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Abstract. Crystallographic groups describe the symmetries of crystals and other repetitive
structures encountered in nature and the sciences. These groups include the wallpaper and space
groups. We derive linear and nonlinear representations of functions that are (1) smooth and (2)
invariant under such a group. The linear representation generalizes the Fourier basis to crystallo-
graphically invariant basis functions. We show that such a basis exists for each crystallographic
group, that it is orthonormal in the relevant L2 space, and recover the standard Fourier basis
as a special case for pure shift groups. The nonlinear representation embeds the orbit space of
the group into a finite-dimensional Euclidean space. We show that such an embedding exists for
every crystallographic group, and that it factors functions through a generalization of a manifold
called an orbifold. We describe algorithms that, given a standardized description of the group,
compute the Fourier basis and an embedding map. As examples, we construct crystallographically
invariant neural networks, kernel machines, and Gaussian processes.

1 Introduction

Among the many forms of symmetry observed in nature, those that arise from repetitive
spatial patterns are particularly important. These are described by sets of transformations
of Euclidean space called crystallographic groups [62, 65]. For example, consider a problem
in materials science, where atoms are arranged in a crystal lattice. The symmetries of the
lattice are then characterized by a crystallographic group G. Symmetry means that, if we
apply one of the transformations in G to move the lattice—say to rotate or shift it—the
transformed lattice is indistinguishable from the untransformed one. In such a lattice, the
Coulomb potential acting on any single electron due to a collection of fixed nuclei does
not change under any of the transformations in G [12, 36, 42]. If we think of the potential
field as a function on R3, this is an example of a G-invariant function, i.e., a function
whose values do not change if its arguments are transformed by elements of the group.
When solving the resulting Schrödinger equation for single particle states, members of the
group commute with the Hamiltonian, and quantum observables are again G-invariant
[12, 26, 36, 37, 42, 57]. A different example are ornamental tilings on the walls of the
Alhambra, which, when regarded as functions on R2, are invariant under two-dimensional
crystallographic groups [58]. The purpose of this work is to construct smooth invariant
functions for any given crystallographic group in any dimension.

For finite groups, invariant functions can be constructed easily by summing over all
group elements; for compact infinite groups, the sum can be replaced by an integral. This
and related ideas have received considerable attention in machine learning [e.g., 14, 21, 38].
Such summations are not possible for crystallographic groups, which are neither finite nor
compact, but their specific algebraic and geometric properties allow us to approach the
problem in a different manner. We postpone a detailed literature review to Section 10,
and use the remainder of this section to give a non-technical sketch of our results.

ar
X

iv
:2

30
6.

05
26

1v
1 

 [
st

at
.M

L
] 

 8
 J

un
 2

02
3



1.1. A non-technical overview

This section sketches our results in a purely heuristic way; proper definitions follow in
Section 2.

Crystallographic symmetry. Crystallographic groups are groups that tile a Euclidean
space Rn with a convex shape. Suppose we place a convex polytope Π in the space Rn,
say a square or a rectangle in the plane. Now make a copy of Π, and use a transforma-
tion ϕ : R2 → R2 to move this copy to another location. We require that ϕ is an isometry,
which means it may shift, rotate or flip Π, but does not change its shape or size. Here
are some examples, where the original shape Π is marked in red:

p2mm

p1 p2 p2mm

The descriptors p1, p2, and p2mm follow the naming standard for groups developed by crys-
tallographers [31], and the symbol “F” is inscribed to clarify which transformations are
used. The transformations in these examples are horizontal and vertical shifts (in p1), ro-
tations around the corners of the rectangle in (p2), and reflections about its edges (p2mm).
Suppose we repeat one of these processes indefinitely so that the copies of Π cover the
entire plane and overlap only on their boundaries. That requires a countably infinite
number of transformations, one per copy. Collect these into a set G. If this set forms a
group, this group is called crystallographic. Such groups describe all possible symmetries
of crystals, and have been thoroughly studied in crystallography. For each dimension n,
there is—up to a natural notion of isomorphy that we explain in Section 2—only a finite
number of crystallographic groups: Two on R, 17 on R2, 230 on R3, and so forth. Those
on R2 are also known as wallpaper groups, and those on R3 as space groups.

The objects of interest. A function f is invariant under G if it satisfies

f(ϕx) = f(x) for all ϕ ∈ G and all x ∈ Rn .

A simple way to construct such a function is to start with a tiling as above, define a
function on Π, and then replicate it on every copy of Π. Here are two examples on R2,
corresponding to (ii) and (iii) above, and an example on R3:

p2 p2mm I4122

However, as the examples illustrate, functions obtained this way are typically not contin-
uous. Our goal is to construct smooth invariant functions, such as these:
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p2 p2mm I4122

We identify two representations of such functions, one linear and one nonlinear. Work-
ing with either representation algorithmically requires a data structure representing the
invariance constraint. We construct such a structure, which we call an orbit graph, in
Section 4. This graph is constructed from a description of the group (which can be en-
coded as a finite set of matrices) and of Π (a finite set of vectors).

Linear representations: Invariant Fourier transforms. We are primarily interested
in two and three dimensions, but a one-dimensional example is a good place to start: In
one dimension, a convex polytope is always an interval, say Π = [0, 1]. If we choose G
as the group Z of all shifts of integer length, it tiles the line R with Π. In this case, an
invariant function is simply a periodic function with period 1. Smooth periodic functions
can be represented as a Fourier series,

f(x) =
∑∞

i=0
ai cos

(
ix
2π

)
+ bi sin

(
ix
2π

)
for sequences of scalar coefficients ai and bi. Note each sine and cosine on the right is
G-invariant and infinitely often differentiable. Now suppose we abstract from the specific
form of these sines and cosines, and only regard them as G-invariant functions that are
very smooth. The series representation above then has the general form

f(x) =
∑∞

i=0
ciei(x) ,

where the ei are smooth, G-invariant functions that depend only on G and Π, and the ci
are scalar coefficients that depend on f . (In the Fourier series, ei is a cosine for odd and
a sine for even indices.) In Section 5, we obtain generalizations of this representation
to crystallographically invariant functions. To do so, we observe that the Fourier basis
can be derived as the set of eigenfunctions of the Laplace operator: The sine and cosine
functions above are precisely those functions e : R → R that solve

−∆e = λe

subject to e is periodic with period 1

for some λ ≥ 0. (The negative sign is chosen to make the eigenvalues λ non-negative.)
The periodicity constraint is equivalent to saying that e is invariant under the shift
group G = Z. The corresponding problem for a general crystallographic group G on Rn
is hence

−∆e = λe

subject to e = e ◦ ϕ for all ϕ ∈ G .
(1)

Theorem 7 shows that this problem has solutions for any dimension n, convex poly-
tope Π ⊂ Rn, and crystallographic group G that tiles Rn with Π. As in the Fourier case,
the solution functions e1, e2, . . . are very smooth.
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If we choose Π ⊂ R2 as the square [0, 1]2 and G as the group Z2 of discrete horizontal
and vertical shifts—that is, the two-dimensional analogue of the example above—we re-
cover the two-dimensional Fourier transform. The function e0 is constant; the functions
e1, . . . , e5 are shown in Figure 4. If the group also contains other transformations, the ba-
sis looks less familiar. These are the basis functions e1, . . . , e5 for a group (p3) containing
shifts and rotations of order three:

The same idea applies in any finite dimension n. For n = 3, the ei can be visualized
as contour plots. For instance, the first five non-constant basis elements for a specific
three-dimensional group, designated I41 by crystallographers, look like this:

Our results show that any continuous invariant function can be represented by a series
expansion in functions ei. As for the Fourier transform, the functions form a orthonormal
basis of the relevant L2 space. The functions ei can hence be seen as a generalization
of the Fourier transform from pure shift groups to crystallographic groups. All of this is
made precise in Section 5.

Nonlinear representations: Factoring through an orbifold. The second represen-
tation, in Section 6, generalizes an idea of David MacKay [45], who constructs periodic
functions on the line as follows: Start with a continuous function h : R2 → R. Choose a
circle of circumference 1 in R2, and restrict h to the circle. The restriction is still con-
tinuous. Now “cut and unfold the circle with h on it” to obtain a function on the unit
interval. Since this function takes the same value at both interval boundaries, replicating
it by shifts of integer length defines a function on R that is periodic and continuous:

function h on R2 restrict h to circle unfold circle and replicate

More formally, MacKay’s approach constructs a function ρ : R → circle ⊂ R2 such that

f is continuous and periodic on R ⇔ f = h◦ρ for some continuous h : R2 → R .

We show how to generalize this construction to any finite dimension n, any crystallo-
graphic group G on Rn, and any convex polytope with which G tiles the space: For

4



each G and Π, there is a continuous, surjective map

(2) ρ : Rn → Ω for some finite N ≥ n and a compact set Ω ⊂ RN

such that

f is continuous and invariant ⇔ f = h ◦ ρ for some continuous h : RN → R .

This is Theorem 15. Section 6.1 shows how to compute a representation of ρ using
multidimensional scaling.

The set Ω can be thought of as an n-dimensional surface in a higher-dimensional
space RN . If G contains only shifts, this surface is completely smooth, and hence a
manifold. That is the case in MacKay’s construction, where Ω is the circle, and the
group p1 on R2, for which Ω is the torus shown on the left:

such that

f is continuous and invariant , f = h � ⇢ for some continuous h : RN ! R .

This is Theorem 15. Section 6.1 shows how to compute a representation of ⇢ using
multidimensional scaling.

The set ⌦ can be thought of as an n-dimensional surface in a higher-dimensional
space RN . If G contains only shifts, this surface is completely smooth, and hence a
manifold. That is the case in MacKay’s construction, where ⌦ is the circle, and the
group p1 on R2, for which ⌦ is the torus shown on the left:

For most crystallographic groups, ⌦ is not a manifold, but rather a more general object
called an orbifold. The precise definition (see Appendix C) is somewhat technical, but
loosely speaking, an orbifold is a surface that resembles a manifold almost everywhere,
except at a small number of points at which it is not smooth. The orbifold on the right
represents a group containing rotations, and has several “sharp corners”. See Appendix C
for details on orbifolds.

Applications I: Neural networks. We can now define G-invariant models by factoring
through ⇢. To define an invariant neural network, for example, start with a continuous
neural network h✓ : RN ! Y with weight vector ✓ and some output space Y . Then ⇢ � h✓
is a continuous and invariant neural network Rn ! Y . Here are examples for three groups
(cm, p4, and p4gm) on R2, with three hidden layers and randomly generated weights:

Applications II: Invariant kernels. We can similarly define G-invariant reproducing
kernels on Rn, by starting with a kernel ̂ on RN and defining a function on Rn as

(x, y) = ̂ � (⇢⌦ ⇢)(x, y) = ̂(⇢(x), ⇢(y)) .

This function is again a kernel. In Section 7, we show that its reproducing kernel
Hilbert space consists of continuous G-invariant functions on Rn. We also show that,
even though Rn is not compact,  behaves essentially like a kernel on a compact domain
(Proposition 23). In particular, it satisfies a Mercer representation and a compact em-
bedding property, both of which usually require compactness. This behavior is specific
to kernels invariant under crystallographic groups, and does not extend to more general
groups of isometries on Rn.

Applications III: Invariant Gaussian processes. There are two ways in which a
Gaussian process (GP) can be invariant under a group: A GP is a distribution on func-
tions, and we can either ask for each function it generates to be invariant, or only require
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neural network hθ : RN → Y with weight vector θ and some output space Y . Then ρ ◦ hθ
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Applications II: Invariant kernels. We can similarly define G-invariant reproducing
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κ(x, y) = κ̂ ◦ (ρ⊗ ρ)(x, y) = κ̂(ρ(x), ρ(y)) .

This function is again a kernel. In Section 7, we show that its reproducing kernel
Hilbert space consists of continuous G-invariant functions on Rn. We also show that,
even though Rn is not compact, κ behaves essentially like a kernel on a compact domain
(Proposition 23). In particular, it satisfies a Mercer representation and a compact em-
bedding property, both of which usually require compactness. This behavior is specific
to kernels invariant under crystallographic groups, and does not extend to more general
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groups of isometries on Rn.

Applications III: Invariant Gaussian processes. There are two ways in which a
Gaussian process (GP) can be invariant under a group: A GP is a distribution on func-
tions, and we can either ask for each function it generates to be invariant, or only require
that its distribution is invariant (see Section 8 for definitions). The former implies the
latter. Both types of processes can be constructed by factoring through an orbifold: Sup-
pose we start with a kernel κ̂ (a covariance function) and a real-valued function µ̂ (the
mean function), both defined on RN . If we then generate a random function F on Rn as

F := H ◦ ρ where H ∼ GP(µ̂, κ̂) ,

the function F is G-invariant with probability 1. The following are examples of such
random functions, rendered as contour plots with non-smooth colormaps.

If we instead generate F as

F ∼ GP(µ, κ) where µ := µ̂ ◦ ρ and κ := κ̂ ◦ (ρ⊗ ρ) ,

the distribution of F is G-invariant. See Section 8.

Properties of the Laplace operator. Section 9 studies differentials and Laplacians of
crystallographically invariant functions f : Rn → R. The results are then used in the proof
of the Fourier representation. Consider a vector field F , i.e., a function F : Rn → Rn. An
example of such a vector field is the gradient F = ∇f . Lemma 27 shows that the gradient
transforms under elements ϕ of G as

∇f(ϕx) = (linear part of ϕ) · ∇f or abstractly F ◦ ϕ = (linear part of ϕ) ◦ F .

Proposition 28 shows that, for any vector field F that transforms in this way, the total
flux through the boundary of the polytope Π vanishes,∫

∂Π
F (x)T(normal vector of ∂Π at x)dx = 0 .

We can combine this fact with a result from the theory of partial differential equations,
the so-called Green identity, which decomposes the Laplacian on functions on Π as

−∆f = self-adjoint component on interior of Π − correction term on ∂Π .

Fact 29 makes the statement precise. Using the fact that the flux vanishes, we can show
that the correction term on ∂Π vanishes, and from that deduce that the Laplace operator
on invariant functions is self-adjoint (Theorem 30). That allows us to draw on results
from the spectral theory of self-adjoint operators to solve (1).

Background and reference results. Since our methods draw on a number of different
fields, the appendix provides additional background on groups of isometries (App. A),
functional analysis (App. B), and orbifolds (App. C), and spectral theory (App. D).

6



2 Preliminaries: Crystallographic groups

Throughout, we consider a Euclidean space Rn, and write dn for Euclidean distance in n
dimensions. Euclidean volume (that is, Lebesgue measure on Rn) is denoted voln. As
we work with both sets and their boundaries, we must carefully distinguish dimensions:
The span of a set A ⊂ Rn is the smallest affine subspace that contains it. We define the
dimension and relative interior of A as

dimA := dim spanA and A◦ := largest subset of A that is open in spanA .

The boundary of A is the set ∂A := A A◦. If A has dimension k < n, then volk(A)
denotes Euclidean volume in spanA. For example: If A ⊂ R3 is a closed line segment, then
dimA = 1, and vol1(A) is the length of the line segment, whereas vol3(A) = vol2(A) = 0.
Taking the relative interior A◦ removes the two endpoints, whereas interior of A in R3

is the empty set. (No such distinction is required for the closure Ā, since A is closed in
spanA if and only if it is closed in Rn.)

2.1. Defining crystallographic groups

Consider a group G of isometries of Rn. (See Appendix A for a brief review of definitions.)
Every isometry ϕ of Rn is of the form

(3) ϕx = Aϕx+ bϕ for some orthogonal n× n matrix Aϕ and some bϕ ∈ Rn .

Let M ⊂ Rn be a set. We say that G tiles the space Rn with M if the image sets ϕM
completely cover the space so that only their boundaries overlap:

∪ϕ∈G ϕM = Rn and ϕM ∩ ψM ⊂ ∂(ϕM) whenever ϕ ̸= ψ .

Each set ϕM is a tile, and the collection GM := {ϕM |ϕ ∈ G} is a tiling of Rn.
By a convex polytope, we mean the convex hull of a finite set of points [70].

