, respectively of size d× k and g × k, where

each column is a canonical variate. We then measure 1
k

∑k
i=1 corr(x

e
i , yiBA

+) and

1
k

∑k
i=1 corr(x

e
iAB

+, yi), the average correlation between gene expressions or image

features and their reconstructions, computed via a Moore-Penrose pseudoinverse of

the corresponding canonicalized dataset (Figure 2.6).

Figure 2.6: Correlation between features and reconstructed features for LGG data.
Each heatmap shows correlation as a function of λ1, λ2, and the number of CCA
components. Low values of λ increase the amount of sparsity used in CCA. Correla-
tions were computed using held out data, different from those used to fit CCA. Top
row: gene expression reconstructions. Bottom row: Image feature reconstructions.

In this work, we are primarily interested in selecting sparsity parameters that

allow optimal reconstructions of images and gene expression levels (on held out data),

that produce a small number of genes and image features per component, and that

produce interpretable subsets of genes as quantified by GO term enrichment. Based
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on these results, we fixed λ1 (for image features) to 0.15 and λ2 (for gene expression)

to 0.05 for all experiments.

2.5.2 Image Subsampling

The datasets used in this study are, by machine learning standards, extremely small.

Typical benchmark datasets used in deep learning research are in the tens of thousands

or larger, while the largest dataset explored here includes only a couple thousand.

To combat this disadvantage, we train our autoencoder to reconstruct randomly-

sampled 128 × 128-pixel crops of images, rather than their uncropped counterparts.

Microscopy images are often more than a megapixel in size, so this approach allows

us to artificially boost the number of samples available to the model.

Once the network was trained, each image was represented by randomly sampling a

hundred 128 × 128 windows from it, embedding each using the encoding section of the

CAE, and averaging those feature encodings (for m = 100 subsamples, i ∈ {1, . . . , n}

samples, and j ∈ {1, . . . , p} image features):

xei,j =
1

m

m∑
`=1

x̂ei,j,`, (2.1)

where xei,j is the average learned representation for sample i and dimension j, and

x̂ei,j,` is the `-th sampling of the representation for sample i and dimension j.

Because the CAE is trained to reconstruct images as accurately as possible, some

variance of the encoded samples are inevitably used to represent the locations of

structures in image, while the remainder is used to represent the physical properties of
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those structures. This averaged bag of features representation allows us to essentially

integrate away the location-based information, while keeping information about the

image properties in which we are most interested. The 1024-dimensional feature

vector was the mean encoded feature value across the 100 image windows of each

image. Finally, we whitened the averaged image representations using PCA [44].

We use the 1024 whitened features to represent the images in CCA. This procedure

decorrelates each dimension of the feature space, which is helpful for interpreting the

results of CCA.

2.5.3 Moving Forward

If we had access to much larger datasets on which to train our models, we would

expect ImageCCA to provide even more biologically meaningful associations. In

general, however, labeling medical data (in this case sequencing genes that correspond

to our images) can be enormously expensive.

When constructing a dataset, we would want to maximize the performance of

our models given a fixed labeling budget. How can we efficiently select samples that

are maximally informative? This problem is referred to as active learning. In the

next chapter, we will design an algorithm for this task when using neural network

models. Chiefly, we will show that our approach is high performing and robust to

hyperparameter choices and environmental conditions.
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Chapter 3

Batch Active Learning by Diverse,

Uncertain Gradient Lower Bounds

In this chapter, we design a new algorithm for batch active learning with deep neural

network models. Our algorithm, Batch Active learning by Diverse Gradient Embed-

dings (BADGE), samples groups of points that are disparate and high magnitude

when represented in a hallucinated gradient space, a strategy designed to incorporate

both predictive uncertainty and sample diversity into every selected batch. Crucially,

BADGE trades off between uncertainty and diversity without requiring any hand-

tuned hyperparameters. While other approaches sometimes succeed for particular

batch sizes or architectures, BADGE consistently performs as well or better, making

it a useful option for real world active learning problems.
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3.1 Introduction

In recent years, deep neural networks have produced state-of-the-art results on a

variety of important supervised learning tasks. However, many of these successes have

been limited to domains where large amounts of labeled data are available. A promis-

ing approach for minimizing labeling effort is active learning, a learning protocol where

labels can be requested by the algorithm in a sequential, feedback-driven fashion.

Active learning algorithms aim to identify and label only maximally-informative

samples, so that a high performing classifier can be trained with minimal labeling

effort. As such, a robust active learning algorithm for deep neural networks may

considerably expand the domains in which these models are applicable.

How should we design a practical, general-purpose, label-efficient active learning

algorithm for deep neural networks? Theory for active learning suggests a version-

space-based approach [45, 46], which explicitly or implicitly maintains a set of plausible

models, and queries examples for which these models make different predictions. But

when using highly expressive models like neural networks, these algorithms degenerate

to querying every example. Further, the computational overhead of training deep

neural networks precludes approaches that update the model to best fit data after each

label query, as is often done (exactly or approximately) for linear methods [47, 48].

Unfortunately, the theory provides little guidance for these models.

One option is to use the network’s uncertainty to inform a query strategy, for

example by labeling samples for which the model is least confident. In a batch

setting, however, this creates a pathological scenario where samples in the selected

batch are nearly identical, a clear inefficiency. Remedying this issue, we could select
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samples to maximize batch diversity, but this might choose points that provide little

new information to the model.

For these reasons, methods that exploit just uncertainty or diversity do not

consistently work well across model architectures, batch sizes, or datasets. An

algorithm that performs well when using a ResNet, for example, might perform poorly

when using a multilayer perceptron. A diversity-based approach might work well when

the batch size is very large, but poorly when the batch size is small. Further, what

even constitutes a “large” or “small” batch size is largely a function of the statistical

properties of the data in question. These weaknesses pose a major problem for real,

practical batch active learning situations, where data are unfamiliar and potentially

unstructured. There is no way to know which active learning algorithm is best to use.

Moreover, in a real active learning scenario, every change of hyperparameters

typically causes the algorithm to label examples not chosen under other hyperpa-

rameters, provoking substantial labeling inefficiency. That is, hyperparameter sweeps

in active learning can be label expensive. As a result, active learning algorithms need

to “just work”, given fixed hyperparameters, to a greater extent than is typical for

supervised learning.

Based on these observations, we design an approach which creates diverse batches

of examples about which the current model is uncertain. We measure uncertainty

as the gradient magnitude with respect to parameters in the final (output) layer,

which is computed using the most likely label according to the model. To capture

diversity, we collect a batch of examples where these gradients span a diverse set of

directions. More specifically, we build up the batch of query points based on these
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hallucinated gradients using the k-means++ initialization [49], which simultaneously

captures both the magnitude of a candidate gradient and its distance from previously

included points in the batch. We name the resulting approach Batch Active learning

by Diverse Gradient Embeddings (BADGE).

We show that BADGE is robust to architecture choice, batch size, and dataset,

generally performing as well as or better than the best baseline across our experi-

ments, which vary all of the aforementioned environmental conditions. We begin

by introducing our notation and setting, followed by a description of the BADGE

algorithm in Section 3.3 and experiments in Section 3.4. Our discussion of related

work can be found in Section 5.1.

3.2 Notation and setting

Denote by X the instance space and by Y the label space. In this work we consider

multiclass classification, so in a K-class problem, Y = [K]. Denote by D the

distribution from which examples are drawn and byDX the unlabeled data distribution.

We consider the pool-based active learning setup, where the learner has access to

an unlabeled dataset U that is sampled according to DX and can request labels

for any x ∈ U . Given a classifier h : X → Y, which maps from examples to

labels, and a labeled example (x, y), we denote the 0/1 error of h on (x, y) as

`01(h(x), y) = I(h(x) 6= y). The performance of a classifier h is measured by its

expected 0/1 accuracy, i.e. 1− ED[`01(h(x), y)] = Pr(x,y)∼D(h(x) = y). The goal of
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active learning is to find a classifier with large expected 0/1 accuracy using as few

label queries as possible.

In this paper, we consider classifiers h parameterized by underlying neural networks

f of fixed architecture, with the weights in the network denoted by θ. We abbreviate

the classifier with parameters θ as hθ, and our classifiers take the form hθ(x) =

argmaxy∈[K] f(x; θ)y, where f(x; θ) ∈ RK is a vector of scores assigned to candidate

labels, given the example x and parameters θ. At train time, we optimize model

parameters by minimizing the cross-entropy loss ES[`CE(f(x; θ), y)] over available

labeled examples, where `CE(p, y) =
∑K

i=1 I(y = i) ln 1/pi.

3.3 Algorithm

BADGE, described in Algorithm 1, starts by drawing an initial set ofM examples

uniformly at random from U and querying their labels. It then proceeds iteratively,

performing two main computations at each step t: a gradient embedding computation

and a sampling computation. Specifically, at each step t, for every x in the unlabeled

pool U , we first compute the label ŷ(x) preferred by the current model, and the

gradient gx of the loss on (x, ŷ(x)) with respect to the parameters of the last layer of

the network. Given these gradient embedding vectors {gx : x ∈ U}, BADGE selects

a set of points by sampling via the k-means++ initialization scheme [49]. The

algorithm queries the labels of these examples, retrains the model, and repeats.

We now describe the main computations — the embedding and sampling steps —

in more detail.
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Algorithm 1 BADGE: Batch Active learning by Diverse Gradient Embeddings
Require: Neural network f(x; θ), unlabeled pool of examples U , initial number of

examples M , number of iterations T , number of examples in a batch B.
1: Labeled dataset S ← M examples drawn uniformly at random from U together

with queried labels.
2: Train an initial model θ1 on S by minimizing ES[`CE(f(x; θ), y)].
3: for t = 1, 2, . . . , T : do
4: For all examples x in U \ S:

1. Compute its hypothetical label ŷ(x) = hθt(x).

2. Compute gradient embedding gx = ∂
∂θout

`CE(f(x; θ), ŷ(x))|θ=θt , where θout

refers to parameters of the final (output) layer.

5: Compute St, a random subset of U\S, using the k-means++ seeding algorithm
on {gx : x ∈ U \ S} and query for their labels.

6: S ← S ∪ St.
7: Train a model θt+1 on S by minimizing ES[`CE(f(x; θ), y)].
8: end for
9: return Final model θT+1.