Let Π ⊂ Rn be an n-dimensional convex polytope. The boundary ∂Π consists of a fi-
nite number of (n− 1)-dimensional convex polytopes, called the facets of Π. Thus, if G
tiles Rn with Π, only points on facets are contained in more than one tile.

Definition 1. A crystallographic group is a group of isometries that tiles Rn with an
n-dimensional convex polytope Π.

The polytope Π is then also called a fundamental region (in geometry) or an asym-
metric unit (in materials science) for G. This definition of crystallographic groups differs
from those given in the literature, but we clarify in Appendix A.2 that it is equivalent.

2.2. Basic properties

Some properties of G can be read right off the definition: Since G tiles the entire space
with a set Π of finite diameter, we must have |G| = ∞. Since Π is n-dimensional and
convex, it contains an open metric ball of positive radius. Each tile contains a copy of
this ball, and these copies do not overlap. It follows that

(4) d(ϕ(x), ψ(x)) > ε for all distinct ϕ, ψ ∈ G and all x ∈ Π◦ .

A group of isometries that satisfies (4) for some ε > 0 is called discrete, in contrast to
groups which contain, e.g., continuous rotations. Discreteness implies G is countable, but
not all countable groups of isometries are discrete (the group Qn of rational-valued shifts
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p1 p2 pm pg cm p2mm

p2mg p2gg c2mm p4 p4mm p4gm

p3 p3m1 p31m p6 p6mm

Figure 1: Tiling behavior of the 17 crystallographic groups on Rn (the wallpaper groups).

is a non-example). In summary, every crystallographic group is an infinite, discrete (and
hence countable) subgroup of the Euclidean group on Rn.

Suppose we choose one of the tilings in Figure 1, and rotate or shift the entire plane
with the tiling on it. Informally speaking, that changes the tiling, but not the tiling
mechanism, and it is natural to consider the two tilings isomorphic. More formally, two
crystallographic groups G and G′ are isomorphic if there is an orientation-preserving,
invertible, and affine (but not necessarily isometric) map γ : Rn → Rn such that G′ = γG,
where γG := {γϕγ−1 |ϕ ∈ G}.

Fact 2 ([62, 4.2.2]). Up to isomorphy, there are only finitely many crystallographic groups
on Rn for each n ∈ N. Specifically, there 17 such groups for n = 2, and 230 for n = 3.

3 Preliminaries: Invariant functions

A function f : Rn → X, with values in some set X, is ϕ-invariant if it satisfies

f(ϕx) = f(x) for all x ∈ Rn or in short f ◦ ϕ = f .

It is G-invariant if it is ϕ-invariant for all ϕ ∈ G. We are specifically interested in G-
invariant functions that are continuous, and write

C(M) := {f : Rn → R | f continuous} and CG := {f ∈ C(Rn) | f is G-invariant} .

More generally, a function f : (Rn)k → X is G-invariant in each argument if

(5) f(ϕ1x1, . . . , ϕkxk) = f(x1, . . . , xk) for all ϕ1, . . . ϕk ∈ G and x1, . . . , xk ∈ Rn .

3.1. Tiling with functions

To construct a G-invariant function, we may start with a function h on Π and “replicate
it by tiling”. For that to be possible, h must in turn be the restriction of a G-invariant
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function to Π. It must then satisfy h(ϕx) = h(x) if both ϕx and x are in Π. We hence
define the relation

x ∼ y :⇐⇒ x, y ∈ Π and y = ϕ(x) for some ϕ ∈ G {1} .

We note immediately that x ∼ y implies each point is also contained in an adjacent tile,
so both must be on the boundary ∂Π of Π. The requirement

(6) h(x) = h(y) whenever x ∼ y

is therefore a periodic boundary condition. If it holds, the function

(7) f(x) := h(ϕ−1x) for x ∈ ϕ(Π) and each ϕ ∈ G

is well-defined on Rn, and is G-invariant. Conversely, every G-invariant function f can be
obtained this way (by choosing h as the restriction f |Π). Informally, (7) says that we stitch
together function segments on tiles that are all copies of h, and these segments overlap on
the tile boundaries. The boundary condition ensures that wherever such overlaps occur,
the segments have the same value, so that (7) produces no ambiguities. The special case
of (6) for pure shift groups—where Aϕ is the identity matrix for all ϕ ∈ G—is known as
a Born-von Karman boundary condition (e.g., Ashcroft and Mermin [7]).

3.2. Orbits and quotients

An alternative way to express invariance is as follows: A function is G-invariant if and
only if it is constant on each set of the form

G(x) := {ϕx |ϕ ∈ G} for each x ∈ Rn .

The set G(x) is called the orbit of x. We see immediately that each orbit of a crystallo-
graphic group is countably infinite, but locally finite: The definition of discreteness in (4)
implies that every bounded subset of Rn contains only finitely many points of each orbit.
We also see that each point x ∈ Rn is in one and only one orbit, which means the orbits
form a partition of Rn. The assignment x 7→ G(x) is hence a well-defined map

q(x) := G(x) with image Rn/G := q(Rn) = {G(x) |x ∈ Rn} .

The orbit set Rn/G is also called the quotient set or just the quotient of G, and q is
called the quotient map (e.g., Bonahon [15]). Since the orbits are mutually disjoint, we
can informally think of q as collapsing each orbit into a single point, and Rn/G is the set
of such points.

Figure 2: Left : A point x and points on its orbit G(x) in a shift tiling of R2. Right : The infimum in the
definition of dG(G(x),G(y)) may be attained by the Euclidean distance dn(x, y) between a point y in Π
and a point ϕx in a different tile ϕΠ.

x

x

y
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Quotient spaces are abstract but useful tools for expressing invariance properties: For
any function f : Rn → R, we have

(8) f is G-invariant ⇐⇒ f = f̂ ◦ q for some function f̂ : Rn/G → R ,

since each point of Rn/G represents an orbit and f is invariant iff it is constant on orbits.
We can also use the quotient to express continuity, by equipping it with a topology that
satisfies

(9) f ∈ CG ⇐⇒ f = ĥ ◦ q for some continuous ĥ : Rn/G → R .

There is exactly one such topology, called the quotient topology in the literature. Its
definition can be made more concrete by metrizing it:

Fact 3 (see Bonahon [15], Theorem 7.7). If G is crystallographic, the function

dG(ω1, ω2) := inf {d(x, y) |x ∈ ω1, y ∈ ω2} for ω1, ω2 ∈ Rn/G

is a valid metric on Rn/G, and it metrizes the quotient topology. A subset U ⊂ Rn/G is
open if and only if its preimage q−1U is open in Rn.

Since G is discrete, the infimum in dG is a minimum. The distance of two orbits
(considered as points in Rn/G) is hence the shortest Euclidean distance between points
in these orbits (considered as sets in Rn), see Figure 2 (right). If x and y are points in
the polytope Π, we have

x ∼ y ⇐⇒ dG(G(x),G(y)) = 0 .

Informally speaking, dG implements the periodic boundary condition (6). The metric
space (Rn/G, dG) is also called the quotient space or orbit space of G. A very impor-
tant property of crystallographic groups is that they have compact quotient spaces:

Fact 4 ([65, Proposition 1.6]). If a discrete group G of isometries tiles Rn with a set M ,
the quotient space (Rn/G, dG) is homeomorphic to the quotient space M/G. If G is crys-
tallographic and tiles with a convex polytope, then (Rn/G, dG) is compact.

3.3. Transversals and projections

Since orbit spaces are abstract objects, we can only work with them implicitly. One way to
do so is by representing each orbit by one of its points in Rn. A subset of Rn that contains
exactly one point of each orbit is called a transversal. In general, transversals can be
exceedingly complex sets [9], but crystallographic groups always have simple transversals.
Algorithm 2 in the next section constructs a transversal explicitly. In the following, we
will always write Π̃ to mean

Π̃ := a transversal contained in Π computed by Algorithm 2.

Given such a transversal, we can define the projector p : Rn → Π as

(10) p(x) := the unique element of G(x) ∩ Π̃ .

If we think of each point in Π̃ as a concrete representative of an element of Rn/G, then p
is similarly a concrete representation of the quotient map q, and we can translate the
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p1 p1 p1 p1

Π within the tiling construct net apply elements of AΠ orbit graph

p31m p31m p31m p31m

Figure 3: Orbit graph construction for two plane groups: p1 and p31m. Starting with the fundamental
region (left), place points to construct an ϵ-net (middle left), apply local group operations to these points
(middle right), then add edges which may include vertices outside the fundamental region (right).

identities above accordingly: The projector is by definition G-invariant, since we can
write f in (7) as f = h ◦ p. That shows

(11) f : Rn → R is G-invariant ⇐⇒ f = h ◦ p for some h : Π → R satisfying (6) .

Although p is not continuous as a function Rn → Π, continuity only fails at the boundary,
and p behaves like a continuous function when composed with h:

Lemma 5. Let h : Π → X be a continuous function with values in a topological space X.
If h satisfies (6), then h ◦ p is a continuous G-invariant function Rn → X. It follows that

(12) f ∈ CG ⇐⇒ f = h ◦ p for some continuous h : Π → R satisfying (6) .

Since p exists for any choice of G and Π, and since it can be evaluated algorithmically,
we have hence reduced the problem of constructing continuous invariant functions to the
problem of finding functions that satisfy the periodic boundary condition (6).

4 Taking quotients algorithmically: Orbit graphs

To work with invariant functions computationally, we must approximate the quotient
metric. We do so using a data structure that we call an orbit graph, in which two
points are connected if their orbits are close to each other. More formally, any undirected
graph is a metric space when equipped with path length as distance. The metric space
defined by the graph G below discretizes the metric space (Rn/G, dG). To define G, fix
constants ε, δ > 0. A finite set Γ is an ε-net in Π if each point lies within distance ε of Γ,

Γ is an ε-net :⇔ for each x ∈ Π there exists z ∈ Γ such that dn(x, z) < ε ,

see e.g., Cooper et al. [23]. If Γ is an ε-net in Π, we call the graph

G = G(ε, δ) = (Γ, E) where E := {(x, y) | dG(G(x),G(y) < δ}

an orbit graph for G and Π.

11



4.1. Computing orbit graphs

Algorithmically, an orbit graph can be constructed as follows: Constructing an ε-net is a
standard problem in computational geometry and can be solved efficiently (e.g., Haussler
and Welzl [33]). Having done so, the problem we have to solve is:

Given points x, y ∈ Π, determine dG(G(x),G(y)) .

Since Π is a polytope, its diameter

diam(Π) := max {dn(x, y) |x, y ∈ Π} < ∞

can also be evaluated computationally. By definition of dG, we have

dG(G(x),G(y)) = min
ϕ∈G

dn(x, ϕy) ≤ dn(x, y) ≤ diam(Π) .

That shows the minimum is always attained for a point ϕy on a tile ϕΠ that lies within
distance diam(Π) of x. The set of transformations that specify these tiles is

AΠ = {ϕ ∈ G | dn(x, ϕz) ≤ diam(Π) for some z ∈ Π} .

This set is always finite, since G is discrete and the ball of radius diam(Π) is compact.
We can hence evaluate the quotient metric as

dG(G(x),G(y)) = min {dn(x, ϕy) |ϕ ∈ AΠ} ,

which reduces the construction of E to a finite search problem. In summary:

Algorithm 1 (Constructing the orbit graph).

1.) Construct the ε-net Γ.
2.) Find local group elements AΠ.
3.) For each pair x, y ∈ Γ, find dG(G(x),G(y)) = min {dn(x, ϕy) |ϕ ∈ AΠ}.
4.) Add an edge between x and y if dG(G(x),G(y)) < δ.

The construction is illustrated in Figure 3.

4.2. Computing a transversal

Recall that the faces of a polytope are its vertices, edges, and so forth; the facets are
the (n− 1)-dimensional faces. The polytope itself is also a face, of dimension n. See [70]
for a precise definition. Given Π and G, we will call two faces S and S′ G-equivalent if
S′ = ϕS for some ϕ ∈ G. Thus, if S = Π, its equivalence class is {Π}. If S is a facet, it is
equivalent to at most one distinct facet, so its equivalence class has one or two elements.
The equivalence classes of lower-dimensional faces may be larger—if G is p1 and Π a
square, for example, all four vertices of Π are G-equivalent.

Algorithm 2 (Constructing a transversal).

1) Start with an exact tiling. Enumerate all faces of Π.
2) Sort faces into G-equivalence classes.
3) Select one face from each class and take its relative interior.

4) Output the union Π̃ of these relative interiors.

12



Lemma 6. The set Π̃ constructed by Algorithm 2 is a transversal.

Proof. The relative interiors of the faces of a convex polytope are mutually disjoint and
their union is Π, so each point x ∈ Π is on exactly one such relative interior. Let S be the
face with x ∈ S◦, and consider any ϕ ∈ G. Since the tiling is exact, ϕS is either a face of
Π or ϕS ∩Π = ∅. If ϕx ∈ Π, the intersection cannot be empty, so ϕS is a face and hence
G-equivalent to S. It follows that the interior of a face of Π intersect the orbit Gx if and
only if it is in the equivalence class of S. Since we select exactly one element of this class,
exactly one point of Gx is contained in Π̃.

4.3. Computing the projector

Since G is crystallographic, it contains shifts in n linearly independent directions, and
these shifts hence specify a coordinate system of Rn. More precisely: There are n ele-
ments ϕ1, . . . , ϕn of G that (1) are pure shifts (satisfy Aϕi = I), (2) are linearly indepen-
dent, and (3) are the shortest such elements (in terms of the Euclidean norm of bϕi). Up
to a sign, each of these elements is uniquely determined. We refer to the vectors ϕ1, . . . , ϕn
as the shift coordinate system of G.

Algorithm 3 (Computing the projector).

1.) Perform a basis change from the shift coordinates to the standard basis of Rn.
2.) Set x̃ = (x1 mod 1, . . . , xn mod 1).

3.) Find ϕ ∈ G such that ϕx̃ ∈ Π̃.
4.) Apply the reverse change of basis from standard to shift coordinates.

5 Linear representation: Invariant Fourier transforms

In this section, we obtain a basis representation for invariant functions: given a crys-
tallographic group G, we construct a sequence of G-invariant functions e1, e2, . . . on Rn
such that any G-invariant continuous function can be represented as a (possibly infinite)
linear combination

∑
i∈N ciei. If G is generated by n orthogonal shifts, the functions ei

are an n-dimensional Fourier basis. Theorem 7 below obtains an analogous basis for each
crystallographic group G.

5.1. Representation theorem

For any open set M ⊆ Rn, we define the Laplace operator on twice differentiable func-
tions h :M → R as

∆h :=
∂2h

∂x21
+ . . .+

∂2h

∂x2n
= ∇T(∇h) .

Now consider specifically functions e : Rn → R. Fix some λ ∈ R, and consider the con-
strained partial differential equation

(13)
−∆e = λe on Rn

subject to e = e ◦ ϕ for ϕ ∈ G .

Clearly, there is always a trivial solution, namely the constant function e = 0. If (13) has
a non-trivial solution e, we call this e a G-eigenfunction and λ a G-eigenvalue of the
linear operator −∆. Denote the set of solutions by

V(λ) := {e : Rn → R | e satisfies (13)} .

13



39.48 39.48 39.48 39.48 78.95

Figure 4: The first five non-constant basis functions e2, . . . , e6 in Theorem 7, with their eigenvalues λi,
for the group p1. The eigenbasis in this case is precisely the standard Fourier basis on R2.

Since 0 is a solution, and any linear combination of solutions is again a solution, V(λ) is
a vector space, called the eigenspace of λ. Its dimension

k(λ) := dimV(λ)

is the multiplicity of λ.

Theorem 7 (Crystallographically invariant Fourier basis). Let G be a crystallographic
group that tiles Rn with a convex polytope Π. Then the constrained problem (13) has
solutions for countably many distinct values λ1, λ2, . . . of λ, and these values satisfy

0 = λ1 < λ2 < λ3 < . . . and λi
i→∞−−−→ ∞ .

Every solution function e is infinitely often differentiable. There is a sequence e1, e2, . . .
of solutions whose restrictions e1|Π, e2|Π, . . . to Π form an orthonormal basis of the the
space L2(Π), and satisfy∣∣{ j ∈ N | ej ∈ V(λi)}

∣∣ = k(λi) for each i ∈ N .

A function f : Rn → R is G-invariant and continuous if and only if

f =
∑

i∈N ciei for some sequence c1, c2, . . . ∈ R ,

where the series converges in the supremum norm.

Proof. See Appendix G.

Remark 8. The space L2(Rn) contains no non-trivial G-invariant functions, since for
every f ∈ CG

∥f∥L2(Rn) =
∑

ϕ∈G ∥ f |ϕΠ ∥L2(ϕΠ) =

{
0 f = 0 almost everywhere

∞ otherwise
.

On the other hand, the restriction f |Π is in L2(Π), and completely determines f . That
makes L2(Π) the natural L2-space in the context of crystallographic invariance, and is
the reason why the restrictions ei|Π are used in the theorem. Since L2(ϕΠ) is isometric
to L2(Π) for all ϕ ∈ G, it does not matter which tile we restrict to.
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52.62 157.87 210.87 368.02 368.34

473.55 631.41 683.39 684.06 841.80

Figure 5: The first ten non-constant basis functions e2, . . . , e11 in Theorem 7, with their approximate
eigenvalues λi, for the group p6. In this case, the mulitplicities k(λi) are not 2n = 4 as for the standard
Fourier transform.

5.2. Relationship to Fourier series

The standard Fourier bases for periodic functions on Rn can be obtained as the special
cases of Theorem 7 for shift groups: Fix some edge width c > 0, and choose Π and G as

Π = [0, c]n and G =
{
x 7→ x+ c(i1, . . . , in)

T
∣∣ i1, . . . , in ∈ Z

}
.

For these groups, all eigenvalue multiplicities are k(λi) = 2n for each i ∈ N. For n = 2,
the group G is p1 (see Figure 1). Its eigenfunctions are shown in Figure 4.

To clarify the relationship in more detail, consider the case n = 1: Since ∆ is a second
derivative, the functions e(x) = cos(νx) and e(x) = sin(νx) satisfy

∆e(x) = −ν2e(x) for each ν ≥ 0 ,

and are hence eigenfunctions of −∆ with eigenvalue λ = ν2. For this choice of Π and G,
the invariance constraint in (13) holds iff e(x) = e(x+ c) for every x ∈ R. That is true iff

ν(x+ c) = νx+ 2π(i− 1) for some i ∈ N, and hence λi = ν2 =
(
2π(i− 1)

c

)2
.

The eigenspaces are therefore the two-dimensional vector spaces

V(λi) = span{sin(
√
λi • ), cos

√
λi • )} with k(λi) = 2 for all i ∈ N .

Any continuous function f that is G-invariant (or, equivalently, c-periodic) can be ex-
panded as

(14) f(x) =
∑

i∈N ai cos(
√
λix) + bi sin(

√
λix) .

In the notation of Theorem 7, the coefficients are c2i = ai and c2i+1 = bi, and

e2i(x) = cos(
√
λ2ix) and e2i+1(x) = sin(

√
λ2i+1x) .

Note that the unconstrained equation has solutions for all λ in the uncountable set [0,∞).
The invariance constraint limits possible values to the countable set λ1, λ2, . . .. If f was
continuous but not invariant, the expansion (14) would hence require an integral on the
right. Since f is invariant, a series suffices.
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395.37 438.02 489.34 490.42 576.43

Figure 6: The first ten non-constant basis functions e2, . . . , e11 in Theorem 7, with their approximate
eigenvalues λi, for the group I23 on R3.

Remark 9 (Multiplicities and real versus complex coefficients). Fourier series, in partic-
ular in one dimension, are often written using complex-valued functions as

f(x) =
∑

i∈N γi exp(Jλix) where γi ∈ C and J :=
√
−1 .

Since Euler’s formula exp(Jx) = cos(x) + J sin(x) shows

γi exp(J
√
λi) = ai cos(

√
λix) + bi sin(

√
λi) for (ai − Jbi) = γi ,

that is equivalent to (14). The complex plane C is not inherent to the Fourier representa-
tion, but rather a convenient way to parameterize the two-dimensional eigenspace V(λi).
For general crystallographic groups, the complex representation is less useful, since the
multiplicities k(λi) may not be even, as can be seen in Figure 5.

5.3. Spectral algorithms

The eigenfunctions in Theorem 7 can be approximated by eigenvectors of a suitable graph
Laplacian of the orbit graph as follows. We first compute an orbit graph G = (Γ, E) as
described in Section 4. We weight each edge (x, y) of the graph by

w(x, y) =

{
exp

(
−d2G(G(x),G(y))

2ϵ2

)
if (x, y) ∈ E

0 otherwise
.(15)

The normalized Laplacian of the weighted graph is

L = I−D−1W where Wxy = w(x, y) ,(16)

and D is the diagonal matrix containing the sum of each row of W . See e.g., Chung [20]
for more on the matrix L. Our estimates of the eigenvalues and -functions of ∆ are the
eigenvalues and eigenvectors of L,

λ̂i := ith eigenvalue of L and êi := ith eigenvector of L .

These approximate the spectrum of ∆ in the sense that

λi ≈ 2

ϵ
λ̂i and ei(x) ≈ 2

ϵ
(êi)x for x ∈ Γ ,

see Singer [56]. Once an eigenvector êi is computed, values of ei at points x ̸∈ Γ can be
estimated using standard interpolation methods.
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Figure 7: Visualizations of four-dimensional orbifold embeddings for wallpaper groups cm (top) and p2gg

(bottom). Compare the p2gg embedding to the three-dimensional visualization in Figure 9.

Algorithm 4 (Computing Fourier basis).

1.) Construct the orbit graph (Γ, E).
2.) Compute the normalized Laplacian matrix L according to (16).

3.) Compute eigenvectors êi and eigenvalues λ̂i of L.
4.) Return eigenvalues and interpolated eigenfunctions.

Alternatively, the basis can be computed using a Galerkin approach, which is described in
Section 9.5. The functions in Figures 4, 5 and 6 are computed using the Galerkin method.

Remark 10 (Reflections and Neumann boundary conditions). The orbit graph automat-
ically enforces the boundary condition (6), since it measures distance in terms of dG. The
exception are group elements that are reflections, since these imply an additional property
that the graph does not resolve: If ϕ is a reflection over a facet S, x a point on S (and
hence ϕx = x), and f a ϕ-invariant smooth function, we must have ∇f(x) = −∇f(ϕx),
and hence ∇f = 0 on S. In the parlance of PDEs, this is a Neumann boundary con-
dition, and can be enforced in several ways:
1) For each point xj ∈ Γ that is on S, add a point xj′ to Γ and the edge (xj , x

′
j) to E.

Then constrain each eigenvector ei in Algorithm 4 to satisfy eij = eij′ . This approach is
common in spectral graph theory (e.g., Chung [20]).
2) Alternatively, one may symmetrize the orbit graph: For vertext xj that is close to S,
add its reflection xj′ := ϕ(xj) to Γ. Now construct the edge set according to dG using
the augmented vertex set, and again constrain eigenvectors to satisfy eij = eij′ . Either
constrained eigenvalue problem can be solved using techniques of Golub [29].

6 Nonlinear representation: Factoring through an orbifold

We now generalize MacKay’s construction, as sketched in the introduction, from shifts to
crystallographic groups. The construction defines a map

ρ|Π : Π → Ω ⊂ RN which in turn defines ρ := ρΠ ◦ p : Rn → Ω .

In MacKay’s case, Π is an interval and Ω ∈ R2 a circle. The circle can be obtained from Π
by “gluing” the ends of the interval to each other. To generalize this idea, we proceed as
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follows: Starting with the polytope Π, we find any pair of points x and y on the same
orbit of G, and “bend” Π so that we can glue x to y. That results in a surface Ω in RN ,
where N ≥ n since we have bent Π. If we denote the point on Ω that corresponds to x ∈ Π
by ρ|Π(x), we obtain the maps above. We first show how to implement this construction
numerically, and then consider its mathematical properties. In mathematical terms, the
surface Ω is an orbifold, a concept that generalizes the notion of a manifold. The term G-
orbifold is made precise in in Appendix C, but can be read throughout this section as a
surface in RN that is “smooth almost everywhere”.

6.1. Gluing algorithms

The gluing algorithm constructs numerical approximations ρ̂ of ρ and Ω̂ of Ω. Here, Ω̂ is
a surface in N̂ dimensions, where (as we explain below) N̂ may be larger than N . As in
the linear formulation of Section 5, we start with the orbit graph G = (Γ, E), but in this
case weight the edges to obtain a weighted graph

Gw = (Γ, Ew) with weight(x, y) :=

{
dG(x, y) if (x, y) ∈ E

0 if (x, y) ̸∈ E
.

The weighted graph provides approximate distances in quotient space. The surface Ω̂ is
constructed from this graph by multidimensional scaling (MDS) [40]. MDS proceeds as
follows: Let R be the matrix of squared geodesic distances, with entries

Rij = (weighted path length from xi to xj in Gw)2 .
Let 0 < δ1 ≤ . . . ≤ δ|Γ| be the eigenvalues and v1, . . . , v|Γ| the eigenvectors of the matrix

R̃ = −1

2

(
I− 1

|Γ|J
)
R
(
I− 1

|Γ|J
)

where I = diag(1, . . . , 1) and J =

(
1 · · · 1...

...
1 · · · 1

)
.

The embedding of each point xi in the ε-net Γ is then given by

ρ̂(xi) :=


√
δ|Γ| v|Γ|,i√

δ|Γ|−1 v|Γ|−1,i
...√

δ|Γ|−N̂ v|Γ|−N̂,i

 .

The dimension N̂ is chosen to minimize error in the distances. From ρ̂(x1), . . . , ρ̂(x|Γ|),
the surface Ω̂ and the map ρ̂|Π are obtained by interpolation.

Algorithm 5 (Gluing with multidimensional scaling).

1.) Construct the weighted orbit graph Gw.
2.) Compute the eigenvalues δi and eigenvectors vi of R̃.
3.) Compute vertex embeddings ρ̂(x1), . . . , ρ̂(x|Γ|).

4.) Return interpolated vertex embeddings.

Once ρ̂|Π can be computed, we can also compute ρ̂ := ρ̂ |Π ◦ p, since the projector p can
be evaluated using Algorithm 3.

Remark 11. The procedure satisfies two desiderata for constructing the orbifold map:
1) facets to be glued will be brought together, and 2) distances between interior points
in Π will be approximately preserved. The embedding is unique up to isometric transfor-
mations. The embedding step is similar to the Isomap [61] algorithm, but unlike Isomap
embeds into a higher-dimensional space rather than a lower-dimensional one.
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Figure 8: Visualizations of five-dimensional orbifold embeddings for Imm2 (top) and P65 (bottom).

6.2. Example: Invariant neural networks

Given G and Π, compute ρ̂ and Ω̂ using Algorithm 5. Choose a neural network

hθ : RN̂ → R with parameter vector θ and set fθ := hθ ◦ ρ̂ .

Then fθ is a real-valued neural network on Rn. Figure 10 shows examples of fθ for n = 3,
where hθ has three hidden layers of ten units each, with rectified linear (relu) activations,
although the input dimension N̂ may vary according to the choice of G and Π. The
parameter vector is generated at random.

Remark 12. Since most ways of performing interpolation in the construction of ρ̂ are
amenable to automatic differentiation tools, this representation is easy to incorporate
into machine learning pipelines. Moreover, universality results for neural networks (e.g.,
Hornik et al. [35]) carry over: If a class of neural networks hθ approximates to arbitrary
precision in C(RN ), the the resulting functions fθ approximate to arbitrary precision
in CG (though the approximation rate may change under composition with ρ). See
Corollary 17.

6.3. Exact tilings

Although the properties of general orbifolds constitute one of the more demanding prob-
lems of modern mathematics, orbifolds of crystallographic groups are particularly well-
behaved, and are well-understood. That we can draw directly on this theory is due to the
fact that it uses a notion of gluing very similar to that employed by our algorithms as a
proof technique [15, 53]. The two notions align under an additional condition: A convex
polytope Π is exact for G if G tiles with Π, and if each face S of Π can be represented as

S = Π ∩ ϕΠ for some ϕ ∈ G .

Not every Π with which G tiles is exact—in Figure 1, for example, the polytopes shown
for pg and p3 are not exact, though all others are. However, given Π and G, we can always
construct an exact surrogate as follows: Choose any point x ∈ R that is not a fixed point
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p1 pm p2gg

p2mg p4gm p3m1

Figure 9: Visualization of several plane group orbifolds in three dimensions, computed as embeddings
of orbit graphs as described in Section 6.1. The mesh on each orbifold is the image of the orbit graph.
Note that reflections result in boundaries for pm, p2mg, p4mg, and p3m1, and that in particular all of the
edges for p3m1 are boundaries. The self-intersections visible for p2gg are an artifact of visualizing in three
dimensions—for a sufficiently high dimension, the surface does not self-intersect.

for any ϕ ∈ G {1}. If G is crystallographic, that is true for every point in the interior
of Π. For each ϕ ∈ G, the set

Rϕ(x) := {y ∈ Rn | dn(y, x) ≤ dn(y, ϕx)} ,

is a half-space in Rn (see Figure 11/left). The intersection

D(x) := ∩ϕ∈GRϕ(x) = ∩ϕ |ϕΠ∩Π ̸=∅Rϕ(x)

of these half-spaces is called a Dirichlet domain for G (Figure 11/right).

Fact 13 ([53, 6.7.4]). If G is crystallographic, D(x) is an exact convex polytope for G.

Example 14. For illustration, consider the group pg: We start with a rectangle Π. The
group is generated by two glide reflections ϕ and ψ, each of which shifts Π horizontally
and then reflects it about one of its long edges (Figure 12/left). Exactness fails because
the set Π ∩ ϕΠ, marked in black, is not a complete edge of Π. A Dirichlet domain for this
tiling differs significantly from Π (Figure 12/right). Although substituting D(x) for Π
changes the look of the tiling, it does not change the group—that is, we still work with the
same set of transformations (rather than another group in the same isomorphism class),
and the axes of reflections are still defined by the faces of Π rather than those of D(x).

6.4. Properties of embeddings

Algorithm 5 can be interpreted as computing a numerical approximation ρ̂ to a “true”
embedding map ρ, namely the map in (2) in the introduction. Our main result on the
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P32 Pnn2 Aea2 P41212

Figure 10: Four random neural networks for four different space groups, each with three hidden layers of
ten units each and relu activations.

nonlinear representation, Theorem 15 below, shows that this map indeed exists for every
crystallographic group, and describes some of its properties. The proof of the theorem
shows that ρ and the set Ω can be constructed by the following abstract gluing algorithm.

Abstract gluing construction.

1.) Glue: Identify each x ∈ ∂Π with the unique point y ∈ ∂Π satisfying x ∼ y.
2.) Equip the glued set M with metric dG.
3.) Embed the metric space (M,dG) as a subset Ω ⊂ RN for some N ∈ N.
4.) For each x ∈ Π, define ρ|Π(x) as the representative of x on Ω.
5.) Set ρ := ρ|Π ◦ p.

Since Π contains at least one point of each orbit, and the gluing step identifies all
points identifies all points on the same orbit with each other, the glued set M can be
regarded as the quotient set Rn/G. Recall that an embedding is a map M → Ω ⊂ RN
that is a homeomorphism (a continuous bijection with continuous inverse) of the metric
spaces (M,dG) and (Ω, dN ).

The state the theorem, we need one additional bit of terminology: The stabilizer of
x in G is the set of all ϕ that leave x invariant,

Stab(x) := {ϕ ∈ G |ϕx = x}

see Bonahon [15], Ratcliffe [53], Vinberg and Shvartsman [65]. We explain the role of the
stabilizer in more detail in the next subsection.