The gradient embedding. Neural networks are optimized using gradient-based

methods, so we capture uncertainty about an example through the lens of gradients.

In particular, we consider the model uncertain about an example if knowing the label

induces a large gradient of the loss with respect to the model parameters and hence a

large update to the model. A difficulty with this reasoning is that we need to know the

label to compute the gradient. As a proxy, we compute the gradient as if the model’s

current prediction on the example is the true label. We show in Proposition 1 that the

gradient norm with respect to the last layer using this label provides a lower bound on

the gradient norm induced by any other label. The length of this hypothetical gradient

vector captures a notion of uncertainty of the model on the example: if the model is

highly certain about the example’s label, then the example’s gradient embedding will
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Figure 3.1: Left and center: Learning curves for k-means++ and k-DPP sampling
with gradient embeddings for different scenarios. The performance of the two
sampling approaches nearly perfectly overlaps. Right: A run time comparison
(seconds) corresponding to the middle scenario. Each line is the average over five
independent experiments. Standard errors are shown by shaded regions.

have a small norm, and vice versa for samples where the model is uncertain (see exam-

ple below). Thus, the gradient embedding conveys information both about the model’s

uncertainty and potential update direction upon receiving a label at an example.

The sampling step. We want newly-acquired labeled samples to induce large

and diverse changes to the model. To this end, in our gradient space, the selection

procedure should favor both sample magnitude and batch diversity. Specifically, we

want to avoid the pathology of, for example, selecting a batch of k similar samples

where even just a single label could alleviate our uncertainty on all remaining k − 1

samples.

A natural way of making this selection without introducing additional hyperpa-

rameters is to sample from a k-Determinantal Point Process (k-DPP; [50]). That

is, to select a batch of k points with probability proportional to the determinant

of their Gram matrix. In this process, when the batch size is very low, and linear
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independence is easily achieved, the selection will naturally favor points with large

norm, which corresponds to uncertainty in our space. When the batch size is large,

the sampler focuses more on diversity because linear independence, which is more

difficult to achieve for large k, is required to make the Gram determinant non-zero.

Unfortunately, sampling from a k-DPP is not trivial. Sampling algorithms typically

rely on MCMC, where mixing time poses a significant computational hurdle [51,

52]. To overcome this, we suggest instead sampling using the k-means++ seeding

algorithm [49], originally made to produce a good initialization for k-means clustering.

k-means++ seeding selects centroids by iteratively sampling points in proportion

to their squared distances from the nearest centroid that has already been chosen,

which, like a k-DPP, tends to select a diverse batch of high-magnitude samples. For

completeness, we give a formal description of the k-means++ seeding algorithm in

Appendix A.1.
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Example: multiclass classification with softmax activations. Consider a

neural network f where the last nonlinearity is a softmax, i.e. σ(z)i = ezi/
∑K

j=1 e
zj .

Specifically, f is parametrized by θ = (W,V ), where θout = W = (W1, . . . ,WK)> ∈

RK×d are the weights of the last layer, and V consists of weights of all previous layers.

This means that f(x; θ) = σ(W · z(x;V )), where z is the nonlinear function mapping

an input x to the output of the network’s penultimate layer. Let us fix an unlabeled

sample x and define pi = f(x; θ)i. With this notation, we have

`CE(f(x; θ), y) = ln

(
K∑
j=1

eWj ·z(x;V )

)
−Wy · z(x;V ).

Define gyx = ∂
∂W

`CE(f(x; θ), y) for a label y and gx = gŷx as the gradient embedding

in our algorithm, where ŷ = argmaxi∈[K] pi. Then the i-th block of gx (i.e. the

last-layer gradients corresponding to label i) is

(gx)i =
∂

∂Wi

`CE(f(x; θ), ŷ) = (pi − I(ŷ = i))z(x;V ). (3.1)

Based on this expression, we can make the following observations:

1. Each block of gx is a scaling of z(x;V ), which is the output of the penultimate

layer of the network. In this respect, gx captures x’s information similar to that

of strategies that operate in this space [53].

2. Proposition 1 below shows that the norm of gx is a lower bound on the norm of

the loss gradient induced by the example with true label y with respect to the
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weights in the last layer, that is ‖gx‖ ≤ ‖gyx‖. This suggests that the norm of

gx conservatively estimates the example’s influence on the current model.

3. If the current model θ is highly confident about x, i.e. p is skewed towards a

standard basis vector eŷ, then the vector (pi − I(ŷ = i))Ki=1 has small length.

Therefore, gx has small length as well. Such high-confidence examples tend

to have gradient embeddings of small magnitude, which are unlikely to be

repeatedly selected by k-means++.

Proposition 1. For all y ∈ {1, . . . , K}, let gyx = ∂
∂W

`CE(f(x; θ), y). Then

‖gyx‖2 =
( K∑
i=1

p2i + 1− 2py

)
‖z(x;V )‖2.

Consequently, ŷ = argminy∈[K] ‖gyx‖.

Proof. Observe that by Equation (3.1),

‖gyx‖2 =
K∑
i=1

(
pi − I(y = i)

)2‖z(x;V )‖2 =
( K∑
i=1

p2i + 1− 2py

)
‖z(x;V )‖2.

The second claim follows from the fact that ŷ = argmaxy∈[K] py.

The k-means++ sampler tends to produce diverse batches similar to a k-DPP.

As shown in Figure 3.1, switching between the two samplers does not affect the active

learner’s statistical performance but greatly improves its computational performance.

Appendix A.6 compares run time and test accuracy for both k-means++ and k-DPP

based sampling based on the gradient embeddings of unlabeled examples.
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Figure 3.2: A comparison of batch selection algorithms using our gradient embedding.
Left and center: Plots showing the log determinant of the Gram matrix of the
selected batch of gradient embeddings as learning progresses. Right: The average
embedding magnitude (a measurement of predictive uncertainty) in the selected batch.
The FF-k-center sampler finds points that are not as diverse or high-magnitude as
other samplers. Notice also that k-means++ tends to actually select samples that
are both more diverse and higher-magnitude than a k-DPP, a potential pathology
of the k-DPP’s degree of stochastisity. Standard errors are shown by shaded regions.

Figure 3.2 illustrates the batch diversity and average gradient magnitude per

selected batch for a variety of sampling strategies. As expected, both k-DPPs and

k-means++ tend to select samples that are diverse (as measured by the magnitude of

their Gram determinant) and high magnitude. Other samplers, such as furthest-first

traversal for k-Center clustering (FF-k-center), do not seem to have this property.

The FF-k-center algorithm is the sampling choice of the Coreset approach to

active learning, which we describe in the proceeding section [53].
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3.4 Experiments

We evaluate the performance of BADGE against several algorithms from the literature.

In our experiments, we seek to answer the following question: How robust are the

learning algorithms to choices of neural network architecture, batch size, and dataset?

To ensure a comprehensive comparison among all algorithms, we evaluate them in

a batch-mode active learning setup with M = 100 being the number of initial random

labeled examples and batch size B varying from {100, 1000, 10000}. The following is

a list of the baseline algorithms evaluated; the first performs representative sampling,

the next three are uncertainty based, the fifth is a hybrid of representative and

uncertainty-based approaches, and the last is traditional supervised learning.

1. Coreset: A diversity-based approach using coreset selection. The embedding

of each example is computed by the network’s penultimate layer and the

samples at each round are selected using a greedy furthest-first traversal

conditioned on all labeled examples [53].

2. Conf (Confidence Sampling): An uncertainty-based active learning algo-

rithm that selects B examples with smallest predicted class probability,

maxKi=1 f(x; θ)i [54].

3. Marg (Margin Sampling): An uncertainty-based active learning algorithm

that selects the bottom B examples sorted according to their multiclass margin,

defined as f(x; θ)ŷ − f(x; θ)y′ , where ŷ and y′ are the indices of the largest and

second largest entries of f(x; θ) [55].
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4. Entropy: An uncertainty-based active learning algorithm that selects the top

B examples according to the entropy of the example’s predictive class probability

distribution, defined as H((f(x; θ)y)
K
y=1), where H(p) =

∑K
i=1 pi ln

1/pi [54].

5. ALBL (Active Learning by Learning): A bandit-style meta-active learning

algorithm that selects between Coreset and Conf at every round [56].

6. Rand: The naive baseline of randomly selecting k examples to query at each

round.

We consider three neural network architectures: a two-layer Perceptron with ReLU

activations (MLP), an 18-layer convolutional ResNet [57], and an 11-layer VGG

network [58]. We evaluate our algorithms using three image datasets, SVHN [59],

CIFAR-10 [60] and MNIST [61] 1, and four non-image datasets from the OpenML

repository (#6, #155, #156, and #184). 2 We study each situation with 7 active

learning algorithms, including BADGE, making for 231 total experiments.

For image datasets, the embedding dimensionality in the MLP is 256, while

for OpenML datasets, the embedding dimensionality of the MLP is 1024, as more

capacity helps the model fit training data. We train models using cross-entropy loss

and the Adam variant of SGD until training accuracy exceeds 99%. We use a learning

rate of 0.001 for image data and of 0.0001 for non-image data. We avoid warm

starting and retrain models from scratch every time new samples are queried [62]. All
1Because MNIST is a dataset that is extremely easy to classify, we only use MLPs, rather than

convolutional networks, to better study the differences between active learning algorithms.
2The OpenML datasets are from openml.org and are selected on two criteria: first, they have

at least 10000 samples; second, neural networks have a significantly smaller test error rate when
compared to linear models.
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Figure 3.3: Active learning test accuracy versus the number of total labeled samples
for a range of conditions. Standard errors are shown by shaded regions.

experiments are repeated five times. No learning rate schedules or data augmentation

are used. Baselines use implementations from the libact library [63]. All models are

trained in PyTorch [64].

Learning curves. Here we show examples of learning curves that highlight some

of the phenomena we observe related to the fragility of active learning algorithms

with respect to batch size, architecture, and dataset.

Often, we see that in early rounds of training, it is better to do diversity sampling,

and later in training, it is better to do uncertainty sampling. This kind of event is

demonstrated in Figure 3.3a, which shows Coreset outperforming confidence-based

methods at first, but then doing worse than these methods later on.