Figure 11: Dirichlet domains. Left: The set Rϕ(x), shown in gray, is the closed half space of all points at
least as close to x as to ϕx. (In machine learning terms, the boundary of Rϕ(x) orthogonally intersects
the connecting line between x and ϕx at its center, and is hence the support vector classifier with two
support vectors x and ϕx.) Right: A Dirichlet domain D(x) defined by the group generated by a vertical
shift ϕ and a diagonal shift ψ in the plane.
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Theorem 15. Let G be a crystallographic group that tiles Rn with an exact convex poly-
tope Π. Then the set M constructed by gluing is a compact G-orbifold that is isometric
to Rn/G. This orbifold can be embedded into RN for some

n ≤ N < 2(n+max
x∈Π

|Stab(x)|) < ∞ ,

that is, there is compact subset Ω ⊂ RN such that the metric space (Ω, dN ) is homeomor-
phic to (Rn/G, dG). In particular, every point x ∈ Π is represented by one and only one
point ρΠ(x). We can hence define a map

ρ : Rn → Ω ⊂ RN as ρ(x) := ρΠ(p(x)) .

The map ρ is continuous, surjective, and G-invariant. A function f : Rn → Y , with values
in some topological space Y , is G-invariant and continuous if and only if

f = h ◦ ρ for some continuous h : RN → Y .

Ω is smooth almost everywhere, in the sense that

voln{x ∈ Π |Ω ∩Bε(ρ(x)) is not a manifold for any ε > 0} = 0

where Bε(z) denotes the open Euclidean metric ball of radius ε centered at z ∈ RN .

Proof. See Appendix H.

Remark 16. (a) Note carefully what the theorem does and does not show about the
embedding algorithm in Section 6.1: It does say that the glued set constructed by the
algorithm discretizes an orbifold, and that an N -dimensional embedding of this orbifold
exists. It does not show that the embedding computed by MDS matches this dimension—
indeed, since MDS attempts to construct an embedding that is also isometric (rather
than just homeomorphic), we must in general expect the MDS embedding dimension to
be larger, and we have at present no proof that an isometric embedding always exists.

(b) If the tiling defined by G and Π is not exact, we can nonetheless define an embedding ρ
that represents continuous functions that are invariant functions with respect to this tiling:
Construct a Dirichlet domain D, and then construct ρ by applying the gluing algorithm
to D. Functions constructed as h ◦ ρ are then invariant for the tiling (G,Π).

We have now seen different representations of continuous G-invariant functions on Rn,
respectively by continuous functions on Π, on the abstract space Rn/G, and on Ω. On Π,
we must explicitly impose the periodic boundary condition, so we are using the set

Cpbc(Π) := {f̂ ∈ C(Π) | f̂ satisfies (6)} .
In these representations, the projector p, the quotient map q, and the embedding map ρ
play very similar roles. We can make that observation more rigorous:

Figure 12: The Dirichlet domain of a tiling may differ from the convex polytope defining the tiling. Left :
A group generated by two glide reflections ϕ and ψ that tiles with a rectangle Π. Both glides shift the
rectangle and then reflect it about one of its long edges. The set Π ∩ ϕΠ, marked black, is not a face of
Π. Right : The Dirichlet domain D(x). When G tiles with D(x), the axes of reflection are still defined by
the edges of Π.
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Corollary 17. Given a crystallographic group G that tiles with a convex polytope Π,
consider the maps

IΠ : Cpbc(Π) → CG and IRn/G : C(Rn/G) → CG and IΩ : C(Ω) → CG

f̂ 7→ f̂ ◦ p ĝ 7→ ĝ ◦ q ĥ 7→ ĥ ◦ ρ

where IΩ is only defined if Π is exact. Equip all spaces with the supremum norm. Then IΠ
and IRn/G are isometric isomorphisms, and if Π is exact, so is IΩ. In particular, CG is
always a separable Banach space.

Proof. By Lemma 5, (8) and Theorem 15, all three maps are bijections. We also have

∥f̂∥sup = supx∈Π |f̂(x)| = supx∈Rn |f̂(p(x))| = ∥f̂ ◦ p∥sup for f̂ ∈ Cpbc(Π) ,

and the same holds mutatis mutandis on Rn/G and Ω, so all maps are isometries.
Since Π is compact, C(Π) is separable [3, 3.99]. The same hence holds for the closed
subspace Cpbc(Π), and by isometry for CG.

6.5. Why the glued surface may not be smooth

Whether or not the glued surface is smooth depends on whether the transformations in G
leave any points invariant. It is a known fact in geometry (and made precise in the proof
of Theorem 15) that

glued surface is a manifold ⇔ ϕx ̸= x for all ϕ ∈ G {1} and x ∈ Rn .

That can be phrased in terms of the stabilizer as

glued surface is a manifold ⇔ Stab(x) = {1} for all x ∈ Rn .

It is straightforward to check that Stab(x) is a group [65]. Since each ϕ is an isometry,
and shifts of Rn have no fixed points, ϕ(x) = x can only hold if bϕ = 0. Thus, Stab(x) is
always a subset of the point group Go (in the terminology of Appendix A), which means
it is finite. To illustrate its effect on the surface, consider the following examples.

Example 18. (a) Recall that MacKay’s construction [45], as sketched in the introduction,
can be translated to crystallographic groups by setting Π = [0, 1] and choosing G as shifts.
In this case, Stab(x) = {1} for each x ∈ R, and the glued surface is a circle, which is indeed

Figure 13: Fixed points become non-smooth under gluing. Left : A triangular polytope Π is transformed
by a rotation ϕ, which rotates by 120◦ around the vertex x of Π. Note that ϕ2 = ϕ−1 and ϕ3 = 1. Middle:
The gluing defined by ϕ identifies the edge (x, z) and the edge (x, y). Right : The resulting glued surface
is a cone, with x mapped to the tip. Locally around x, the cone is not a manifold.
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Figure 14: Invariant kernel functions using the kernel in (21), for groups on R2 and R3: pg with ℓ = 0.1,
p4gm with ℓ = 0.01, I41 with ℓ = 0.01, and P63/m with ℓ = 0.05 (from left to right).

a manifold. The two-dimensional analogue is to choose Π = [0, 1]2 and G as the group p1

in Figure 1, in which case the glued surface is a torus as shown in Figure 9, and hence
again a manifold.

(b) Now suppose Π is a triangle, x one of its corners, and ϕ a 120◦ rotation around x, as
illustrated in Figure 13. Then Stab(x) = {1, ϕ, ϕ2 = ϕ−1}, and the glued surface Ω = ρ(Π)
is a cone with ρ(x) as its tip. That means Ω is not a manifold, because no neighborhood
of the tip can be mapped isometrically to a neighborhood in R2.

7 Invariant kernels

Throughout this section, κ : Rn × Rn → R is a kernel, i.e., a positive definite function,
and H is its reproducing kernel Hilbert space, or RKHS. Appendix B reviews definitions.
We consider kernels that are G-invariant in both arguments in the sense of (5), that is,

κ(ϕx, ψy) = κ(x, y) for all ϕ, ψ ∈ G and all x, y ∈ Rn .

That is the natural notion of invariance for most purposes, since such kernels are precisely
those that define spaces of G-invariant functions:

Proposition 19. If and only if κ is G-invariant in each argument, all functions f ∈ H
are G-invariant. If κ is also continuous, all f ∈ H are continuous, and hence H ⊂ CG.

Theorem 15 implies that, to define an invariant kernel, we can start with any kernel κ̂
on the embedding space RN , and compose it with the embedding map ρ:

Corollary 20. Let κ̂ be a kernel on RN . Then the function

κ(x, y) := κ̂(ρ(x), ρ(y)) or in short κ = κ̂ ◦ (ρ⊗ ρ)

is a kernel on Rn that is G-invariant in both arguments. If κ̂ is continuous, so is κ.

That follows immediately from Theorem 15 and the fact that the restriction of a kernel
to a subset is again a kernel [59].

Example 21. Suppose κ̂ is an radial basis function (RBF) kernel with length scale ℓ
on RN , and hence of the form κ̂(z, z′) = exp(−∥z − z′∥2/ℓ2). Then κ is simply

κ(x, y) = κ̂(ρ(x), ρ(z)) = exp
(
−||ρ(x)− ρ(y)||2

2ℓ2

)
.

Figure 14 illustrates this kernel the two-dimensional groups pg and p4gm and the three-
dimensional groups I41 and P63/m.
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Once we have constructed an invariant kernel, its application to machine learning
problems is straightforward. That becomes obvious if we define Φ(x) = κ(x, • ), often
called the feature map of κ [59]. Using the definition of the scalar product on H and
the reproducing property (see Appendix B.4), we then have

Φ : Rn → H and κ(x, y) = ⟨Φ(x),Φ(y)⟩H .

If κ is G-invariant, then Φ is also G-invariant by construction. Recall that most ker-
nel methods in machine learning are derived by substituting a Euclidean scalar product
by ⟨Φ(x),Φ(y)⟩H, thereby making a linear method nonlinear. Using a G-invariant kernel
results in a G-invariant method.

Example 22 (Invariant SVM). A support vector machine (SVM) with kernel κ is deter-
mined by two finite sets of points X and Y in Rn. To train the SVM, one maps these
points into H via Φ, finds the shortest connecting line between the convex hulls of Φ(X )
and Φ(Y), and determines a hyperplane F that is orthogonal to this line and intersects
its center—equivalently, in dual formulation, the unique hyperplane that separates the
convex hulls of Φ(X ) and Φ(Y) and maximizes the H-norm distance to both. The set of
points x in Rn whose image Φ(x) lies on F is the decision surface of the SVM in Rn.
The hyperplane can be specified by two functions g (an offset vector) and h (a normal
vector) in H: A function f ∈ H lies on F if and only if

⟨f − g, h⟩H = 0 or equivalently ⟨f, h⟩H = ⟨g, h⟩H .

Let x be a point in Rn. If y and z are points with g = Φ(y) and h = Φ(z), then

x is on decision surface ⇐⇒ κ(x, z) = κ(y, z) .

Since invariance of κ implies κ(ϕx, z) = κ(x, z), that shows the decision surface is G-
invariant. Figure 15 shows examples. In these figures the data were randomly generated
with regions assigned labels using a random function generated as in Section 8. The
support vectors are highlighted and illustrate the effects of symmetry constraints: the
decision surface can be determined by data observed far away.

Two of the most important results on kernels are Mercer’s theorem and the compact
inclusion theorem [59, Chapter 4]. The latter shows the inclusion map H ↪→ C is compact,
and is used in turn to establish good statistical properties of kernel methods, such as oracle
inequalities and finite covering numbers [59]. Both results assume that κ has compact
support. If κ is invariant under a crystallographic group, its support is necessarily non-
compact, but the next result shows that versions of both theorems hold nonetheless:

Proposition 23. If κ is continuous and G-invariant in both arguments, the inclusion
map H ↪→ CG is compact. There exist functions f1, f2, . . . ∈ H and scalars c1 ≥ c2 ≥ . . . > 0
such that

κ(x, y) =
∑

i∈N cifi(x)fi(y) for all x, y ∈ Rn ,

and the scaled sequence (
√
cifi) is an orthonormal basis of H. With this basis,

H = { f=∑
i∈N ai

√
cifi | a1, a2, . . . ∈ R with

∑
i |ai|2 <∞} ,

where each series converges in H and hence (by compactness of inclusion) also uniformly.

Intuitively, that is the case because every G-invariant kernel is the pullback of a kernel
on Ω, and Ω is compact. Figure 15 shows an application of such a kernel to generate a
two-class classifier with an G-invariant decision surface.
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Figure 15: Support vector machine decision surfaces for G-invariant kernels constructed as in Corollary 20.
The groups used are p1 (left), p2 (middle), and p3 (right). Support vectors are highlighted with red circles.

8 Invariant Gaussian processes

We now consider the problem of generating random functions F : Rn → R such that each
instance of F is continuous and G-invariant with probability 1. That can be done linearly
using the generalized Fourier representation, by generating the coefficients ci in Theorem 7
at random. Here, we consider the nonlinear representation instead: If we set

F := H ◦ ρ for a random continuous function H : RN → R ,

Theorem 15 implies that F is indeed continuous and G-invariant with probability 1, and
hence a random element of CG. Conversely, the result also implies that every random
element of CG is of this form, for some random element H of C(RN ).

8.1. Almost surely invariant processes

Recall that a random function F :M ⊆ Rn → R is a Gaussian process if the joint
distribution of the random vector (F (x1), . . . , F (xk)) is Gaussian for any finite set of
points x1, . . . , xk ∈M . The mean and covariance function of a Gaussian process are
defined as

µ(x) := E[F (x)] and κ(x, y) := E[(F (x)− µ(x))(F (y)− µ(y)] for x, y ∈M .

The covariance function is always positive definite, and hence a kernel on M . The distri-
bution of a Gaussian process is completely determined by µ and κ, and conditions for F
to satisfy continuity or stronger regularity conditions can be formulated in terms of κ.
See e.g., Marcus and Rosen [46] for more background.

Proposition 24. Let H be a continuous Gaussian process on RN , with mean µ and
covariance function κ. Then F := H ◦ ρ is a continuous random function on Rn, and is
G-invariant with probability 1. Consider any finite set of points

x1, . . . , xk ∈ Rn such that xi ̸∼ xj for all distinct i, j ≤ k .

Then (F (x1), . . . , F (xk)) is a Gaussian random vector, with mean and covariance

E[F (xi)] = µ(ρ(xi)) and Cov[F (xi), F (xj)] = κ(ρ(xi), ρ(xj)) for i, j ≤ k .

Clearly, F cannot be a Gaussian process on Rn: Since F is invariant, F (x) completely
determines F (ϕ(x)), so (F (x), F (ϕx)) cannot be jointly Gaussian. Put differently, condi-
tioning F on its values on Π renders F non-random. Loosely speaking, the proposition
hence says that F is “as Gaussian” as a G-invariant random function can be. Figure 16
illustrates random functions generated by such a process.
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Figure 16: Random invariant functions on R2 and R3, generated by Gaussian processes as described in
Example 25. The groups are, from left to right, p2, p31m, P-6, and P422.

Example 25. The construction of MacKay [45] described in the introduction was de-
signed specifically for Gaussian processes, to generate periodic functions at random.
We can now generalize these processes from periodicity to crystallographic invariance:
Given G and Π, construct the embedding map ρ : Rn → RN . Choose κ̂ as the RBF
kernel (21) on RN , and µ̂ as the constant function 0 on RN . Then generate F as

H ∼ GP(µ̂, κ̂) and F := H ◦ ρ .

For visualization, draws can be approximated by the randomized feature scheme of Rahimi
and Recht [51]. Figure 16 shows examples for G chosen as p2 and p31m on R2, and for
P-6 and P422 on R3.

8.2. Distributionally invariant processes

Another type of invariance that random functions can satisfy is distributional G-
invariance, which holds if

F
d
= F ◦ ϕ for all ϕ ∈ G .

Here,
d
= denotes equality in distribution. That is equivalent to requiring that the distri-

bution P of F satisfies P (ϕA) = P (A) for every measurable set A. For crystallographic
groups, distributionally invariant Gaussian processes can be constructed by factoring the
parameters, rather than the random function F , through the embedding in Theorem 15:

Corollary 26. Let µ be a real-valued function and κ a kernel on RN . If F is the Gaussian
process on Rn with mean µ ◦ ρ and covariance function κ ◦ (ρ⊗ ρ), then F is distribu-

tionally G-invariant, i.e. F ◦ ϕ d
= F for all ϕ ∈ G.

Almost sure invariance implies distributional invariance; distributional invariance is
typically a much weaker property. Frequently encountered examples of distributional
invariance are all forms of stationarity (distributional invariance under shift groups) and
of exchangeability (permutation groups).

9 The Laplace operator on invariant functions

The results in this section describe the behavior of the Laplace operator on G-invariant
functions. All of these are ingredients in the proof of the Fourier representation. We
first describe the transformation behavior of differentials of invariant functions, in Sec-
tion 9.1. Gradients turn out to be invariant under shifts and equivariant under orthogonal
transformations. Gradient vector fields, and more generally vector fields with the same
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transformation behavior as gradients, have a cancellation property—their integral or-
thogonal to the tile boundary vanishes (Section 9.2). We then define the relevant solution
space for the spectral problem, which has Hilbert space structure (so that we can define
orthogonality and self-adjointness) but has smoother elements than L2, in Section 9.3.
Once the Laplacian has been properly defined on this space, we can use the cancellation
property to show it is self-adjoint.

9.1. Differentials and gradients of invariant functions

Given a differentiable function f : Rn → Rm, denote the differential at x as

Df(x) =
(
∂fj
∂xi

)
i≤n,j≤m

∈ Rn×m .

The next result summarizes how invariance of f under a transformation ϕ affects Df .
Note the order of operations matters: D(f ◦ ϕ) is the differential of the function f ◦ ϕ,
whereas (Df) ◦ ϕ transforms the differential Df of f by ϕ.

Lemma 27. If f : Rn → Rm is invariant under an isometry ϕx = Aϕx+ bϕ and differ-
entiable, then

(17) (Df)(ϕx) = Df(x) ·AT
ϕ .

If in particular f : Rn → R, the gradient satisfies

(18) ∇f(ϕx) = Aϕ · ∇f(x) for all x ∈ Rn .

The Hessian matrix Hf and the Laplacian satisfy

(19) Hf (ϕx) = AϕHf (x)A
T
ϕ and ∆f(ϕx) = ∆f(x) for all x ∈ Rn .

Proof. Since ϕ is affine, its differential (Dϕ)(x) = Aϕ is constant. The chain rule shows

D(f ◦ ϕ) = (Df) ◦ ϕ · (Dϕ) = ((Df) ◦ ϕ) ·Aϕ .

By invariance, f ◦ ϕ and f are the same function, and hence D(f ◦ ϕ) = Df . Substituting
into the identity above shows (17), since AT

ϕ = A−1
ϕ . For m = 1, the transpose DT = ∇ is

the gradient, and (17) becomes (18). Using (18), the Hessian can be written as

Hf = D(∇f) = D(Aϕ∇f ◦ ϕ−1) .

Another application of the chain rule then shows

Hf = D(Aϕ∇f) ◦ ϕ−1 ·Dϕ−1 = Aϕ(D∇f) ◦ ϕ−1 ·Aϕ−1 = Aϕ(Hf ◦ ϕ−1)AT
ϕ ,

which is the first statement in (19). Since the Laplacian is the trace of Hf , and the trace
in invariant under change of basis, that implies

∆f(ϕx) = tr(Hf (ϕx)) = tr(AϕHf (x)A
T
ϕ) = tr(Hf (x)) = ∆f(x) .
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9.2. Flux through the tile boundary

The next result is the key tool we use to prove self-adjointness of the Laplacian. We
have seen above that the gradient of a G-invariant function transforms under G accord-
ing to (18). We now abstract from the specific function ∇f , and consider any vector
field F : Π → Rn that transforms like the gradient on the tile boundary, i.e.

(20) F (y) = AϕF (x) whenever y = ϕx .

For a polytope Π with facets S1, . . . , Sk, we define the normal field on the boundary as

NΠ : ∂Π → Rn given by NΠ(x) :=

{
Ni if x ∈ S◦

i

0 otherwise

where Ni is the unit normal vector of the facet Si, directed outward with respect to Π.
In vector analysis, the projection FTNΠ of a vector field onto the direction orthogonal
to ∂Π is known as the flux of F through the boundary.

Proposition 28 (Flux). Let G be a crystallographic group that tiles Rn with a convex
polytope Π. If a vector field F : Π → Rn is integrable on ∂Π and satisfies (20), then∫

∂Π
F (x)TNΠ(x)voln−1(dx) = 0 .

Proof. See Appendix E.

9.3. The Sobolev space of invariant functions

The proof of Theorem 7 follows a well-established strategy in spectral theory: The relevant
spectral results hold for self-adjoint operators, and self-adjointness can only be defined
with respect to an inner product. Since the space C2 on which the Laplace operator
is defined is a Banach space, but has no inner product, one must hence first embed
the problem into a suitable Hilbert space. For the Laplacian, this is generally a first-
order Sobolev space; see Appendix B for a review of definitions, and Brezis [19], Maz’ya
[47], McLean [48] for more on spectral theory and the general approach.

In our case, we proceed as follows: Since invariant functions are completely determined
by their values on Π, we can equivalently solve the problem on the bounded domain Π
rather than the unbounded domain Rn. That gives us access to a number of results specific
to bounded domains. We also observe that the invariance constraint e = e ◦ ϕ is a linear
constraint—if two functions satisfy it, so do their linear combinations—so the feasible set
of this constraint is a vector space, and we can encode the constraint by restriction to a
suitable subspace. We start with the vector space

(21) H := {f |Π◦ | f : Rn → R infinitely often differentiable and G-invariant} .

The elements of H are hence infinitely often differentiable on Π◦, and their continuous
extensions to the closure Π satisfy the periodic boundary condition (6). We then define
the Sobolev space of candidate solutions as

HG := closure of H in H1(Π◦) ,

equipped with the norm and inner product of H1(Π◦). As a closed subspace of a Hilbert
space, it is a Hilbert space.
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9.4. The Laplace operator on HG

We now have to extend ∆ to all elements of HG. In general, a linear operator Λ on a
closed subspace V ⊂ H1(Π◦) is an extension of ∆ to V if it satisfies

(22) Λf = ∆f for all f ∈ V ∩C2(Π◦) .

The extended operator is self-adjoint on V if

⟨Λf, h⟩H1 = ⟨f,Λh⟩H1 for all f, h ∈ V .

To prove self-adjointness, one decomposes Λ as

⟨−∆f, h⟩L2
= (integral over Γ◦ that is symmetric in f and h) − (integral over ∂Γ) .

This is the Green identity alluded to in the introduction. To make it precise, we need two
quantities: One is the energy form or energy product

(23) a(f, h) :=
∫
Γ
∇f(x)T∇h(x) voln(dx) .

Since it only involves first derivatives, and both appear under the integral, it is well-
defined for any f, h ∈ H1(Π◦), and is hence a symmetric bilinear form a : H1 ×H1 → R.
It is positive definite, since

(24) a(f, h) =
∑

i≤n ⟨∂if, ∂ih⟩L2
and hence a(f, f) =

∑
i≤n ∥∂if∥L2

≥ 0 .

Substituting the definition of a into that of the H1 scalar product in (B.6) shows that

(25) ⟨f, h⟩H1 = ⟨f, h⟩L2
+ a(f, h) for all f, h ∈ H1(Γ◦) .

The second quantity is the conormal derivative

∂Nf(x) := ∇f(x)TNΠ(x) .

The precise statement of the decomposition above is then as follows.

Fact 29 (Green’s identity). If the domain Π is sufficiently regular—in particular, if Π is
a convex polytope—then

⟨−Λf, h⟩L2
= a(f, h) −

∫
∂Γ
∂Nf(x)h(x)voln−1(dx) for f, h ∈ H1(Π◦) .

Informally, this shows that ∆ “behaves self-adjointly” in the interior of Π, where
derivatives can be computed in all directions around a point. At points on ∂Π, the
boundary truncates derivatives in some direction, and that requires a correction term ∂Nf .

Theorem 30 (Properties of the Laplacian). Let G be a crystallographic group that tiles Rn
with a convex polytope Π. Then ∆ has a unique extension to a linear operator Λ on HG.
This operator is self-adjoint and continuous on HG, and satisfies

(26) (i) ⟨−Λf, h⟩L2
= a(f, h) and (ii) ⟨−Λf, f ⟩H1 ≥ ∥f∥2H1 − ∥f∥2L2

for all f, h ∈ HG.

The proof uses the flux property to show that crystallographic symmetry makes the
boundary term cancel. Since a is symmetric, that makes Λ self-adjoint. In the parlance
of elliptic differential equations, (26ii) says that Λ is coercive on HG (see [48]).

Proof. See Appendix F.
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9.5. Linear representations from a nonlinear ansatz

The properties of Laplace operators lead naturally to a class of numerical approximations
known as Galerkin methods (e.g., Braess [18]). Using the embedding map ρ, we can
derive a Galerkin method that can be used to compute the Fourier basis functions in
Theorem 7—that is, we can use the nonlinear representation approach in the numerical
approximation of the linear representation. The Galerkin method can be more accurate
than the spectral approach in Algorithm 4, and was used to render Figures 4, 5 and 6.

Galerkin methods posit basis functions χ1, . . . , χm and approximate an infinite dimen-
sional function space by the finite-dimensional subspace span{χ1, . . . , χm}. In our case,
we approximate solutions e of (13) by approximating their restrictions e|Π. We hence
need functions χi : Π → R. W we start with functions χ̃i : RN → R, and set χi := χ̃i ◦ ρ.
We then assume e|Π of (13) is in the span, and hence of the form

(27) e|Π =
∑

i≤m ciχi .

If e solves the eigenvalue problem (13), e|Π satisfies

⟨−∆e|Π, χj ⟩L2
= λ ⟨e|Π, χj ⟩L2

for all j ≤ m .

Applying (26) and substituting in (27) shows

a(e|Π, χj) = λ ⟨e|Π, χj ⟩L2
and

∑
i
cia(χi, χj) = λ

∑
i
ci ⟨χi, χj ⟩L2

.

If we define matrices with entries Aij := a(χi, χj) and Bij := ⟨χi, χj ⟩L2
, that becomes

Ac = λBc where c = (c1, . . . , cm)
T .

The entries of A and B can be computed with off-the-shelf cubature methods, and we
can then solve for the pair (λ, c).

Remark 31. (a) If ρ and the basis functions are implemented with JAX [17] or a similar
automatic differentiation tool, the gradients in (23) are available, which avoids finite
difference approximation and explicit computation of second derivatives.

(b) Neumann boundary conditions for reflections (see Remark 10) can be enforced using
the methods of Golub [29].

(c) The basis functions χ̃i can be almost any basis on RN . Figures 4–6 were rendered
by placing points x1, x2, . . . uniformly on Π, and centering radial basis functions at the
points ρ(xi) in RN .

10 Related work and additional references

In machine learning. There has been substantial work on group invariance and equiv-
ariance in machine learning, with a focus on finite and compact groups. Most salient has
been work on approximate translation invariance and equivariance in convolutional neural
networks for images [39, 44] and speech [1], although this work has not been framed in a
group-theoretic way. To our knowledge the earliest explicit consideration of compact and
finite group structure in machine learning was from a Fourier perspective by Kondor [38];
this was primarily in the context of Hilbert-space formalisms of learning. The current
perspective on compact and finite group equivariance in deep learning arose largely from
Cohen and Welling [21]. There has been widespread application of machine learning mod-
els when group invariance or equivariance is desired, e.g., permutation invariance for sets
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[69] and equivariance for neural auction design [52]. In the natural sciences, rotation in-
variance has been used for astronomy [25] and E(3) equivariance has proved important for
molecular applications [8]. Permutation equivariance of transformer architectures plays a
crucial role in large language model [64].

In crystallography. Crystallographers have completely described the 17 two-dimensional
and 230 three-dimensional crystallgraphic groups and various tilings they describe, and
tabulated many of their properties [31]. The emphasis in this work differs somewhat from
that in mathematics—in particular, work in crystallography emphasizes polytopes Π that
occur in crystal structures (and which are not necessarily exact in the terminology used
in Theorem 15), whereas more abstract work in geometry tends to work with Dirichlet
domains or other exact tilings. A long line of work in the context of X-ray crystallography
modifies the matrices that occur in fast Fourier transforms (FFTs) to speed up compu-
tation if a crystallographic symmetry is present in the data. This starts with the work of
Bienenstock and Ewald [13] and Ten Eyck [60], see also An et al. [5]. The introduction
of Seguel and Burbano [55] gives an overview. This work does not attempt to derive
invariant Fourier bases.

In Fourier and PDE analysis. As we have already explained in some detail, the
special case of Theorem 7 for Π = [0, 1]n and G = Zn yields the Fourier transform. For
this problem, the periodic boundary condition can be replaced by a Neumann condi-
tion, and spectral problems with Neumann conditions are standard material in textbooks
[19, 43]. For shifts that are not axis-parallel, the periodic boundary condition is known
as a Born-von Karman boundary condition [7]. We are not aware of extensions to
crystallographic groups. An introduction to the PDE techniques used in our proofs can
be found in Brezis [19]. The conditions imposed there are too restrictive for our problems,
however; a treatment general enough to cover all results we use is given by McLean [48].

In geometry. Thurston [e.g., 62] coined the term orbifold in the 1970s. Commonly cited
references include Bonahon and Siebenmann [16], Scott [54], Thurston [62]; Apanasov [6]
has a detailed bibliography. These all focus on general groups, however, for which the
theory is much harder than in our case. The quotient space structure of crystallographic
groups was already understood much earlier by the Göttingen and Moscow schools [65].
A readable introduction to isometry groups and their quotients is given by Bonahon [15].
The comprehensive account of Ratcliffe [53] is more demanding, but covers all results
needed in our proofs. Vinberg and Shvartsman [65] cover the geometric aspects of crys-
tallographic groups. Conway, Burgiel, and Goodman-Strauss [22] explain the geometry
of orbifolds heuristically, with many illustrations.

11 Some open problems

Our approach raises a range of further questions well beyond the scope of the present
paper, including in particular those concerning numerical and statistical accuracy. We
briefly discuss some aspects of this problem.

Linear representation. Suppose we represent a G-invariant continuous function f
by evaluating the generalized Fourier basis in Theorem 7 using the spectral algorithm
in Section 5.3. The algorithm returns numerical approximations ê1, ê2, . . . of the basis
functions. We may then expand f as

f ≈
∑m

i=1
ciêi .

There are three principal sources of error in this representation:
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1. The truncation error, since m is finite.

2. Any error incurred in computation of the coefficients ci.

3. The error incurred by approximating the actual basis functions ei by êi.

The truncation error (1) concerns the question how well the vector space span{e1, . . . , em}
approximates the space CG or L2(Π). This problem is studied in approximation theory.
Depending on the context, one may choose the first m basis vectors (a strategy called
“linear approximation” in approximation theory), or greedily choose thosem basis vectors
that minimize some error measure (“nonlinear approximation”), see DeVore [24]. Problem
(2) depends on the function f , and on how it is represented computationally. If f must
itself be reconstructed from samples, the coefficients are themselves estimators and incur
statistical errors.

The error immediately related to our method is (3), and for the method of Sec-
tion 5 depends on how well the graph Laplacian used in Section 5.3 approximates the
Laplacian ∆. This problem has been studied in a number of fields, including machine
learning in the context of dimensionality reduction [10] and numerical mathematics in the
context of homogenous Helmholtz equations [32], and is the subject of a rich literature
[11, 27, 28, 34, 41, 56]. Available results show that, as ε→ 0 in the ε-net, the matrix L
converges to ∆, where the approximation can be measures in different notions of conver-
gence, in particular pointwise and spectral convergence. The cited results all concern the
manifold case. We are not aware of similar results for orbifolds.

For the method of Section 9.5, the error depends largely on the choice of basis in RN
and the accuracy of the numerical integrals, as well as the orbifold map approximation
itself (see below). Error analysis of the Rayleigh-Ritz method has a long history, see, e.g.,
Weinberger [66, 67], Wendroff [68].

Nonlinear representation. If we define a G-invariant statistical or machine learn-
ing model on Rn by factoring it through an orbifold, one may ask approximation ques-
tions of a more statistical flavor: Suppose we define a class H = {hθ|θ ∈ T} of func-
tions hθ : RN → R on the embedding space RN , with some parameter space T . We then
define a class F of G-invariant functions on Rn as

F := {fθ|θ ∈ T} where fθ := hθ ◦ ρ .