In this figure, BADGE performs as well as diversity sampling when that strategy

does best, and as well as uncertainty sampling once those methods start outpacing

Coreset. This suggests that BADGE is a good choice regardless of labeling budget.
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Figure 3.4: A pairwise penalty matrix over
all experiments. Element Pi,j corresponds
roughly to the number of times algorithm
i outperforms algorithm j. Column-wise
averages at the bottom show overall
performance (lower is better).

Separately, we notice that diversity

sampling only seems to work well when

either the model has good architectural

priors (inductive biases) built in, or when

the data are easy to learn. Otherwise,

penultimate layer representations are not

meaningful, and diverse sampling can be

deleterious. For this reason, Coreset

often performs worse than random on

sufficiently complex data when not using

a convolutional network (Figure 3.3b).

That is, the diversity induced by un-

conditional random sampling can often

yield a batch that better represents the

data. Even when batch size is large and the model has helpful inductive biases, the

uncertainty information in BADGE can give it an advantage over pure diversity

approaches (Figure 3.3c). Comprehensive plots of this kind, spanning architecture,

dataset, and batch size are in Appendix A.2.

Pairwise comparisons. We next show a comprehensive pairwise comparison of

algorithms over all datasets (D), batch sizes (B), model architectures (A), and

label budgets (L). From the learning curves, it can be observed that when label

budgets are large enough, all algorithms eventually reach similar performance, making

the comparison between them uninteresting in the large sample limit. For this
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reason, for each combination of (D,B,A), we select a set of labeling budgets L

where learning is still progressing. We experimented with three different batch

sizes and eleven dataset-architecture pairs, making the total number of (D,B,A)

combinations 3× 11 = 33. Specifically, we compute n0, the smallest number of labels

where Rand’s accuracy reaches 99% of its final accuracy, and choose label budget

L from {M + 2m−1B : m ∈ [blog((n0 −M)/B)c]}. The calculation of scores in the

penalty matrix P follows the following protocol: For each (D,B,A, L) combination

and each pair of algorithms (i, j), we have 5 test errors (one for each repeated run),

{e1i , . . . , e5i } and
{
e1j , . . . , e

5
j

}
respectively. We compute the t-score as t =

√
5µ̂/σ̂, where
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Figure 3.5: The cumulative distribution
function of normalized errors for all acqui-
sition functions.

µ̂ =
1

5

5∑
l=1

(eli−elj), σ̂ =

√√√√1

4

5∑
l=1

(eli − elj − µ̂)2.

We use the two-sided t-test to com-

pare pairs of algorithms: algorithm i is

said to beat algorithm j in this setting

if t > 2.776 (the critical point of p-value

being 0.05), and similarly algorithm j

beats algorithm i if t < −2.776. For each

(D,B,A) combination, suppose there are

nD,B,A different values of L. Then, for each L, if algorithm i beats algorithm j, we

accumulate a penalty of 1/nD,B,A to Pi,j; otherwise, if algorithm j beats algorithm

i, we accumulate a penalty of 1/nD,B,A to Pj,i. The choice of the penalty value

1/nD,B,A is to ensure that every (D,B,A) combination is assigned equal influence

40



in the aggregated matrix. Therefore, the largest entry of P is at most 33, the total

number of (D,B,A) combinations. Intuitively, each row i indicates the number of

settings in which algorithm i beats other algorithms and each column j indicates the

number of settings in which algorithm j is beaten by another algorithm.

The penalty matrix in Figure 3.4 summarizes all experiments, showing that

BADGE generally outperforms baselines. Matrices grouped by batch size and

architecture in Appendix A.3 show a similar trend.

Cumulative distribution functions of normalized errors. For each (D,B,A, L)

combination, we compute the average error for each algorithm i as ēi = 1
5

∑5
l=1 e

l
i.

To ensure that the errors of these algorithms are on the same scale in all settings,

we compute the normalized error of every algorithm i, defined as nei = ēi/ēr, where

r is the index of the Rand algorithm. By definition, the normalized errors of

the Rand algorithm are identically 1 in all settings. Like with penalty matrices,

for each (D,B,A) combination, we only consider a subset of L values from the

set {M + 2m−1B : m ∈ [blog((n0 −M)/B)c]}. We assign a weight proportional to

1/nD,B,A to each (D,B,A, L) combination, where there are nD,B,A different L values

for this combination of (D,B,A). We then plot the cumulative distribution functions

(CDFs) of the normalized errors of all algorithms: for a value of x, the y value is

the total weight of settings where the algorithm has normalized error at most x; in

general, an algorithm that has a higher CDF value has better performance.

We plot the generated CDFs in Figures 3.5, A.17 and A.18. We can see from

Figure 3.5 that BADGE has the best overall performance. In addition, from Fig-

ures A.17 and A.18 in Appendix A.4, we can conclude that when batch size is small
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(100 or 1000) or when an MLP is used, both BADGE and Marg perform best.

However, in the regime when the batch size is large (10000), Marg’s performance

degrades, while BADGE, ALBL and Coreset are the best performing approaches.

3.5 Discussion

We have established that BADGE is empirically an effective deep active learning

algorithm across different architectures, datasets, and batch sizes, generally performing

similar to or better than other active learning algorithms.

Even though we designed BADGE with efficiency in mind (i.e. substituting k-

DPP sampling with k-means++ sampling), we find that active learning experiments,

like those shown in this chapter, can take an extremely long time to execute. For

example, a single active learning experiment, involving iteratively querying batches of

100 samples from the CIFAR-10 dataset until it has been entirely labeled, can take

more than six days, regardless of acquisition function choice, even with state-of-the-art

hardware and well-written software.

This is because virtually all deep active learning work retrains the network from

scratch every time new labeled data are appended to the training set [15, 16, 17].

The more efficient approach, which is to initialize network parameters to those

found in the previous round of active learning, tends to cause significantly worse

generalization performance in comparison to randomly-initialized models. This

property is especially troubling because training performance is similar regardless

of the network’s initialization scheme.
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In the next chapter we explore this phenomenon, which we call the warm-start

problem, in detail. We will show that this is not a problem with just active learning,

but with any situation in which data arrive incrementally. Standard techniques, such as

regularizing model optimization or varying hyperparameters, are unable to both close

this generalization gap and decrease convergence time in comparison to training from

scratch. We will introduce a simple initialization scheme that corrects this pathology.
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Chapter 4

On Warm-Starting Neural Network

Optimization

In many real-world deployments of machine learning systems, data arrive piecemeal.

These learning scenarios may be passive, where data arrive incrementally due to

structural properties of the problem (e.g., daily financial data) or active, where

samples are selected according to a measure of their quality (e.g., experimental

design). In both of these cases, we are building a sequence of models that incorporate

an increasing amount of data. We would like each of these models in the sequence to

be performant and take advantage of all the data that are available to that point.

Conventional intuition suggests that when solving a sequence of related optimization

problems of this form, it should be possible to initialize using the solution of the

previous iterate—to “warm start” the optimization rather than initialize from scratch—

and see reductions in wall-clock time. However, in practice this warm-starting seems
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to yield poorer generalization performance than models that have fresh random

initializations, even though the final training losses are similar. While it appears that

some hyperparameter settings allow a practitioner to close this generalization gap,

they seem to only do so in regimes that damage the wall-clock gains of the warm

start. Nevertheless, it is highly desirable to be able to warm-start neural network

training, as it would dramatically reduce the resource usage associated with the

construction of performant deep learning systems. In this work, we take a closer

look at this empirical phenomenon and try to understand when and how it occurs.

We also provide a surprisingly simple trick that overcomes this pathology in several

important situations, and present experiments that elucidate some of its properties.

4.1 Introduction

Although machine learning research generally assumes a fixed set of training data,

real life is more complicated. One common scenario is where a production ML system

must be constantly updated with new data. This situation occurs in finance, online

advertising, recommendation systems, fraud detection, and many other domains

where machine learning systems are used for prediction and decision making in the

real world [65, 66, 67]. When the new data arrive, the model needs to be updated so

that it can be as accurate as possible and to also account for any domain shift that is

occurring.

As a concrete example, consider a large-scale social media website, to which users

are constantly uploading images and text. The company requires up-to-the-minute
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predictive models in order to recommend content, filter out inappropriate media, and

select advertisements. There might be millions of new data arriving every day, which

need to be rapidly incorporated into the production ML pipelines.

It is natural in this scenario to imagine maintaining a single model that is updated

with the latest data at a regular cadence. Every day, for example, new training

might be performed on the model with the updated, larger data set. Ideally, this

new training procedure is initialized from the parameters of yesterday’s model, i.e.,

it is “warm-started” from those parameters rather than a fresh initialization. Such

an initialization makes intuitive sense: the data used yesterday are mostly the same

as the data today, and it seems wasteful to throw away all the previous computation.

For convex optimization problems, such warm starting is widely used and highly

successful, e.g., [65]; the theoretical properties of online learning are well understood.

However, warm-starting seems to hurt generalization in deep neural networks. This

is particularly troubling, because warm-starting does not damage training accuracy.

Figure 4.1 illustrates this phenomenon. Three 18-layer ResNets have been trained

on the CIFAR-10 natural image classification task to create these figures. One was

trained on 100% of the data, one was trained on 50% of the data, and a third warm-

started model was trained on 100% of the data but initialized from the parameters

found from the 50% training. All three achieve the upper bound on training accuracy.

However, the warm-started network performs worse on test samples than the network

trained on the same data but with a good random initialization. Problematically, this

phenomenon incentivizes performance-focused researchers and engineers to constantly

retrain models from scratch, at potentially enormous financial and environmental
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Figure 4.1: Comparison between ResNets trained using a warm start and a random
initialization on CIFAR-10. Blue lines are models trained on 50% of CIFAR-10 for
350 epochs then trained on 100% of the data for a further 350 epochs. Orange lines
are models trained on 100% of the data from the start. The two procedures produce
similar training performance but differing test performance.

cost [68]; this is an example of “Red AI” [69], disregarding resource consumption in

the pursuit of raw predictive performance.

The warm-start phenomenon has implications for other situations as well. In

active learning, for example, unlabeled samples are abundant but labels are expensive:

the goal is to identify maximally-informative data and have those labeled by an

oracle. Ideally, these decisions would use all the samples that had been seen so

far [70], and it would be time efficient to simply update the model with each new

selection. However, this seems to damage generalization. Although this phenomenon

has not received much direct attention from the research community, it is common

in deep active learning to retrain at every step [15, 71]. Popular deep active learning

repositories on Github [16, 17] also retrain models from scratch.
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The ineffectiveness of warm-starting has been observed anecdotally in the com-

munity, but this paper seeks to examine its properties more closely in controlled

settings. Note that the findings in this paper are not inconsistent with extensive work

on unsupervised pre-training [72, 73] and transfer learning in the small-data and “few

shot” regimes [74, 75, 76, 77]. Rather here we are examining how to accelerate training

in the large-data supervised regime in a way that is consistent with expectations from

convex problems.

This chapter is structured as follows. Section 4.2 examines the generalization

gap induced by warm-starting neural networks. Section 4.3 surveys approaches for

improving generalization in deep learning, and shows that these techniques do not

resolve the problem. In Section 4.4, we describe a simple trick that overcomes this

pathology, and report on experiments that give insights into its behavior. We defer

discussion of related work to Section 5.2.

4.2 Warm Starting Damages Generalization

In this section we provide empirical evidence that warm starting consistently damages

generalization performance in neural networks. We conduct a series of experiments

across a several different architectures, optimizers, and image datasets. Our goal is

to create simple, reproducible settings in which the warm-starting phenomenon is

observed.

48



Table 4.1: Validation percent accuracies for various optimizers and models for both
warm-started and randomly initialized models on various indicated datasets. We
consider an 18-layer ResNet, three-layer multilayer perceptron (MLP), and logistic
regression (LR) as our classifiers. Validation sets are a randomly-chosen third of
the training data. Standard deviations are indicated parenthetically. Accuracies for
the first-round of training warm-started models are in Apendix Table B.1.

ResNet ResNet MLP MLP LR LR
CIFAR-10 SGD Adam SGD Adam SGD Adam
Random Init 56.2 (1.0) 78.0 (0.6) 39.0 (0.2) 39.4 (0.1) 40.5 (0.6) 33.8 (0.6)
Warm Start 51.7 (0.9) 74.4 (0.9) 37.4 (0.2) 36.1 (0.3) 39.6 (0.2) 33.3 (0.2)

SVHN
Random Init 89.4 (0.1) 93.6 (0.2) 76.5 (0.3) 76.7 (0.4) 28.0 (0.2) 22.4 (1.3)
Warm Start 87.5 (0.7) 93.5 (0.4) 75.4 (0.1) 69.4 (0.6) 28.0 (0.3) 22.2 (0.9)

CIFAR-100
Random Init 18.2 (0.3) 41.4 (0.2) 10.3 (0.2) 11.6 (0.2) 16.9 (0.18) 10.2 (0.4)
Warm Start 15.5 (0.3) 35.0 (1.2) 9.4 (0.0) 9.9 (0.1) 16.3 (0.28) 9.9 (0.3)

4.2.1 Basic Batch Updating

Here we consider the simplest case of warm-starting, in which a single training dataset

is partitioned into two subsets that are presented sequentially. In each series of

experiments, we randomly segment the training data into two batches. The model

is trained to convergence on the first half, then is trained on the union of the two

batches, i.e., 100% of the data. This is repeated for three classifiers: ResNet-18 [57],

a multilayer perceptron (MLP) with three layers and tanh activations, and logistic

regression. Models are optimized using either stochastic gradient descent (SGD) or

the Adam variant of SGD [78], and are fitted to the CIFAR-10, CIFAR-100, and

SVHN image data. All models are trained using a mini-batch size of 128 and a
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Figure 4.2: A passive online learning experiment for CIFAR-10 data using a ResNet.
The horizontal axis shows the total number of samples in the training set available
to the learner. Notice the significant generalization gap between warm-started and
randomly-initialized models.

learning rate of 0.001, the smallest learning rate used in the learning schedule for

fitting state-of-the-art ResNet models [57]. We further investigate the effect of these

parameters in Section 4.3.

Our results (Table 4.1) indicate that generalization performance is damaged

consistently and significantly for both ResNets and MLPs. This effect is more

dramatic for CIFAR-10, which is considered relatively challenging to model (requiring,

e.g., data augmentation), than for SVHN, which is considered easier. Logistic

regression, which enjoys a convex loss surface, is not significantly damaged by warm

starting for any of the datasets. Figure 4.3 extends these results, showing that the gap

is inversely proportional to the fraction of data available in the first round of training.

This result is surprising. Even though MLP and ResNet optimization is non-

convex, conventional intuition suggests that the warm-started solution should be close

to the full-data solution and therefore a good initialization. One view on pre-training

is that the initialization is a “prior” on weights; we often view prior distributions as
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Figure 4.3: Warm-started ResNet-18 generalization as a function of the fraction
of total data available in the first round of training. Models are trained on the
indicated fraction of CIFAR-10 training data until convergence, then trained again
on 100% of CIFAR-10 training data to produce this figure. When the initial data
used to warm-start training more overlaps with the second round of training data,
the generalization gap is less severe.

arising from inference on old (or hypothetical) data and so this sort of pre-training

should always be helpful. The generalization gap shown here creates a computational

burden for real-life machine learning systems that must be retrained from scratch to

perform well, rather than initialized from previous models.

4.2.2 Online Learning

A common real-world setting involves data that are being provided to the machine

learning system in a stream. At every step, the learner is given k new samples to

append to its training data, and it updates its hypothesis to reflect the larger dataset.

Financial data, social media, and recommendations systems are common examples

of scenarios where new data are constantly arriving. This paradigm is simulated in

Figure 4.2, where we supply CIFAR-10 data, selected randomly without replacement,

in groups of 1,000 to an 18-layer ResNet. We examine two cases: 1) where the model
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Figure 4.4: A comparison between ResNets trained from both a warm start and
random initialization on CIFAR-10 for various hyperparameters. Orange dots are
randomly-initialized models and blue dots are warm-started models. Warm-started
models that perform roughly as well as randomly-initialized models offer no benefit
in terms of training time.

is retrained from scratch after each batch, starting from a random initialization, and

2) where the model is trained to convergence starting from the parameters learned in

the previous iteration. In both cases, the models are optimized with Adam, using an

initial learning rate of 0.001. Each was run five times with different random seeds

and validation sets composed of a random third of the training data, reinitializing

Adam’s parameters at each step of learning.

Figure 4.2 shows the trade-off between the two approaches. The mean and

standard deviations across the five runs are shown. On the right are the training

times: clearly, starting from the previous model is preferable and has the potential to

vastly reduce computational costs and wall-clock time. However, as can be seen on

the left, generalization performance is worse in the warm-started situation. As more

data arrive, the gap in validation accuracy increases substantially.
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4.3 Conventional Approaches

The design space for initializing and training deep neural network models is very

large, and so it is important to evaluate whether there is some trick that could be

used to help warm-started training find good solutions. Put another way, a reasonable

response to this problem is “Did you see whether X helped?” where X might be

anything from batch normalization [79] to increasing the mini-batch size [80]. This

section tries to answer some of these questions and further empirically probe the

warm-start phenomenon. Unless otherwise stated, experiments in this section use

a ResNet-18 model trained using SGD with a learning rate of 0.001 on CIFAR-10

data. All experiments were run five times to report means and standard deviations.

No experiments in this paper use data augmentation or learning rate schedules, and

all validation sets are a randomly-chosen third of the training data.

4.3.1 Is this an effect of batch size or learning rate?

One might reasonably ask whether or not there exist any hyperparameters that close

the generalization gap between warm started and randomly initialized models. In

particular, can setting a larger learning rate at either the first or second round of

learning help the model escape to regions that generalize better? Can shrinking the

batch size inject stochasticity that might improve generalization [81, 82]?

Here we again consider a warm-started experiment of training on 50% of CIFAR-10

until convergence, then training on 100% of CIFAR-10, using the initial round of train-

ing as an initialization. We explore all combinations of batch sizes {16, 32, 64, 128},

and learning rates {0.001, 0.01, 0.1}, varying them across the three rounds of training.
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This allows for the possibility that there exist different hyperparameters for the first

stage of training that are better when used with a different set after warm-starting.

Each of these combinations is run with three random initializations.

Figure 4.4 visualizes these results. Every resulting 100% model is shown from

all three initializations and all combinations, with color indicating whether it was

a random initialization or a warm-start. The horizontal axis shows the time to

completion, excluding the pre-training time, and the vertical axis shows the resulting

validation performance.

Interestingly, we do find warm-started models that perform as well as randomly-

initialized models, but they are unable to do so while benefiting from their warm-

started initialization. The training time for warm-started ResNet models that gener-

alize as well as randomly-initialized models is roughly the same as those randomly-

initialized models. That is, there is no computational benefit to using these warm-

started initializations. It is worth noting that this plot does not capture the time or

energy required to identify hyperparameters that close the generalization gap; such

hyperparameter searches are often the culprit in the resource footprint of deep learn-

ing [69]. Wall-clock time is measured by assigning every model identical resources,

which consists of 50GB of RAM and an NVIDIA Tesla P100 GPU.

This increased fitting time occurs because warm-started models, when using

hyperparameters that generalize relatively well, seem to “forget” what was learned in

the first round of training. Figure 4.5 demonstrates this phenomenon by computing

the Pearson correlation between the weights of converged warm-started models and

their initialization weights, again across various choices for learning rate and batch
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Figure 4.5: Validation accuracy as a function of the correlation between the
warm-start initialization and the solution found after training for a large number
of hyperparameter settings. Left: Warm-started logistic regressors often remember
their initialization. Right: Warm-started ResNets that perform well do not retain
much information from the initial round of training.

size, and comparing it to validation accuracy. Models that generalize well have little

correlation with their initialization—there is a trend downward in accuracy with

increasing correlation—suggesting that they have forgotten what was learned in the

first round of training. Conversely, a similar plot for logistic regression shows no such

relationship, and some of the best models have large correlations.

4.3.2 How quickly is generalization damaged?

One of the surprising results of our investigation is how little training is necessary to

damage the validation performance of the warm-started model. Our hope was that

warm-starting success might be achieved by switching from the 50% to 100% phase

before the first phase of training was completed. We did a search over switching times

to try to identify whether there might be a “sweet spot” in which a partially-trained
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Table 4.2: Average validation percent accuracies for various regularizers and regular-
ization penalties with both warm-started (WS) and randomly-initialized (RI) models
on CIFAR-10 data.