Depending on the context, we may think of the functions fθ e.g., as neural networks or
regressors. The task is then to conduct inference, i.e., to compute a point estimate θ̂ of θ
(say by maximum likelihood estimation or empirical risk minimization), or to compute a
posterior on T in a Bayesian setup. Since H and F share the same parameter space, any
such inference task can be “pushed forward” forward to the embedding space, that is,

inference under F given x1, . . . , xn = inference under H given ρ(x1), . . . , ρ(xn)

The error can again be separated into components:

1. The statistical error associated with fitting {hθ|θ ∈ T}.
2. The “forward distortion” introduced by the map xj 7→ ρ(xj).

3. The “backward distortion” introduced by the map hθ 7→ hθ ◦ ρ.

Problem (1) reduces to the statistical properties of H, and depends on both the model
and the chosen inference method. Problem (2) and (3), however, raise a number of new
questions: The map ρ is, by Theorem 15, bijective (which means it does not introduce
identifiability problems) and continuous. As the proof of Proposition 23 shows, it also
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preserves density properties of certain function spaces, which can be thought of as a
qualitative approximation result. Quantitative results are different matter: To bound the
effect of transformations on statistical errors typically requires a stronger property than
continuity, such as differentiability or at least a Lipschitz property. In results on manifold
learning, the curvature of Ω often plays an explicit role. Orbifolds introduce a further
challenge, since smoothness properties fail at the tips and edges introduced by points
with non-trivial stabilizers. On the other hand, non-differentiabilities of crystallographic
orbifolds have lower-bounded opening angles [62]—note the tip of the cone in Figure 13,
for example, is not a cusp—so it may be possible to mitigate these problems.
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Appendix

The first three sections of this appendix provide mathematical background on isome-
tries (Appendix A), function spaces and smoothness (Appendix B), orbifolds (Appendix C),
and spectral theory (Appendix D). The proof of the Fourier representation is subdivided
into three parts: We first prove of the flux property, Proposition 28, in Appendix E, and
Theorem 30 on self-adjointness of the Laplacian in Appendix F. Using these results, we
then prove the Fourier representation in Appendix G. The proof of the embedding theo-
rem (Theorem 15) follows in Appendix H. Appendix I collects all proofs on kernels and
Gaussian processes.

A Background I: Isometries of Euclidean space

Isometries are invertible functions that preserve distance. To define an isometry be-
tween two sets V and W , both must be equipped with metrics, say dV and dW . A
map ϕ : X → Y is then an isometry if it is one-to-one and satisfies

dW (ϕ(v1), ϕ(v2)) = dV (v1, v2) for all v1, v2 ∈ V .

Since this implies ϕ is Lipschitz, isometries are always continuous. If W = V , then ϕ is
necessarily bijective. An isometry of Rn is a bijection ϕ : Rn → Rn that satisfies

dn(ϕx, ϕy) = dn(x, y) for all x, y ∈ Rn .

Identity (3) shows that every isometry can be uniquely represented as an orthogonal
transformation followed by a shift. Loosely speaking, an isometry may shift, rotate, or
flipM , but cannot change its shape or volume. Recall that a set G of functions Rn → Rn is
a group if it contains the identity map 1, and if ϕ, ψ ∈ G implies ϕ ◦ ψ ∈ G and ϕ−1 ∈ G.
The set of all isometries of Rn forms a group, called the Euclidean group of order n.

A.1. More on crystallographic groups

Representation by shifts and orthogonal transformations. Since every isometry
can be decomposed into an orthogonal transformation and a shift according to (3), every
crystallographic group G has two natural subgroups: One is the group

Go := {ϕ ∈ G |ϕ(x) = Ax for some A ∈ On} = G ∩On

of purely orthogonal transformations. This is an example of a point group, since all
its elements have a common fixed point (namely the origin). It is always finite: Fix any
x on the unit sphere in Rn. Then ϕ(x) is also on the sphere for every ϕ ∈ Go, since
Aϕ is orthogonal. However, discreteness requires there can only be finitely many such
points ϕ(x) on the sphere. The other is the group of pure shifts,

Gt := {ϕ ∈ G |ϕ(x) = x+ b for some b ∈ Rn} .

One can show there are linearly independent vectors b1, . . . , bn such that

Gt := {x 7→ x+ b | b = a1b1 + . . .+ anbn for a1, . . . , an ∈ Z} .

Thus, the generating set for a crystallographic group on Rn always includes n linearly
independent shifts.
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A.2. Equivalence to definitions in the literature

Our definition of a crystallographic group in Section 2 differs from those in the literature—
we have chosen it for simplicity, but must verify it is equivalent. There are two standard
definitions of crystallographic groups: Perhaps the most common one, used for example
by Thurston [62], is as a discrete group of isometries for which Rn/G is compact in the
quotient topology. Another is as a group of isometries of Rn such that Rn/G has finite
volume when identified with a subset of Euclidean space [65]. These are known to be
equivalent [65, Corollary of Theorem 1.11]. Our definition is equivalent to both:

Lemma 32. A group G is crystallographic in the sense of Section 2 if and only if it is a
discrete group of isometries of Rn such that Rn/G is compact.

Proof. If G is crystallographic in our sense, it is discrete (see Section 2), and Rn/G is
compact by Fact 4, so it satisfies the second definition above. Conversely, if G satisfies
Thurston’s definition, it tiles Rn with some set Π. This set can always be chosen as a
convex polytope [65, Theorem 2.5], so G is crystallographic in our sense.

We note only en passe that there are tilings that cannot be described by a group
of isometries. That is not at all obvious—the question was one of Hilbert’s problems—
but counter-examples of such tilings (with non-convex polytopes) are now known [see 30,
Chapter 32].

B Background II: Function spaces

This section briefly reviews concepts from functional analysis that play a role in the
proofs. Helpful references include Aliprantis and Border [3], Brezis [19] on general func-
tional analysis and Banach spaces, Adams and Fournier [2], Brezis [19] on Sobolev spaces,
Steinwart and Christmann [59] on reproducing kernel Hilbert spaces, and Aliprantis and
Burkinshaw [4] on compact operators.

B.1. Spans and their closures

Consider a Banach space V and a subset F ⊂ V . The span of F is the set

span(F) = {∑i≤n cifi |n ∈ N, ci ∈ R, fi ∈ F}

of finite linear combinations of elements of F . Since function spaces are typically infinite-
dimensional, we also consider infinite linear combinations. These are defined with respect
to a norm ∥ • ∥:

f =
∑

i∈N cifi means ∥f −∑
i≤n cifi∥ → 0 as n→ ∞ .

In other words, to get from the span to the set of infinite linear combinations, we take
the closure in the relevant norm:

{∑i∈N cifi | ci ∈ R, fi ∈ F} = span(F)

B.2. Bases

A Hilbert space H is a Banach space whose norm is induced by an inner product ⟨ • , • ⟩H,
that is,

∥f∥H =
√

⟨f, f ⟩H .
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A sequence f1, f2, . . . in a Hilbert space is an orthonormal system if ⟨fi, fj ⟩ = δij ,
where δ is the Kronecker symbol (the indicator function of {i = j}). An orthonormal
system is complete if its span is dense in H, that is, if

H = span{f1, f2, . . .} ,

where the closure is taken in the norm of H. A complete orthonormal system is also called
an orthonormal basis. If f1, f2, . . . is an orthonormal basis, H can be represented as

H =
{∑

i∈N cifi (convergence in ∥ • ∥H) | c1, c2, . . . ∈ R with
∑

i c
2
i <∞

}
.

B.3. L2 spaces

For any M and a σ-finite measure ν on M , the L2-scalar product and pseudonorm are

⟨f, g ⟩L2(ν)
:=

∫
M
f(x)g(x)ν(dx) and ∥f∥L2(ν)

:=
√
⟨f, f ⟩L2(ν)

.

To make ∥ • ∥L2
a norm, one defines the equivalence classes [f ] := {g | ∥f − g∥L2

= 0} of
functions identical outside a null set, and the vector space

L2(ν) := {[f ] | f :M → R and ∥f∥L2
<∞}

of such equivalence classes, which is a separable Hilbert space. Although its elements
are not technically functions, we use the notation f ∈ L2 rather than [f ] ∈ L2. We
write L2(Rn) and L2(Π) respectively if ν is Euclidean volume on Rn or on Π. See Alipran-
tis and Border [3] or Brezis [19] for background on L2 spaces.

B.4. Reproducing kernel Hilbert spaces

Consider a set M ⊆ Rn. A symmetric positive definite function κ :M ×M → R is called
a kernel. A kernel defines a Hilbert space as follows: The formula

⟨∑i aiκ(xi, • ),
∑

j bjκ(yj , • )⟩H :=
∑

i,j aibiκ(xi, yj) for ai, bj ∈ R and xi, yj ∈M

defines a scalar product on span{κ(x, • )|x ∈M}. The closure

H := span{κ(x, • )|x ∈M} with respect to the norm ∥f∥κ :=
√

⟨f, f ⟩H

is a real, separable Hilbert space with inner product ⟨ • , • ⟩H, called the reproducing kernel
Hilbert space or RKHS of k. Every RKHS satisfies the “reproducing property”

(28) f(x) = ⟨f, κ(x, • )⟩H for all f ∈ H and all x ∈M .

In particular, κ(x, y) = ⟨κ(x, • ), κ(y, • )⟩H. If f1, f2, . . . is an orthonormal basis of H, then

(29) κ(x, y) =
∑

i∈N fi(x)fi(y) for all x, y ∈M .

If H is an RKHS, the map f 7→ f(x) is continuous for each x ∈M . Conversely, if H is
any Hilbert space of real-valued functions on M , and if the maps are continuous on H for
all x ∈M , there is a unique kernel satisfying (28) that generates H as its RKHS.
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B.5. Spaces of continuous functions

For any setM , the vector spaceC(M) of continuous functions equipped with the norm ∥ • ∥sup
is a Banach space. It is separable ifM is compact [3]. In the proof of the spectral theorem,
we must also consider the set

Cu(M) := {f ∈ C(M) | f uniformly continuous} ,

and the compactly supported functions

Cc(M) = {f ∈ C(M) | f = 0 outside a compact set K ⊂M} .

We recall some basic facts from analysis that are used in the proofs:

Fact 33 (Aliprantis and Border [3]). (i) Every continuous function on a compact set is
uniformly continuous. (ii) Every uniformly continuous function f on a set M ⊆ Rn has
a unique continuous extension f̄ to the closure M . Its value at a boundary point x ∈ ∂M
is given by f̄(x) = limj(xj) for any sequence of points xi ∈M with xi → x.

B.6. Smoothness spaces

Smoothness spaces quantify the smoothness of functions in terms of a norm. Two types
of such spaces play a role in our results, namely Ck spaces and Sobolev spaces. Both
define smoothness via derivatives: We denote partial derivatives as

∂αf :=
∂|α|f

∂x
α1
1 · · · ∂xαn

n
where α = (α1, . . . , αn) ∈ Nn and |α| := α1 + . . .+ αn .

If we are taking a derivative with respect to the ith coordinate, we use a subscript,

∂if :=
∂f

∂xi

The set Ck of k times continuously differentiable functions can then be represented as

Ck(M) := {f ∈ C(M) | ∂αf ∈ C(M) whenever |α| ≤ k} where k ∈ N ∪ {0,∞} .

Since that means the norm of C is applicable to ∂αf , we can define

∥f∥Ck := ∥f∥sup +
∑

|α|≤r ∥∂
αf∥sup .

It can be shown that this is again a norm, and that it makes Ck a Banach space [19]. Ck

functions are uniformly continuous, and even very smooth functions approximate elements
of L2 to arbitrary precision:

Fact 34. Let M ⊆ Rn be a set. (i) If f ∈ Ck(M) for k ≥ 1, then f and its first k − 1
derivatives are uniformly continuous. (ii) The set Cc(M) ∩C∞(M) is dense in L2(M).

TheCk norms measure smoothness in a worst-case sense. To measure average smooth-
ness instead, we can replace the sup norm by the L2(M)-norm: The function

∥f∥Hk := ∥f∥L2
+

∑
|α|≤k ∥∂

αf∥L2
,

is a norm, called the Sobolev norm of order k. It makes the set

Hk(M) := {f ∈ L2(M) | ∥f∥Hk <∞} = {f ∈ L2(M) | ∂αf ∈ L2(M)}
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a Banach space, and even a Hilbert space, called the Sobolev space of order k. We will
only work with the spaces H1(M). A inner product on H1(M) is given by

⟨f, g ⟩H1
:= ⟨f, g ⟩L2

+
∑

i≤n ⟨∂if, ∂ig ⟩L2
.

The Sobolev norms are stronger than the L2 norm: We have

∥f∥L2(M) ≤ cM∥f∥H1(M) for all f ∈ L2(M) and some cM > 0 .

Consequently, the approximation property in Fact 34(ii) does not necessarily hold in the
Sobolev norm. Whether it does depends on whether the geometry of the domain M is
sufficiently regular:

Fact 35. Let Γ be a Lipschitz domain (such as a convex polytope). Then Cc(Γ) ∩C∞(Γ)
is dense in H1(Γ◦).

A readable introduction to Sobolev spaces is given by Brezis [19]. The monographs of
Adams and Fournier [2] and Maz’ya [47] are comprehensive accounts.

B.7. Inclusion maps

If V ⊂W are two sets, the inclusion map or injection map ι : V ↪→W is the restric-
tion of the identity on W to V . Loosely speaking, ι maps each point v in V to itself,
but v is regarded as an element of V and its image ι(v) as an element of W . This dis-
tinction is not consequential if V and W are simply sets without further structure, but if
both are equipped with topologies, the properties of ι encode relationships between these
topologies.

Continuous inclusions. Suppose both V and W are equipped with topologies. Call
these the V - and W -topology. The restriction of the W -topology to V , often called the
relative W -topology, consists of all sets of the form A ∩ V , where A ⊂W is open in W .
Since A ∩ V is precisely the preimage ι−1A, and continuity means that preimages of open
sets are open, we have

ι continuous ⇐⇒ the V -topology is at least as fine as the restricted W -topology.

Inclusions between Banach spaces. Let T : V →W be a map from a Banach space V
to another Banach space W . If such a map is linear, it is called a linear operator. It is
continuous if and only if it is bounded,

(30) sup
v∈V

∥T (v)∥W
∥v∥V

< ∞ or equivalently ∥T (v)∥W ≤ c∥v∥V for some c > 0 .

If V is a vector subspace of W , then ι is automatically linear, so it is continuous iff

∥v∥W = ∥ι(v)∥W ≤ c∥v∥V .

Saying that ι is continuous is hence another way of saying that ∥ • ∥V is stronger than ∥ • ∥W .
If V and W are smoothness spaces, continuity of ι can hence often be interpreted as the
elements V being smoother than those of W . A set A ⊂ V is norm-bounded if

supv,v′∈A ∥v − v′∥V < ∞ .

A linear operator between Banach spaces is compact if the image T (A) of every norm-
bounded set A ⊂ V has compact closure in W [4]. The inclusion is hence compact iff

A ⊂ V is bounded in ∥ • ∥V =⇒ the ∥ • ∥W -closure of A in W is compact.
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If V and W are smoothness spaces, the inclusion is often compact if V is in some suitable
sense smoother than W . The well-known Arzela-Ascoli theorem [3], for example, can
be interpreted in this way. For Sobolev spaces, a family of results known as Rellich-
Kondrachov theorems [2] shows that, under suitable conditions on the domain, inclusions
of the form Hk+m ↪→ Hk and Hk+m ↪→ Ck exist and are compact if the difference m in
smoothness is large enough. The following version is adapted to our purposes:

Lemma 36. Let Π be a polytope and M ⊆ Π◦ an open set. Then Hk+1(M) ⊂ Ck(M)
for k ≥ 0, and the inclusion map is compact.

Proof. Since Π is a polytope, it has the strong local Lipschitz property in the terminol-
ogy of Adams and Fournier [2, 4.9]. By the relevant version of the Rellich-Kondrachov
theorem, that implies that the set of restrictions of functions in Hk+1(Π◦) from Π◦ to M
is a compactly embedded subset of Ck(M) [2, 6.3 III]. The image of Hk+1(Π◦) under the
projection f 7→ f |M is precisely Hk+1(M) [48, Chapter 3].