L2 1× 10−1 1× 10−2 1× 10−3 1× 10−4

RI 72.7 (4.2) 55.4 (2.7) 54.6 (2.4) 55.1 (3.4)
WS 63.9 (6.4) 51.2 (2.7) 50.5 (1.8) 50.4 (1.3)

Adversarial
RI 54.8 (1.3) 55.1 (1.5) 55.3 (1.4) 55.6 (0.9)
WS 52.4 (1.0) 52.6 (1.5) 52.7 (1.2) 50.4 (1.4)

Confidence
RI 53.1 (1.9) 55.8 (1.3) 55.4 (1.2) 55.9 (1.4)
WS 50.3 (0.7) 50.0 (3.8) 51.2 (1.2) 49.3 (1.2)

checkpoint might provide a good initialization. We fit a ResNet-18 model on 50% of

the training data, as before, and checkpointed its parameters every five epochs. We

then took each of these checkpointed models and used them as an initialization for

training on 100% of those data. As shown in Figure 4.6, generalization is damaged

even when initializing from parameters obtained by training on incomplete data for

only a few epochs.

4.3.3 Is regularization helpful?

A common approach for improving generalization is to include a regularization penalty.

Here we investigate three different approaches to regularization: 1) basic L2 weight

penalties [83], 2) confidence-penalized training [84], and 3) adversarial training [85].

We again take a ResNet fitted to 50% of available training data and use its parameters

to warm-start learning on 100% of those data. Regularization is applied in both
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rounds of training. Table 4.2 shows the result of these experiments. Regularization

often helps, but it does not resolve the generalization gap created by warm-starting.

We regularize both stages using the regularization scheme and penalty size indicated

in Table 4.2. Still, applying the same regularization to randomly-initialized models

always produces a better-generalizing classifier.

4.3.4 Can we warm-start some layers but not others?

A common practice in deep learning is to train on one task, then continue training

only the last network layer when new data become available [86, 87]. This subsection

investigates how performance is affected when we train a model on 50% of data, then

use that initialization to retrain only the last layer of the network. As the gradient of

the last layer affects all earlier layers during training, it is one possible culprit for the

vast gradient magnitude differences in Section 4.4.1.

We examine this hypothesis in two ways, as shown in Table B.3 in the Appendix.

First we ran experiments that fixed all parameters but the last layer to their

pre-trained values and then only trained the last layer in the second phase (LL).

Second we extend this experiment to a third phase in which the rest of the network

was trained after allowing the last layer to converge to something reasonable

(LL+WS). While training only the last layer from the warm-started initialization is

typically worse than training all parameters (WS), some gains can be had by training

the entire network after having only trained the last layer. That is, the last layer

alone does not seem to be sufficient to explain this generalization gap.
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Figure 4.6: Left: CIFAR-10 validation accuracy of a ResNet as training progresses
on 50% of the dataset. Right: The amount of validation accuracy damage, in terms
of percentage difference from random initialization, after training on 100% of the
data. Each warm-started model was initialized by training on 50% of CIFAR data
for the indicated number of epochs.

4.3.5 Is this a case of catastrophic forgetting?

Warm starting is conceptually similar to continual learning. In that framework, an

agent is given learning tasks sequentially, and the goal is to become good at the current

task while avoiding “catastrophic forgetting,” i.e., losing performance on previous

tasks. One hypothesis to consider is whether the warm-start phenomenon is simply a

case of such catastrophic forgetting. We can examine this hypothesis by trying to fix

the warm-start problem using a technique commonly used to prevent catastrophic

forgetting. One such approach is Elastic Weight Consolidation (EWC) [88], which

adds a regularization penalty that encourages avoiding updating weights that are

important for previously-learned tasks.

However, in the warm-start problem, each round of training adds data to what

was available in the previous round. As described here, these data are often from

the same distribution as before. Because a model that works well on the second task

58



Table 4.3: CIFAR-10 Validation percent accuracies for warm-started ResNets using
different degrees of EWC. Standard deviations are indicated parenthetically.

1× 10−1 1× 10−2 1× 10−3 1× 10−4

48.8 (2.16) 50.8 (1.0) 51.2 (1.3) 51.9 (0.4)

of the warm-start problem also works well on the first, there is no reason to avoid

updating important parameters. Accordingly, as shown in Table 4.3, including the

EWC penalty in warm-started network training actually damages performance more

than not including it at all.

4.4 Shrink, Perturb, Repeat

While the presented conventional approaches do not remedy the warm-start problem,

we have identified a remarkably simple trick that efficiently closes the generalization

gap. At each round of training t, when new samples are appended to the training

set, we propose initializing the network’s parameters by shrinking the weights found

in the previous round of optimization towards zero, then adding a small amount of

parameter noise. Specifically, we initialize each learnable parameter θti at training

round t as θti ← λθt−1i + pt, where pt ∼ N (0, σ2) and 0 ≤ λ ≤ 1.

Shrinking weights preserves hypotheses. For model layers that use ReLU

nonlinearities, shrinking parameters preserves the relative activation at each layer. If

bias terms and batch normalization are not used, the output of every layer is a scaled

version of its non-shrunken counterpart. In the last layer, which usually consists
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Figure 4.7: We fit a ResNet and MLP (with and without bias nodes) to CIFAR-10
and measure performance as we shrink weights.

of a linear transformation followed by a softmax nonlinearity, shrinking parameters

can be interpreted as increasing the entropy of the output distribution, effectively

diminishing the model’s confidence. For no-bias, no-batchnorm ReLU models, while

shrinking weights does not necessarily preserve the output fθ(x) they parametrize,

it does preserve the learned hypothesis, i.e. argmax fθ(x). A simple derivation is

provided for completeness as Proposition 2 in the Appendix.

For more sophisticated architectures, this property largely still holds: Figure 4.7

shows that for a ResNet, which includes batch normalization, only extreme amounts

of shrinking are able to damage classifier performance. This is because batch

normalization’s internal estimates of mean and variance can compensate for the

rescaling caused by weight shrinking. Even for a ReLU MLP that includes bias nodes,

classifier damage is done only for λ < 0.5. Separately, note that when internal network

layers instead use sigmoidal activations, shrinking parameters moves them further

from saturating regions, allowing the model to more easily learn from new data.

Shrink-perturb balances gradients. Figure 4.8 shows a visualization of average

gradients during the second of a two-phase training procedure for a ResNet on CIFAR-
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Figure 4.8: A two-phase experiment like those in Sections 4.2 and 4.3, where a ResNet
is trained on 50% of CIFAR-10 and is then given the remainder in the second round
of training. Here we examine the average gradient norms separately corresponding to
the initial 50% of data and the second 50% for models that are either warm-started
or initialized with the shrink and perturb (SP) trick. Notice that in warm-started
models, there is a drastic gap between these gradient norms. Our proposed trick
balances these respective magnitudes while still allowing models to benefit from
their first round of training; i.e they fit training data much quicker than random
initializations.

10, like those discussed in Sections 4.2 and 4.3. We plot the second phase of training,

where magnitudes are shown separately for the two halves of the data set. For this

experiment models are optimized with SGD, using a small learning rate to zoom in on

this effect. Outside of this plot, experiments in this section use the Adam optimizer.

For warm-started models, gradients from new, unseen data tend to be much

larger magnitude than those from data the model has seen before. These imbalanced

gradient contributions are known to be problematic for optimization in mutli-task

learning scenarios [89], and we believe they are problematic in the warm-start regime

as well. Resolving this imbalance without damaging what the model has already

learned is key to efficiently resolving the generalization gap studied in this article.
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Figure 4.9: Model performance as a function of λ (indicated on the vertical axis)
and σ. Numbers indicate the average final performance and total train time for
online learning experiments where ResNets are provided CIFAR-10 samples in
sequence, 1,000 per round, and trained to convergence at each round. Note that
the bottom left of this plot corresponds to pure random initializing while the top
right corresponds to pure warm starting. Left: Validation accuracy tends to improve
with more aggressive shrinking. When λ < 0.5, some amount of noise improves
generalization. Right: Model train times increase with decreasing values of λ. This
is expected, as decreasing λ widens the gap between shrink-perturb parameters and
warm-started parameters. Adding noise helps models train more quickly. Unlabeled
boxes correspond to initialization values that were too small for the model to reliably
learn. Networks in this plot were optimized with Adam.
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Shrinking the model’s weights increases its loss, and correspondingly increases

the magnitude of the gradient induced even by samples that have already been

seen. Preposition 2 shows that in an L-layer ReLU network without bias nodes or

batchnorm, shrinking weights by λ shrinks softmax inputs by λL, rapidly increasing

the entropy of the softmax distribution and the cross-entropy loss. As shown in

Figure 4.8, the loss increase caused by shrink perturb trick is able to balance gradient

contributions between previously unseen samples and data on which the model has

already been trained.

We believe the success of the shrink and perturb trick lies in its ability to

standardize gradients while preserving learned hypotheses. We could instead normalize

gradient contributions by, for example, adding a significant amount of parameter

noise, but this also damages the learned function. Consequently, this strategy

drastically increases training time without fully closing the warm-start generalization

gap (Appendix Table B.2). As an alternative to shrinking all weights, we could try to

increase the entropy of the output distribution by shrinking only parameters in the

last layer (results in Appendix Figure B.1), or by regularizing the model’s confidence

while training (results in Table 4.2), but these are unable to resolve the warm-start

problem. For sophisticated architectures especially, it is important to holistically

modify parameters before training on new data.

Figure 4.10 demonstrates the surprising effectiveness of this trick. Like before,

we present a passive online learning experiment where 1,000 CIFAR-10 samples

are supplied to a ResNet in sequence. At each round we can either reinitialize

network parameters from scratch or warm start, initializing them to those found in
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Figure 4.10: An online learning experiment where we vary the value of λ and keep
the noise scale fixed at 0.01. Note that λ = 1 corresponds to fully-warm-started
initializations and λ = 0 corresponds to fully-random initializations. The proposed
trick with λ = 0.6 performs identically to randomly initializing in terms of validation
accuracy, but also trains much more quickly. Interestingly, smaller values of λ are
even able to outperform random initialization while still training faster.

the previous round of optimization. As expected, we see that warm-started models

train faster but generalize worse. However, if we instead initialize parameters using

the shrink and perturb trick, we are able to both close this generalization gap and

significantly speed up training.

4.4.1 The shrink and perturb trick normalizes gradients

We notice some interesting phenomena when examining the L2 norm of the gradients

as training progresses for a shrink-perturb-initialized model. Figure 4.8 shows a

visualization of average gradients during the second of a two-phase training procedure

for a ResNet on CIFAR-10, like those discussed in Sections 4.2 and 4.3. We plot the

second phase of training, where magnitudes are shown separately for the two halves

of the data set. For this experiment models are optimized with SGD, using a small
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Figure 4.11: An online learning experiment where we vary the value of λ, keep
the noise scale fixed at 0.01, and apply a weight decay of 0.001 in all rounds
of optimization. Like in Figure 4.10, λ = 0.6 perfectly overlaps with randomly
initializing (λ = 0.0), with smaller values performing slightly worse and larger
values performing better. Notice that adding an L2 penalty widens the gap between
randomly-initialized and shrink-perturb-initialized models.

learning rate to zoom in on this effect. Outside of this plot, all experiments in this

section use the Adam optimizer instead.

As expected, for fully-warm-started models, gradient norms corresponding to

new data tend to be much larger magnitude than those for data that the model

has seen before. Conversely, the shrink and perturb trick pulls these magnitudes

closer together as λ decreases. Anecdotally, we notice that λ that close this gradient

magnitude gap seem to perform at least as well as randomly-initialized models.

4.4.2 The shrink and perturb trick and regularization

Exercising the shrink and perturb trick at every step of SGD would be very similar to

applying an aggressive, noisy L2 regularization. It is natural to ask, then, how does

this trick compare with weight decay? Figure 4.12 shows that in non-warm-started

environments, where we just have a static dataset, the iterative application of the

shrink and randomize results in marginally improved performance. These experiments
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Figure 4.12: The result of fitting a ResNet on 100% of CIFAR-10 to convergence for
twenty rounds and applying the shrink-perturb trick after each. Here we show four
versions of that experiment for the indicated λ and a noise scaling of 0.01. Applying
this trick iteratively has a slight regularization effect.

fit a ResNet to convergence on 100% of CIFAR-10 data, then shrink and perturb

weights before repeating the process, resulting in a modest performance improvement.

We can conclude that the shrink-perturb trick has two benefits. Most significantly,

it allows us to quickly fit high-performing models in sequential environments without

having to retrain from scratch. Separately, it offers a slight regularization benefit,

which in tandem with the first property sometimes allows shrink-perturb models to

generalize even better than randomly-initialized models.

This L2 regularization benefit is not enough to explain the success of the shrink-

perturb trick. As Table 4.2 demonstrates, L2-regularized models are still vulnerable

to the warm-start generalization gap. Figure 4.11 shows that we are able to mitigate

this performance gap with the shrink and perturb trick even when models are being

aggressively regularized (regularization penalties any larger prevent networks from

being able to fit the training data) with weight decay. The shrink and perturb trick
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Figure 4.13: An experiment with online boosting using CIFAR-10 data and ResNets
as weak learners. Warm-started weak learners train much quicker than randomly-
initialized weak learners, but the resulting ensemble is very poor performing. Weak
learners initialized via shrink perturb (SP) both train quicker than randomly-initialized
models without sacrificing performance.

is actually especially appealing in this context, as it seems to allow models to train

even more quickly than unregularized analogues in Figure 4.10.

4.5 Applications

In this section we hilight some interesting use cases for the shrink-perturb trick outside

of the online and active learning applications discussed earlier.

4.5.1 Quick Ensembling

There are many reasons why one might want to build an ensemble of models. It is

well understood that ensembles generally produce more accurate predictions than
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their non-ensemble analogues, and that the predictive variance across ensemble items

can be a useful measurement of uncertainty.

In the experiment presented here, like before, data are arrive iid in batches of

1,000, all from the CIFAR-10 dataset. Each time a fresh batch of data arrive, we

train a new weak learner fT on the residuals of the current state of the ensemble,

Ft−1(x) =
1

T − 1

T−1∑
t=1

ft(x).

This is effectively batch-mode online gradient boosting. If we randomly initialize

each weak learner, which is shown by the purple line in Figure 4.13, we can improve

performance over a single model.

However, since we would expect each of the constituent models in the ensemble

to learn somewhat overlapping things, like edge and color detectors, we should be

able to warm start the parameters of each new weak learner–initializing its weights to

those of its predecessor. If we do that, which is shown by the yellow line, we get a big

improvement in terms of train time but suffer a drastic loss in terms of generalization

performance. The alternative, which is to initialize each new weak learner’s parameters

by shrinking and perturbing the weights of the preceding weak learner (shown in

cyan), allows us to match the performance of the randomly-initialized ensemble while

affording much faster train times than simply randomly initializing.
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Figure 4.14: When target data are abundant, or significantly different from source
data, it is often better to train models from scratch instead of pre-train them. Each
line shows the performance of the indicated initialization protocol as a function of
the fraction of target data available for training. Shrink-perturb initialization offers
performance that is at least as high as that offered by either of the two afformentioned
approaches.

4.5.2 Pre-Training

Despite successes on a variety of machine learning tasks, deep neural networks are still

data hungry and generally require large training sets to generalize well. For problems

where only limited data are available, it has become popular to warm-start learning

using the parameters from training on a different but related problem [76, 90]. Transfer

and “few-shot” learning in this form has seen success in computer vision and NLP [86].

The experiments we perform in this chapter, however, imply that when the

second problem is not data-limited, this transfer learning approach deteriorates
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model quality. That is, at some point, the pre-training transfer learning approach

is essentially the same as warm-starting under domain shift, and generalization

performance should suffer.

We demonstrate this phenomenon by first training a ResNet-18 to convergence

on one dataset, then using that solution to warm start a model trained on a varying

fraction of another dataset. When only a small portion of target data is used, this is

essentially the same as the pre-training transfer learning approach. As the proportion

increases, the problem turns into what we have described here as warm starting.

Figure 4.14 shows the result of this experiment, and it appears to support our intuition.

Often, when the second dataset is small, warm starting is helpful, but there is a

crossover point where better generalization would be achieved from training from

scratch on that fraction of the target data.

4.6 Discussion

This chapter presented the challenges of warm-starting neural network training and

proposed a simple and powerful solution. While warm-starting is a problem that

the community seems somewhat aware of anecdotally, it does not seem to have been

directly studied. We believe that this is a major problem in important real-life tasks

for which neural networks are used, and it speaks directly to the resources consumed

by training such models.
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We further showed that the shrink and perturb trick is a simple and effective initial-

izing that can remedy the warm-start problem, allowing models to train significantly

quicker than random initializations without sacrificing performance.

the enormous computational expense of retraining models from scratch dispropor-

tionately burdens research groups without access to abundant computational resources.

The shrink and perturb trick lowers this barrier, democratizing participation in online

learning, active learning, and pre-training research with neural networks.
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Chapter 5

Related Work

5.1 Batch Active Learning with Neural Networks

Active learning is a very well studied problem [91, 92, 93]. In this thesis, we address

the batch-mode variant of active learning, where unlabeled samples are selected

in batches of size k instead of one at a time [94, 95, 96, 97, 98]. There are two

major strategies for batch active learning—representative sampling and uncertainty

sampling.

Representative sampling algorithms query labels for batches of unlabeled examples

that are representative of the unlabeled set. This strategy is based on the intuition

that a set of representative examples, once labeled, can act as a surrogate for the full

dataset. The hope is that performing loss minimization on this surrogate suffices to

ensure a low error with respect to the full dataset. In the context of deep learning,
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popular diversity-based methods select representative examples based on core-set

construction, a fundamental problem in computational geometry [53, 99].

Uncertainty sampling is based on a different principle—to select new samples

that maximally reduce the predictive uncertainty of the learner on target data. For

linear classification, multiple articles have proposed uncertainty sampling methods

that query examples that lie closest to the current decision boundary [100, 101, 102].

Some uncertainty sampling approaches have theoretical guarantees on statistical

consistency [93, 46]. Such methods have also been somewhat generalized to deep

learning, for example, by measuring predictive uncertainty via sampling from a model

with Dropout [103]. These sorts of algorithms can be traced back to more foundational

work on uncertainty-based active learning strategies [104, 105, 106, 107]. It has further

been shown that an ensemble of classifiers could also be used to effectively estimate

uncertainty [108].

There are several existing approaches that support a hybrid of representative

sampling and uncertainty sampling, often relying on meta-active learning objectives

that incorporate multiple active learning algorithms [109, 56]. One method in this

class is Active Learning by Learning, which uses a sequential decision process to

choose either a diversity-based algorithm or an uncertainty-based algorithm at each

round of unlabeled sample selection [56]. Inspired by expected loss minimization,

other work suggests query criteria that balance representativeness and informativeness

of examples [110].

One query criterion, which is related to what will be proposed in Chapter 3, selects

samples based on expected gradient length (EGL) [111]. Recent work shows that the

73



EGL criterion is related to the T -optimality criterion in experimental design [112].

They further demonstrate that samples selected by EGL are very different from those

selected by a predictive entropy-based uncertainty criterion. The EGL criterion in

active sentence and document classification with CNNs [113] . These approaches

differ most substantially from our algorithm (discussed in Chapter 3) in that they do

not consider batch diversity.

There is a wide array of theoretical articles that focus on the related problem of

adaptive subsampling for fully-labeled datasets in regression settings [114, 115, 116].

Empirical studies of batch stochastic gradient descent also employ adaptive sampling

to “emphasize” hard or representative examples [117, 118]. These works aim at

reducing computation costs or finding a better local optimal solution, as opposed to

reducing labeling cost. Nevertheless, our work is inspired by their sampling criteria

in that it also emphasizes samples that induce large model updates.

5.2 Warm-Starting Neural Networks

Chapter 4 studies what we called the warm-start problem, which concerns itself with

situations in which data arrive sequentially in large batches. To have the highest-

performing learner possible at all times, we need to train it on all data that has

been encountered at each round. Each time the network is trained, we can either

initialize its parameters to those found in the previous round of optimization (warm

start) or we can use a fresh random initialization. We show that while warm-started
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models train much quicker than their randomly-initialized peers, they also generalize

significantly worse.