C Background III: Orbifolds

In this section, we give a rigorous definition of orbifolds and review those results from
the literature required for our proofs. For more background, see [15, 16, 23, 54, 62, 65].
Bonahon [15] provides an accessible introduction to gluing and quotient spaces. Most
results below are adapted from the monograph of Ratcliffe [53]. Ratcliffe’s formalism is
very general and can be simplified significantly for our purposes. We state results here in
just enough generality to apply to crystallographic groups.

C.1. Motivation: Manifolds

To motivate the somewhat abstract definition of an orbifold, we start with that of a
manifold, and then generalize to orbifolds below. Recall that a set M is a manifold if its
topology “locally looks like Rn”. This idea can be formalized in a number of ways. We
first give a definition using a metric, which is of the form often encountered in machine
learning and statistics. We then generalize the metric definition to a more abstract one
that brings us almost to orbifolds as we see in the following section.

Metric definition. Let M be a set equipped with a metric dM . We then call M
a manifold if, for every u ∈M , we can choose a sufficiently small ε(u) > 0 such that
the dM -ball around u of radius ε is isometric to a dn-ball of the same radius in Rn. There
is, in other words, an isometry

θu : Bε(u)(u, dM ) → Bε(u)(θu(u), dn) ⊂ Rn for each u ∈M .

For example, the circle, equipped with the geodesic distance, is a manifold in the sense of
this definition: It is not possible to map the entire circle isometrically to a subset of R.
However, the ball Bε(u)(u, dM ) around a point u is a semiarc, drawn in black below:

θu

u
θu(u)

R
M
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This semiarc can be mapped isometrically to an open interval in R, and the same is true
for the ball around any other point.

Coherence property. Before we generalize this definition, we observe that it implies
a coherence property of the maps θu. Suppose the balls around two points v and w
in M overlap, and u is in both balls. We can then find a sufficiently small ε > 0 such
that Bε(u, dM ) is completely contained in both balls. Since both maps θv and θw are
applicable to the points in this ball, the restrictions

θv : Bε(u, dM ) → Bε(θv(u), dn) and θw : Bε(u, dM ) → Bε(θw(u), dn)

are both isometries. The points x = θv(u) and y = θw(u) are images under different maps,
and the balls around them are not required to overlap. Both are, however, Euclidean balls
of the same radius. If ψ = y − x is the (unique) shift of Rn that maps x to y, we hence
have

Bε(θv(u), dn) = ψBε(θw(u), dn) .

Now observe that ψx = y = θwθ
−1
v (x). There is, in summary, a shift ψ such that

ψx = y and θwθ
−1
v (z) = ψz for all z in the ball Bε(x, dn) .

The definition hence implies that the map θwθ
−1
v , often called a coordinate change in

geometry, behaves like a shift on a sufficiently small neighborhood. When we drop the
metric from the definition below, this property no longer arises automatically, and we
must make it an explicit requirement.

Abstract definition. Let F be a group of isometries of Rn. The next definition gener-
alizes the one above in two ways: It does not use a metric, and instead of requiring that
coordinate changes look locally like shifts, it requires they look locally like elements of F.
A Hausdorff space M is a F-manifold if:

1. There is a family {Ui}i∈I of open connected subsets of M that cover M , i.e., each
point of M is in at least one set Ui. The set I is an arbitrary index set.

2. For each i ∈ I, there is a homeomorphism θi : Ui → Vi of Ui and an open set Vi ⊂ Rn.

3. If two sets Ui and Uj overlap, the maps θi and θj cohere as follows: If x and y are
points in Rn that satisfy

θjθ
−1
i (x) = y ,

then there is a transformation ϕ ∈ F such that

ψx = y and θ−1
j θi(z) = ψz for all z in a neighborhood of x .

We recover the metric definition if we makeM a metric space (which is always Hausdorff),
set I =M , choose Ui as the ball around i = u (which is always connected), and θi as the
isometry θu (isometries are homeomorphisms).

C.2. Orbifolds

To capture the properties of the quotient Rn/G, the definition of a manifold is in general
too restrictive. That follows from the following result:

Fact 37 (Bonahon [15] Theorem 7.8). Let G be a crystallographic group that tiles Rn
with a convex polytope. For every point x ∈ Rn, there exists an ε > 0 such that the open
metric ball BdG(G(x), ε) in the quotient space Rn/G and the quotient Bdn(x, ε)/Stab(x)
of the corresponding open ball in Rn are isometric.
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We note this is precisely the metric definition of a manifold above if Stab(x) = {1}
for all points in Rn/G. It follows that, for a crystallographic group G,

Rn/G is a manifold ⇐⇒ no element of G has a fixed point.

Let F be a group of isometries of Rn. An F-orbifold is a Hausdorff space M with the
following properties:

1. There is a family {Ui}i∈I of open connected subsets of M that cover M , i.e., each
point of M is in at least one set Ui.

2. For each i ∈ I, there is a discrete group Fi of isometries of Rn and a homeomorphism
θi : Ui → Rn/Fi of Ui and an open subset of the quotient space Rn/Fi.

3. If two sets Ui and Uj overlap, the maps θi and θj cohere as follows: If x and y are
points in Rn, and the corresponding points Fix ∈ Rn/Fi and Fjy ∈ Rn/Fj satisfy

θjθ
−1
i (Fix) = Fjy ,

then there is a transformation ϕ ∈ F such that

ψx = y and θ−1
j θi(Fiz) = Fj(ψz) for all z in a neighborhood of x .

The family {θi}i∈I is called an atlas. Clearly, an F-orbifold is an F-manifold if and only
if each Fi is the trivial group Fi = {1}.

Lemma 38. If G is a crystallographic group that tiles Rn with a convex polytope Π, then
Rn/G is a G-orbifold. At each point i = G(x), the group Fi is the stabilizer Stab(x).

This lemma is folklore in geometry—see e.g., Bonahon [15], Cooper et al. [23], Vinberg
and Shvartsman [65] for results that are phrased differently but amount to the same. We
give a proof here only to match our specific choices of definitions to each other.

Proof. Let Π̃ be a transversal. We choose I = Rn/G, so each i ∈ I is the orbit G(x)
of some point in Rn, and hence of a unique point x ∈ Π̃. By Fact 37, there is hence
a map θx with θx(G(x)) = x that isometrically maps a ball BdG(G(x), ε) with suitable
radius to Bdn(x, ε)/Stab(x). We hence set Fi = Stab(x), which is a finite subgroup of
the discrete group G, and hence discrete. What remains to be shown is the coherence
property. Suppose x and y are points in Rn with trivial stabilizers. If θyθ

−1
x (x) = y,

then x and y are on the same orbit, so there is indeed a map ψ ∈ G with ψx = y. The
coherence property then follows by the same argument as for metric manifolds above.
If the stabilizers are non-trivial, the same holds if points are substituted by their orbits
under stabilizers.

Example 39. Consider again the triangle Π and rotation ϕ in Figure 13. Here, the
stabilizer of the center of rotation x is Stab(x) = {1, ϕ, ϕ2}. The metric ball around the
point i = G(x) on the orbifold (the tip of the cone) is a smaller cone:

i = G(x)

x

θi

x

isomorphic in
Rn/Stab(x)
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Its image under θi can be identified with the intersection of Π with a Euclidean ball
around x. Since Π and its image Stab(x)Π under the stabilizer—the equilateral triangle
on the right—are indistinguishable in Rn/Stab(x), that corresponds to the quotient of a
metric ball in the plane.

C.3. Path metrics

An orbifold as defined above is a topological space. To work with the gluing results stated
below, we must know it is also a metric space, and that this space is complete. Fact 40
shows that that is true. Before we state the fact, we briefly describe how to construct
the relevant metric, which is the standard metric on orbifolds. Our definition is again
adapted from that of Ratcliffe [53]. Bonahon [15] offers an accessible introduction to this
type of metric.

Intuitively, the metric generalizes the geodesic on a smooth surface, by measuring
the length of the shortest curve between two points. Formally, a curve connecting two
points ω1 and ω2 in M is a continuous function

γ : [a, b] ⊂ R → X such that γ(a) = ω1 and γ(b) = ω2 .

To define the length ∥γ∥ of γ, first suppose ω1 and ω2 are in the same set Ui, and define

∥γ∥ := sup {∑j≤k dFi
(θi ◦ γ(tj−1), θi ◦ γ(tj))) | a = t0 < t1 < . . . < tk = b for k ∈ N} ,

that is, the supremum is taken over the sequences (t0, . . . , tk). In words: For each
tj ∈ [a, b], the point γ(tj) lies on the curve γ in M . By choosing a sequence t0, . . . , tk
as above, we approximate the curve by k line segments (γ(tj−1), γ(tj)), and then approx-
imate the length of γ by summing the lengths of these segments. Since each line segment
lies in M , and we have no tool to measure distance in M , we map each point γ(tj) on the
curve to a point θi(γ(tj)) in Rn/Fi, where we know how to measure distance using dFi

.
We then record the length of the piece-wise approximation as the sum of lengths of the
segments. The length ∥γ∥ is the supremum over the lengths of all such approximations.

If there is no set Ui containing both points, one can always subdivide [a, b] into finitely
many segments [tj−1, tj ] such that every pair γ(tj−1) and γ(tj) of consecutive points is in
in some set Ui (see [53]). One then defines

∥γ∥ :=
∑

i≤k ∥γ|[ti−1,ti]
∥ ,

and it can be shown that ∥γ∥ does not depend on the choice of subdivision.

Fact 40 (Ratcliffe [53] Lemma 1 of §13.2, Theorems 13.2.7 and 13.3.8). If M is an F-
orbifold, any two points in M can be connected by a curve of finite length. The function

dpath(ω1, ω1) := inf {∥γ∥ | γ is a curve connecting ω1 and ω2 in M }

is a metric on the set M , and metrizes the Hausdorff topology of M . The metric space
so defined is complete.

C.4. Orbifolds constructed by abstract gluing

Let S1, . . . , Sk be the facets of Π. A side pairing is a finite set S = {ψ1, . . . , ψk} of
isometries of Rn if, for each i ≤ k, there is a j ≤ k such that

(i) ψi(Sj) = Si (ii) ψi = ψ−1
j (iii) Π ∩ ψiΠ = Si .

The definition permits i = j. A crystallographic group is determined by a side pairing:

45



Fact 41 (Bonahon [15] Theorem 7.11). If a crystallographic group G tiles with a convex
polytope Π, the tiling is exact, and S is a side pairing for Π and G, the group generated
by S is G.

The side pairing defines an equivalence relation ≡ on points x, y ∈ Π, namely

x ≡ y :⇐⇒ ψix = y for some i ≤ k .

Let M be the quotient space M := Π/ ≡, equipped with the quotient topology, that is,

A ⊂M open :⇔ {x ∈ Π| equivalence class of x is in A} is open set in Π

We then refer to M as the quotient obtained by abstract gluing from Π and S. We
will be interested in a specific type of side pairing, called a subproper side pairing. The
precise definition is somewhat involved, and can be found in §13.4 of Ratcliffe [53]. We
omit it here, since we will see that all side pairings relevant to our purposes are subproper.

Fact 42 (Ratcliffe [53] Theorem 13.4.2). Let F be a group of isometries of Rn and Π a
convex polytope. Let M be the metric space obtained by abstract gluing from Π and a
subproper F-side pairing. Then M is an F-orbifold. The natural inclusion Π◦ ↪→M , i.e.,
the map that takes each point x ∈ Π◦ to its ≡-equivalence class, is continuous.

For the next result, recall the definition of dG from Fact 3. We define a metric dS for
a group S analogously, by substituting S for G.

Fact 43 (Ratcliffe [53] Theorem 13.5.3). Let M be the orbifold in Fact 42, and S be the
group generated by all maps in the side pairing. If M is a complete metric space, the
natural inclusion map Π ↪→M induces an isometry from M to (Rn/S, dS).

The final result on orbifolds we need gives a precise statement of the idea that the
set of points around which an orbifold does not resemble a manifold is small. The next
definition characterizes those points around which the manifold property breaks down
as having order > 1: Consider a point z ∈M . Then we can find some x ∈ Rn that
corresponds to z: We know that z ∈ Ui for some i, and hence ϕiz = Fix in the quotient
space Rn/Fi. The order of z ∈M is the number of elements of Fi that leave x invariant
(formally, the order of the stabilizer of x in Fi). It can be shown that this number does
not depend on the choice of i, so each z ∈M has a uniquely defined order.

Fact 44 (Ratcliffe [53] Theorem 13.2.4). If M is an F-orbifold, the set of points of order
1 in M is an open dense subset of M . The set of points of order > 1 is nowhere dense.

C.5. Topological dimension

The notion of dimension we have used throughout is the algebraic dimension dimA of
a set A in a vector space (see Section 2). For the proof of the embedding theorem,
we also need another notion of dimension that does not require vector space structure,
known variously as topological dimension, covering dimension, or Lebesgue dimension.
The definition is slightly more involved: Consider a topological space X. An open cover
of X is a collection A of open sets in X that cover X, that is, each point of X is in at
least one of the sets. The order of an open cover is

order(A) := sup { number of elements of A containing x |x ∈ X} .
The topological dimension DimX of X is the smallest value m ∈ N ∪ {∞} such that,
for every open covering B of X, there is an open covering A with order(A) = m+ 1 such
that every set of B contains a set of A.
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Fact 45 ([50, 3.2.7]). The topological dimension of Euclidean space equals its algebraic
dimension, DimRn = dimRn = n, and any closed metric balls B ⊂ Rn has DimB = n.

In general, however, the topological dimension of a set A ⊂ Rn may differ from its
dimension dimA as defined in Section 2 (as the algebraic dimension of the linear hull), and
even the proof that DimRn = n is not entirely trivial. Munkres [49] provides a readable
overview. The reason why topological dimension is of interest in our context is the
following classical result. Recall that, given topological spaces X and Y , an embedding
of X into Y is an injective map X → Y that is a homeomorphism of X and its image.

Fact 46 ([49, 50.5]). Every compact metrizable space X with DimX <∞ can be embedded
into R2DimX+1.

We also collect two additional facts for use in the proofs. Recall that a function is
called closed if the image of every closed set is closed.

Fact 47 ([49, 50.2] and [50, 9.2.10]). (i) If X is a topological space and Y1, . . . , Yk are
closed and finite-dimensional subspaces, then

X = Y1 ∪ . . . ∪ Yk implies DimX = max
i

DimYi .

(ii) Let f : X → Y be a continuous, closed and surjective map between metric spaces. If
|f−1y| ≤ m+ 1 for some m ∈ N ∪ {0} and all y ∈ Y , then

DimX ≤ DimY ≤ DimX +m .

D Background IV: Spectral theory

The proof of the Fourier representation draws on the spectral theory of linear operators,
and we now review the relevant facts of this theory. We are interested in an operator A
(think −∆) defined on a space V (think HG) which is contained in a space W (think L2).
If V approximates L2 sufficiently well, and if A is self-adjoint on V , a general spectral
result guarantees the existence of an orthonormal basis for L2 consisting of eigenfunctions
(Fact 48). To apply the result to the negative Laplacian, we must extend ∆ to an operator
onHG (since ∆ is defined on twice differentiable functions, and elements ofHG need not be
that smooth). Fact 49 shows that is possible. Once we have obtained the eigenfunctions,
there is a generic way to show they are smooth (Fact 50).

D.1. Spectra of self-adjoint operators

Spectral decompositions of self-adjoint operators have been studied widely, see Brezis
[19], McLean [48] for sample results. We use the following formulation, adapted from
Theorem 2.37 and Corollary 2.38 of McLean [48].