Warm-starting and online learning are well understood for convex models like

linear classifiers [119] and SVMs [120, 121]. However, it does not appear that

generally applicable techniques exist for deep neural networks that do not damage

generalization, and so models are typically retrained from scratch, e.g., [15, 122].

There has been a variety of work in closely related areas, however. For example,

in analyzing “critical learning periods,” researchers show that a network initially

trained on blurry images then on sharp images is unable to perform as well as one

trained from scratch on sharp images, drawing a parallel between human vision and

computer vision [123]. In this article, we will show that this phenomenon occurs

more generally and that test performance is damaged even when first and second

datasets are drawn from identical distributions.

The problem of warm starting is closely related to the rich literature on initial-

ization of neural network training “from scratch”. Indeed, new insights into what

makes an effective initialization have been critical to the revival of neural networks

as machine learning models. While there have been several proposed methods for

initialization [124, 125, 72, 126, 127], this body of literature primarily concerns itself

with initializations that are high-quality in the sense that they allow for quick and

reliable model training. That is, these methods are typically built with training

performance in mind rather than generalization performance.

Work relating initialization to generalization suggests that networks whose weights

have moved far from their initialization are less likely to generalize well compared
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with ones that have remained relatively nearby [128]. Chapter 4 however shows with

experimental results that warm-started networks that have less in common with

their initializations seem to generalize better than those that have more. So while it

is not surprising that there exist initializations that generalize poorly, it is surprising

that warm starts are in that class. Still, before retraining, our proposed solution

brings parameters closer their initial values than they would be if just warm starting,

suggesting some relationship between generalization and distance from initialization.

The warm start problem is fundamentally about generalization performance,

which has been extensively studied both theoretically and empirically within the

context of deep learning. These articles have investigated generalization by studying

classifier margin [129, 130], loss geometry [131, 80, 132], and measurements of

complexity [133, 134], sensitivity [135], or compressiblity [136].

These approaches can be seen as attempting to measure the intricacy of the

hypothesis learned by the network. If two models are both consistent for the same

training data, the one with the less complicated concept is more likely to generalize

well. We know that networks trained with SGD are implicitly regularized [81, 82],

suggesting that standard training of neural networks incidentally finds low-complexity

solutions. It’s possible, then, that the initial round of training disqualifies solutions

that would most naturally explain the general problem of interest. If so, the trick

we propose seems to make these solutions accessible again.

The warm-start problem is very similar to the idea of unsupervised and supervised

pre-training [137, 73, 72, 138]. Under that paradigm, learning where limited labeled

data are available is aided by first training on related data. The warm start problem,
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however, is not about limited labeled data in the second round of training. Instead,

the goal of warm starting is to hasten the time required to fit a neural network by

initializing using a similar supervised problem without damaging generalization. Our

results suggest that while warm-starting is beneficial when labeled data are limited,

it actually damages generalization to warm-start in data-rich situations.
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Chapter 6

Conclusion

This thesis studies problems related to sample complexity. That is, the question of

how we can find the highest-performing model given a fixed labeling budget, and how

we can do so efficiently. When using neural networks, good answers to these questions

need to consider the way in which models are initialized, what kinds of priors they

encompass, the type of data being used, and the amount of samples being received.

In deep active learning, we observed that sample selection strategies are highly

sensitive to these aforementioned variables, and that performant acquisition functions

need to consider these details to successfully trade-off between predictive uncertainty

and batch diversity. Because cross-validation is costly in active learning, it is crucial

that our acquisition function is hyperparameter free.

We also elucidated a separate trade-off, between accuracy and efficiency, for even

non-active sequential learning problems. We explored this problem in detail, and

discussed how the shrink-perturb trick is able to balance gradient contributions while
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simultaneously preserving the previously learned hypothesis–effectively allowing us

to mitigate the deleterious effect of warm starting.

One might notice that these problems are orthogonal properties of reinforcement

learning. In the exploration phase of reinforcement learning, we want to actively

select actions that, once executed, will be maximally informative to the learner. For

efficiency, this is sometimes done in parallel, raising questions about how to best

incorporate diversity across simultaneously unrolled state-action trajectories. BADGE

offers a promising solution for problems of this variety, but currently leverages a simple

measurement of uncertainty that assumes a classification setting. Most reinforcement

learning models rely on predicting continuous terms, like Q values or future states, so

BADGE will need to be adapted in order to be effective in these environments. This

adaptation to regression problems, and experimentation in reinforcement learning

settings, is an interesting direction for future work.

As the agent explores, new samples that capture transition and reward dynamics

are integrated into the training set on which models are being fitted. Does this

sequential optimization damage generalization? If so, the shrink-perturb trick, in its

current form, is unlikely to remedy the problem. New state trajectories are being

added to the training set very frequently, rather than in large, sparse batches. This

would suggest we need to apply the shrink-perturb trick at almost every step of

optimization, which as mentioned in Chapter 4, devolves to an aggressive, noisy L2

regularization. Identifying more flexible ways of solving this problem could be a step

towards fixing some of the reproducibility issues plaguing deep reinforcement learning

research.
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Resolving problems of sample complexity, and remedying the reliance of neural

networks on specific hyperparameters, is paramount to making useful, general purpose

machine learning algorithms. Truly automated learning equipment should be flexible

and reliable, and should not depend on practitioner experience. This thesis aims to

take a step in that direction, highlighting and remedying nuanced problems in the use

of deep learning sequential problems that affect their usability in real-life scenarios.
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Appendix A

Batch Active Learning

A.1 The k-means++ seeding algorithm

Here we briefly review the k-means++ seeding algorithm by [49]. Its basic idea is to

perform sequential sampling of k centers, where each new center is sampled from the

ground set with probability proportional to the squared distance to its nearest center.

It is shown in [49] that the set of centers returned is guaranteed to approximate the

k-means objective function in expectation, thus ensuring diversity.

A.2 All learning curves

We plot all learning curves (test accuracy as a function of the number of labeled

example queried) in Figures A.1 to A.7. In addition, we zoom into regions of the

learning curves that discriminates the performance of all algorithms in Figures A.8

to A.14.
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Algorithm 2 The k-means++ seeding algorithm [49]
Require: Ground set G ⊂ Rd, target size k.
Ensure: Center set C of size k.
C1 ← {c1}, where c1 is sampled uniformly at random from G.
for t = 2, . . . , k: do
Define Dt(x) := minc∈Ct−1 ‖x− c‖2.
ct ← Sample x from G with probability Dt(x)2∑

x∈GDt(x)2
.

Ct ← Ct−1 ∪ {ct}.
end for
return Ck.
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Figure A.1: Full learning curves for OpenML #6 with MLP.
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Figure A.2: Full learning curves for OpenML #155 with MLP.
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Figure A.3: Full learning curves for OpenML #156 with MLP.
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Figure A.4: Full learning curves for OpenML #184 with MLP.

A.3 Pairwise comparisons of algorithms

In addition to Figure 3.4 in the main text, we also provide penalty matrices (Fig-

ures A.15 and A.16), where the results are aggregated by conditioning on a fixed

batch size (100, 1000 and 10000) or on a fixed neural network model (MLP, ResNet

and VGG). For each penalty matrix, the parenthesized number in its title is the total

number of (D,B,A) combinations aggregated; as discussed in Section 3.4, this is also

an upper bound on all its entries. It can be seen that uncertainty-based methods

(e.g. Marg) perform well only in small batch size regimes (100) or when using
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Figure A.5: Full learning curves for SVHN with MLP, ResNet and VGG.
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Figure A.6: Full learning curves for MNIST with MLP.
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Figure A.7: Full learning curves for CIFAR10 with MLP, ResNet and VGG.
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Figure A.8: Zoomed-in learning curves for OpenML #6 with MLP.

85



5000 10000 15000 20000 25000 30000 35000
#Labels queried

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

A
cc

ur
ac

y

SVHN, ResNet, Batch size: 100

1000 2000 3000 4000 5000 6000 7000
#Labels queried

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

OpenML#155, MLP, Batch size: 100

1000 2000 3000 4000 5000 6000 7000 8000 9000
#Labels queried

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

OpenML#155, MLP, Batch size: 1000

10000 20000 30000 40000 50000
#Labels queried

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

OpenML#155, MLP, Batch size: 10000

ALBL Conf Coreset BADGE Entropy Marg Rand

Figure A.9: Zoomed-in learning curves for OpenML #155 with MLP.
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Figure A.10: Zoomed-in learning curves for OpenML #156 with MLP.
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Figure A.11: Zoomed-in learning curves for OpenML #184 with MLP.
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Figure A.12: Zoomed-in learning curves for SVHN with MLP, ResNet and VGG.
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Figure A.13: Zoomed-in learning curves for MNIST with MLP.
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Figure A.14: Zoomed-in learning curves for CIFAR10 with MLP, ResNet and VGG.
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Figure A.15: Pairwise penalty matrices of the algorithms, grouped by different
batch sizes. The parenthesized number in the title is the total number of (D,B,A)
combinations aggregated, which is also an upper bound on all its entries. Element
(i, j) corresponds roughly to the number of times algorithm i beats algorithm j.
Column-wise averages at the bottom show aggregate performance (lower is better).
From left to right: batch size = 100, 1000, 10000.

MLP models; representative sampling based methods (e.g. Coreset) only perform

well in large batch size regimes (10000) or when using ResNet or VGG models. In

contrast, BADGE’s performance is competitive across all batch sizes and neural

network models.

A.4 CDFs of normalized errors of different algo-

rithms

In addition to Figure 3.5 that aggregates over all settings, we show here the CDFs

of normalized errors by conditioning on fixed batch sizes (100, 1000 and 10000) in

Figure A.17, and show the CDFs of normalized errors by conditioning on fixed neural

network models (MLP, ResNet and VGG) in Figure A.18.
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Figure A.16: Pairwise penalty matrices of the algorithms, grouped by different neural
network models. The parenthesized number in the title is the total number of
(D,B,A) combinations aggregated, which is also an upper bound on all its entries.
Element (i, j) corresponds roughly to the number of times algorithm i beats algorithm
j. Column-wise averages at the bottom show aggregate performance (lower is better).
From left to right: MLP, ResNet and VGG.
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Figure A.17: CDFs of normalized errors of the algorithms, group by different batch
sizes. Higher CDF indicates better performance. From left to right: batch size = 100,
1000, 10000.
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Figure A.18: CDFs of normalized errors of the algorithms, group by different neural
network models. Higher CDF indicates better performance. From left to right: MLP,
ResNet and VGG.

A.5 Batch uncertainty and diversity

Figure A.19 gives a comparison of sampling methods with gradient embedding in two

settings (OpenML # 6, MLP, batchsize 100 and SVHN, ResNet, batchsize 1000), in

terms of uncertainty and diversity of examples selected within batches. These two

properties are measured by average `2 norm and determinant of the Gram matrix

of gradient embedding, respectively. It can be seen that, k-means++ (BADGE)

induces good batch diversity in both settings. Conf generally selects examples with

high uncertainty, but in some iterations of OpenML #6, the batch diversity is relatively

low, as evidenced by the corresponding log Gram determinant being −∞. These areas

are indicated by gaps in the learning curve for Conf. Situations where there are many

gaps in the Conf plot seem to correspond to situations in which Conf performs

poorly in terms of accuracy (see Figure A.8 for the corresponding learning curve).

Both k-DPP and FF-k-center (an algorithm that approximately minimizes k-center

objective) select batches that have lower diversity than k-means++ (BADGE).
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Figure A.19: A comparison of batch selection algorithms in gradient space. Plots a
and b show the log determinants of the Gram matrices of gradient embeddings within
batches as learning progresses. Plots c and d show the average embedding magnitude
(a measurement of predictive uncertainty) in the selected batch. The k-centers sampler
finds points that are not as diverse or high-magnitude as other samplers. Notice
also that k-means++ tends to actually select samples that are both more diverse
and higher-magnitude than a k-DPP, a potential pathology of the k-DPP’s degree of
stochastisity. Among all algorithms, Conf has the largest average norm of gradient
embeddings within a batch; however, in OpenML #6, and the first few interations
of SVHN, some batches have a log Gram determinant of −∞ (shown as gaps in the
curve), which shows that Conf sometimes selects batches that are inferior in diversity.
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Figure A.20: Learning curves and running times for OpenML #6 with MLP.

A.6 Comparison of k-means++ and k-DPP in

batch selection

In Figures A.20 to A.26, we give running time and test accuracy comparisons between

k-means++ and k-DPP for selecting examples based on gradient embedding in

batch mode active learning. We implement the k-DPP sampling using the MCMC

algorithm from [51], which has a time complexity of O(τ · (k2 + kd)) and space

complexity of O(k2 + kd), where τ is the number of sampling steps. We set τ as

b5k ln kc in our experiment. The comparisons for batch size 10000 are not shown here

as the implementation of k-DPP sampling runs out of memory.

It can be seen from the figures that, although k-DPP and k-means++ are based

on different sampling criteria, the classification accuracies of their induced active

learning algorithm are similar. In addition, when large batch sizes are required (e.g.

k = 1000), the running times of k-DPP sampling are generally much higher than

those of k-means++.
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Figure A.21: Learning curves and running times for OpenML #155 with MLP.
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Figure A.22: Learning curves and running times for OpenML #156 with MLP.
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Figure A.23: Learning curves and running times for OpenML #184 with MLP.
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Figure A.24: Learning curves and running times for SVHN with MLP and ResNet.
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Figure A.25: Learning curves and running times for MNIST with MLP.

95



10000 20000 30000 40000
#Labels queried

0.25

0.30

0.35

0.40

0.45

0.50

A
cc

ur
ac

y

CIFAR10, MLP, Batch size: 100

10000 20000 30000 40000
#Labels queried

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ti
m

e

×10
5 CIFAR10, MLP, Batch size: 100

10000 20000 30000 40000
#Labels queried

0.25

0.30

0.35

0.40

0.45

0.50

A
cc

ur
ac

y

CIFAR10, MLP, Batch size: 1000

10000 20000 30000 40000
#Labels queried

0

2

4

6

8

Ti
m

e

×10
4 CIFAR10, MLP, Batch size: 1000

10000 20000 30000 40000
#Labels queried

0.10

0.20

0.30

0.40

0.50

A
cc

ur
ac

y

CIFAR10, ResNet, Batch size: 100

10000 20000 30000 40000
#Labels queried

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e

×10
5 CIFAR10, ResNet, Batch size: 100

10000 20000 30000 40000
#Labels queried

0.10

0.20

0.30

0.40

0.50

0.60

A
cc

ur
ac

y

CIFAR10, ResNet, Batch size: 1000

10000 20000 30000 40000
#Labels queried

0

2

4

6

8

Ti
m

e

×10
4CIFAR10, ResNet, Batch size: 1000

k-DPP k-means++

Figure A.26: Learning curves and running times for CIFAR10 with MLP and ResNet.
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Appendix B

Warm Starting
Proposition 2. Consider a neural network fθ trained on d-dimensional samples to

predict one of k classes and paramatrized by weight matrices θ = (W1,W2, ..,WL),

such that Wi ∈ Rri×ci, ri = ci−1, c1 = d, and rL = k. Using the ReLU nonlinearity

σ(z) = max(0, z) and softmax(z)i = ezi/
∑K

j=1 e
zj , define

fθ(x) = softmax(WL · σ(WL−1 · .. · σ(W2 · σ(W1 · x)))) for input x ∈ Rd. Then, for

λ > 0, argmax fθ(x) = argmax fλθ(x).

Proof. Observe that σ(λz) = λσ(z) ∀λ > 0. Then,

argmax fλθ(x) = argmax softmax(λWL · σ(λWL−1 · .. · σ(λW2 · σ(λW1 · x))))

= argmax softmax(λLWL · σ(WL−1 · .. · σ(W2 · σ(W1 · x))))

= argmax softmax(WL · σ(WL−1 · .. · σ(W2 · σ(W1 · x))))

= argmax fθ(x)
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Table B.1: Validation percent accuracies for various optimizers and models for the first
round of warm-started training, i.e. training on half of the training data available in
Table 4.1. We consider an 18-layer ResNet, three-layer multilayer perceptron (MLP),
and logistic regression (LR) as our classifiers. Validation sets are a randomly-chosen
third of the training data. Standard deviations are indicated parenthetically.

ResNet ResNet MLP MLP LR LR

SGD Adam SGD Adam SGD Adam

CIFAR-10 41.7 (7.9) 70.5 (1.6) 37.2 (0.2) 36.0 (0.2) 37.9 (0.2) 31.8 (0.7)

SVHN 85.9 (0.3) 92.3 (0.2) 72.5 (0.4) 67.5 (0.3) 27.1 (0.3) 22.2 (0.7)

CIFAR-100 10.6 (1.6) 31.5 (0.7) 10.3 (0.2) 10.5 (0.3) 15.4 (0.21) 9.3 (0.3)

Table B.2: Validation accuracies and warm-
started model train times (minutes). Adding
noise at the indicated standard deviations
improves generalization, but not to the point
of performing as well as randomly-initialized
models. Better-generalizing warm-started
models take even more time to train than their
randomly-initialized peers, which on average
achieve 55.2% accuracy in 34.0 minutes.

1× 10−2 1× 10−3 1× 10−4 1× 10−5 0

Accuracy 54.4 (0.9) 53.5 (1.0) 52.9 (1.0) 49.9 (1.6) 50.8 (1.8)

Train Time 165.3 (3.9) 38.0 (1.33) 16.5 (1.3) 14.6 (91.0) 13.6 (0.4)

Table B.3: Validation percent
accuracies for various datasets for
last layer only warm-starting (LL),
last layer warm starting followed
by full network training (LL+WS),
warm started (WS) and randomly
initialized (RI) models on various
indicated datasets.

LL LL+WS WS RI

CIFAR-10 48.8 (1.8) 50.9 (1.5) 52.5 (0.3) 56.0 (1.2)

SVHN 86.0 (0.6) 88.2 (0.2) 87.5 (0.7) 89.4 (0.1)

CIFAR-100 16.4 (0.5) 16.5 (0.6) 15.5 (0.3) 18.2 (0.3)
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Figure B.1: An online learning experiment using a ResNet on CIFAR-10 data. Data are
supplied iid in batches of 1,000. Here, instead of shrinking and perturbing every weight
in the model, we modify only those in the last layer. Models modified this way, unlike
the shrink-perturb trick we present, which modifies every parameter in the network,
these retrained models are unable to outperform even purely warm-started models.
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Figure B.2: An online learning
experiment with a ResNet on
CIFAR-10 data, iteratively
supplying batches of 1,000 to the
model. Left: Final accuracies
and train times. Below: Full
learning curves corresponding to
each entry, where λ = 0 is warm
starting and λ = 1 is randomly
initializing .
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Figure B.3: An online learning
experiment with a ResNet
on SVHN data, iteratively
supplying batches of 1,000 to the
model. Left: Final accuracies
and train times. Below: Full
learning curves corresponding to
each entry, where λ = 0 is warm
starting and λ = 1 is randomly
initializing .
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Figure B.4: An online learn-
ing experiment with an MLP
consisting of three layers,
ReLU activations, and 100-
dimensional hidden layers
(no batch normalization) on
CIFAR-10 data Left: Final
accuracies and train times.
Below: Full learning curves
corresponding to each entry,
where λ = 0 is warm starting and
λ = 1 is randomly initializing.
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Figure B.5: An online learn-
ing experiment with an MLP
consisting of three layers,
ReLU activations, and 100-
dimensional hidden layers
(no batch normalization) on
SVHN data Left: Final accura-
cies and train times. Below: Full
learning curves corresponding to
each entry, where λ = 0 is warm
starting and λ = 1 is randomly
initializing.
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Figure B.6: An online learning
experiment with a ResNet with
weight decay on CIFAR-10
data, iteratively supplying
batches of 1,000 to the model.
Left: Final accuracies and train
times. Below: Full learning
curves corresponding to each
entry, where λ = 0 is warm
starting and λ = 1 is randomly
initializing .
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Figure B.7: An online learning
experiment with a ResNet with
weight decay on SVHN data,
iteratively supplying batches
of 1,000 to the model. Left:
Final accuracies and train times.
Below: Full learning curves
corresponding to each entry,
where λ = 0 is warm starting and
λ = 1 is randomly initializing .
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