Fact 48 (Spectral decomposition [48]). Let Π be a polytope, and V a closed subspace
of H1(Π◦). Require that the inclusion maps

(31) V ↪→ L2(Π
◦) ↪→ V ∗

are both continuous and dense, and the first inclusion is also compact. Let A : V → V ∗

be a bounded linear operator that is self-adjoint on V and satisfies

(32) ⟨Af, f ⟩V ≥ cV ∥f∥2V − cL∥f∥2L2
for some cV , cL > 0 and all f ∈ V .
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Then there is a countable number of scalars

λ1 ≤ λ2 ≤ . . . with λi
i→∞−−−→ ∞

and functions ξ1, ξ2, . . . ∈ V such that

Aξi = λξi for all i ∈ N .

The functions ξi form an orthonormal basis for V . For each v ∈ V ,∑
i≤m λi ⟨v, ξi ⟩ ξi

m→∞−−−−→ Av

holds in the dual V ∗. If A is also strictly positive definite, then λ1 > 0.

If the inclusions in (48) are continuous and dense, L2 is called a pivot space for V .
See Remark 3 in Chapter 5 of Brezis [19] for a discussion of pivot spaces.

D.2. Extension of Laplacians to Sobolev spaces

Recall that the Laplace operator ∆ on a domain Γ is defined on twice continuously
differentiable functions. It can be extended to a continuous linear operator on H1(Γ◦),
provided the geometry of Γ is sufficiently regular. That is the case if Γ is a Lipschitz
domain, which loosely speaking means it is bounded by a finite number of Lipschitz-
smooth surfaces. Since a precise definition (which can be found in McLean [48]) is rather
technical, we omit details and only note that every polytope is a Lipschitz domain [48, p
90].

Fact 49. Let Γ be a Lipschitz domain, and denote by H1(Γ◦)∗ the dual space of H1(Γ◦).
There is a unique linear operator Λ : H1(Γ◦) → H1(Γ◦)∗ that extends the Laplace operator.
This operator is bounded on H1(Γ◦).

D.3. Smoothness of eigenfunctions

One hallmark of differential operators is that their eigenfunctions tend to be very smooth.
The sines and cosines that make up the standard Fourier basis on the line are examples.
Intuitively, that is due to the fact that the Laplacian is a second-order differential operator,
and “removes two orders of smoothness”: If ∆f is in Ck, then f must be in Ck+2. Since
an eigenfunction appears on both sides of the spectral equation

−∆ξ = λξ ,

one can iterate the argument: If ξ is in C, it must also be in C2, hence also in C4, and
so forth. This argument is not immediately applicable to the functions ξ constructed in
Fact 48 above, since it does not guarantee the functions to be in C2. It only shows they
are in V , which in the context of differential operators (and specifically in the problems
we study) is typically a Sobolev space. Under suitable conditions on the domain, however,
one can show that argument above generalizes to Sobolev space, at least on certain open
subsets. The following version is again adapted to our problem from a more general result.

Fact 50 ([48, 4.16]). Let Π be a polytope and M an open set such that M ⊂ Π◦. Let
Λ be the extension of the Laplace operator guaranteed by Fact 49. Suppose f ∈ H1(M)
and k ∈ N ∪ {0}. Then Λf = g on M for g ∈ Hk(M) implies f ∈ Hk+2(M).
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E Proofs I: The flux property

This and the following two sections comprise the proof of Theorem 7, the Fourier repre-
sentation. In this section, we prove the flux property of Proposition 28.

E.1. Tools: Subfacets

We next introduce a simple geometric tool to deal with non-exact tilings: Theorem 15
assumes the tiling is exact, but the the flux property and the Fourier representation make
no such assumption. Although they do not use a gluing construction explicitly, they use
the periodic boundary condition (6), which matches up points on the boundary ∂Π as
gluing does. Absent exactness, that requires dealing with parts of facets. We call each
set of the form

σ := (Π ∩ ϕΠ)◦ for some ϕ ∈ G and σ ̸= ∅

a subfacet of Π. Let Σ be the (finite) set of subfacets of Π. Whereas the division of ∂Π
into facets is a property of the polytope that does not depend on G, the subfacets are a
property of the tiling.

Example 51. Consider an edge of a rectangle Π ⊂ R2. Suppose ϕ is a 180◦ rotation
around the center x of the edge, as shown on the left:

x x

facet

subfacet subfacet

Then ϕ maps the facet to itself, and maps the point x to itself, but no other point is
fixed. In this case, x divides the interior of the facet into two subfacets (right). If ϕ is
instead a reflection about the same edge, each point on the edge is a fixed point, and the
entire interior of the edge is a single subfacet. Another example of a subfacet is the edge
segment marked in Figure 12/left.

Lemma 52. The subfacets are convex (n− 1)-dimensional open subsets of ∂Π, and their
closures cover ∂Π. In particular,

voln−1(σ) > 0 for all σ ∈ Σ and
∑

σ∈Σ voln−1(σ) = voln−1(∂Π) .

Each subfacet is mapped by G to exactly one subfacet, possibly itself: For each σ ∈ Σ,

ϕσ(σ) ∈ Σ for one and only one ϕσ ∈ G {1} ,

where ϕσ(σ) = σ if and only if σ contains a fixed point of ϕσ.

Proof of Lemma 52. Each subfacet is by definition of the form σ = (Π ∩ ψΠ)◦, for some
ψ ∈ G. Since G(Π) is a tiling, Π and ψΠ are the only tiles intersecting σ. We hence have

σ ∩ ϕ−1
σ Π ̸= ∅ for one and only one ϕσ ∈ G {1} ,

namely for ϕσ = ψ−1. Since the set Π ∩ ϕ−1
σ Π is the intersection of two facets, and hence

of two convex sets, it is convex. By the definition of subfacets, its relative interior σ is
non-empty. That makes σ a (n− 1)-dimensional, convex, open subset of ∂Π.

1◦ Volumes. Since σ is open in n− 1 dimensions,

voln−1(σ) > 0 .
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The definition of a tiling implies each boundary point x ∈ ∂Π is on the facet of some
adjacent tile ϕΠ. It follows that

∂Π = ∪ϕ∈G∖{1}Π ∩ ϕΠ = ∪σ∈Σ σ .

Since distinct subfacets do not intersect, applying volumes on both sides shows

voln−1(∂Π) =
∑

σ∈Σ voln−1(σ) .

2◦ Each subfacet maps to exactly one subfacet. We have already noted that σ intersects
only the tiles Π and ϕ−1

σ Π. Since ϕ−1
σ Π is adjacent to Π, so is ϕσΠ. That implies

ϕ(σ) = (Π ∩ ϕσΠ)◦, and hence

ϕσ(σ) ∈ Σ and σ ∩ ϕ−1Π = ∅ if ϕ ̸= 1, ϕσ .

Thus, σ maps to ϕσ and vice versa, and neither maps to any other subfacet.

3◦ Fixed points. We know that σ and ϕσ(σ) are either identical or disjoint. Suppose first
that σ ̸= ϕσ(σ). Then

ϕ−1
σ Π ̸= ϕσΠ and hence ϕσ(σ) ∩ σ = ∅ ,

so ϕσ has no fixed points in σ. On the other hand, suppose ϕσ(σ) = σ. Then the restriction
of ϕσ to the closure σ̄ is a continuous map σ → σ from a compact convex set to itself.
That implies, by Brouwer’s theorem [3, 17.56], that the closure σ contains at least one
fixed point, and we only have to ensure that at least one of these fixed points is in the
interior σ. But if the boundary ∂σ contains fixed points and σ does not, then ϕσ(σ) ̸= σ
since ϕσ is an isometry, which contradicts the assumption. In summary, we have shown
that ϕσ(σ) = σ if and only if σ contains a fixed point.

E.2. Proof of the flux property

To establish the flux property in Proposition 28, we first show how the normal vector NΠ

of the boundary of a tile Π transforms under elements of the group G.

Lemma 53 (Transformation behavior of normal vectors). If a crystallographic group
tiles Rn with a convex polytope Π, then

(33) AϕNΠ(x) = −NΠ(ϕx) whenever x, ϕx ∈ Π .

Proof. If ϕΠ is a tile adjacent to Π, its normal vector NϕΠ satisfies

NΠ(y) = −NϕΠ(y) if y ∈ Π ∩ ϕΠ .

Since x ∼ ϕx holds, x is on at least one facet S of Π, and ϕx is hence on the facet ϕS
of ϕΠ. If N is a normal vector of S (exterior to Π), then AϕN is a normal vector of ϕS
(exterior to ϕΠ). That shows

NϕΠ(ϕx) = AϕNΠ(x) if x, ϕx ∈ Π .

In summary, we hence have AϕNΠ(x) = −NΠ(y) whenever x and ϕx are both in Π.

Proof of Proposition 28. 1◦ Let σ be a subfacet. Since NΠ is constant on σ, we define
the vectors

NΠ(σ) := NΠ(x) for any x ∈ σ and I(σ) :=
∫
σ
F (x)voln−1(dx) .
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By Lemma 52, the subfacets cover ∂Π up to a null set. We hence have∫
∂Π
F (x)TNΠ(x)voln−1(dx) =

∑
σ∈S

∫
σ
F (x)TNΠ(x)voln−1(dx) =

∑
σ∈S N(σ)TI(σ) .

We must show this sum vanishes.

2◦ If ϕσ ∈ Π, the ϕ-invariance of voln−1 and condition (20) imply

I(ϕσ) =
∫
ϕσ
F (x)voln−1(dx) =

∫
σ
F (ϕ(x))voln−1(dx)

= Aϕ

∫
σ
F (x)voln−1(dx) = AϕI(σ) .

Lemma 53 implies AϕNΠ(σ) = −NΠ(ϕσ) for ϕσ ⊂ Π ∩ ϕΠ. That shows

NΠ(ϕσ)
TI(ϕσ) = −(AϕNΠ(σ))

TAϕI(σ) = −NΠ(σ)
TAT

ϕAϕI(σ) = −NΠ(σ)
TI(σ) ,

since AT
ϕ = A−1

ϕ . It follows that

NΠ(σ)
TI(σ) + NΠ(ϕσ)

TI(ϕσ) = 0 and even NΠ(σ)
TI(σ) = 0 if σ = ϕσ .

3◦ By Lemma 52, the set Σ of subfacets can be sorted into pairs (σ, ϕσσ) such that no
subfacet occurs in more than one pair (though σ = ϕσσ is possible). It follows that

∑
σ∈ΣNΠ(σ)

TI(σ) =
1

2

∑
σ∈Σ

(
NΠ(σ)

TI(σ) +NΠ(ϕσσ)
TI(ϕσσ)

)
= 0

as we set out to show.

F Proofs II: The Laplacian and its properties

The purpose of this section is to prove Theorem 30. We use the flux property to show
that the symmetries imposed by a crystallographic group simplify the Green identity
considerably. We can then use this symmetric form of the Green identity to show Λ has
the desired properties.

F.1. Green’s identity under crystallographic symmetry

That the extended Laplace operator is self-adjoint on HG for any crystallographic group
derives from the fact that the symmetry imposed by the group makes the correction term
in Green’s identity vanish. That enters in the proof of Theorem 30 via the two identities
in the following lemma. The first one is Green’s identity under symmetry; the second
shows that a similar identity holds for the Sobolev inner product.

Lemma 54 (Symmetric Green identities). If a crystallographic group G tiles Rn with a
convex polytope Π, the negative Laplace operator satisfies the identities

⟨−∆f, h⟩L2
= a(f, h)(34)

⟨−∆f, h⟩H1 = a(f, h) +
∑

i≤n a(∂if, ∂ih)(35)

for all functions f and h in H.
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Proof. Let f̄ and h̄ be the unique continuous extensions of f and h to the closure Π, and
set F := f̄∇h̄. Since f̄ and h̄ satisfy the periodic boundary condition, (18) shows

F (ϕx) = h̄(ϕx)∇f̄(ϕx) = h̄(x)Aϕ∇f̄(x) = AϕF (x) .

By the flux property (Proposition 28), we hence have∫
∂Π

(∂NΠ
f̄)h̄ =

∫
∂Π

NT
ΠF = 0 ,

and substituting into Green’s identity (Fact 29) shows

(36) ⟨∆f, h⟩L2
= a(f, h)−

∫
∂Π

(∂NΠ
f)h = a(f, h) ,

so (34) holds. Now consider (35). Since f has three continuous derivatives, we have

∂2i ∂j f = ∂j∂
2
i f and hence ∆(∂jf) = ∂j(∆f) .

The H1-product can then be written as

⟨∆f, h⟩H1 = ⟨∆f, h⟩L2
+

∑
i
⟨∂i(∆f), ∂ih⟩L2

= ⟨∆f, h⟩L2
+

∑
i
⟨∆(∂if), ∂ih⟩L2

.

Substituting the final sum into Green’s identity shows

∑
i
⟨∆(∂if), ∂ih⟩L2

=
∑

i
a(∂if, ∂ih) +

∫
∂Π

∑
i
(∂NΠ

∂if)∂ih

Since ∇(∂if) is precisely the ith row vector of the Hessian Hf , the integrand is∑
i
(∂NΠ

∂if)∂ih =
∑

i
(NT

Π(∇∂if)∂ih = NT
Π(Hf)∇h .

Consider the vector field F (x) := (Hf)∇h. By Lemma 27, F transforms as

F (ϕx) = Hf(ϕx)∇h(ϕx) = Aϕ ·Hf(x) ·AT
ϕAϕ∇h(x) = Aϕ · F (x) ,

and hence satisfies (20). Another application of the flux property then shows∑
i
⟨∆(∂if), ∂ih⟩L2

=
∑

i
a(∂if, ∂ih) .

Substituting this identity and (34) into the H1-product above yields (35).

F.2. Approximation properties of the space HG

That we can use the space HG to prove results about continuous and L2-functions relies
on the fact that such functions are sufficiently well approximated by elements of HG, and
that HG can in turn be approximated by useful dense subsets. We collect these technical
facts in the following lemma. Consider the space of functions

Cpbc(Π
◦) = {f |Π◦ | f ∈ CG}

which we equip with the supremum norm. These are precisely those uniformly continuous
functions on the interior Π◦ whose unique continuous extension to Π satisfies the periodic
boundary conditions. Note that we can then express the definition of H in (21) as

H = Cpbc(Π
◦) ∩C∞(Π◦) .
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Lemma 55. If G is crystallographic and tiles with Π, the inclusions

H ι1
↪−→ HG

ι2
↪−→ L2(Π

◦)
ι3
↪−→ H∗

G ,

are all dense, ι2 and ι3 are continuous, and ι2 is compact. Moreover, if F ⊂ HG ∩Cpbc(Π
◦)

is dense in HG, it is also dense in Cpbc(Π
◦) in the supremum norm.

When we take closures in the proof, we write F sup
and F H1

to indicate the norm
used to take the closure of a set F .

Proof. That H is dense in HG holds by definition, see (21).

1◦ Inclusions ι2 and ι3 are dense and continuous. Denote by C∞
c := Cc(Π

◦) ∩C∞(Π◦)
the set of compactly supported and infinitely differentiable functions on Π◦. Denote by

H1
0 := C∞

c
H1

its H1-closure. This is, loosely speaking, the Sobolev space of functions that vanish on
the boundary [19, 48], and it is a standard result that

H1
0 ⊂ L2(Π

◦) ⊂ (H1
0)

∗ ,

where both inclusion maps are dense and bounded [19, Chapter 9.5]. Consider any f ∈ C∞
c .

Since f is uniformly continuous, it has a unique continuous extension f̄ to Π. This ex-
tension satisfies f̄ = 0 on the boundary ∂Π. (This fact is well known [e.g., 19], but also
easy to verify: Since the support of f is a closed subset of the open set Π◦, each point x
on the boundary is the center of some open ball B that does not intersect the support,
so f̄ = 0 on Π◦ ∩ B.) It therefore trivially satisfies the periodic boundary condition (6),
which shows C∞

c ⊂ H. Taking H1-closures shows H
1
0 ⊂ HG. We hence have

H1
0(Π

◦) ⊂ HG ⊂ H1(Π◦) ⊂ L2(Π
◦) ⊂ H1(Π◦)∗ ⊂ H∗

G ⊂ H1
0(Π

◦)∗ .

Since H1
0 ↪→ L2 and L2 ↪→ (H1

0)
∗ are both dense and bounded, HG ↪→ L2 and L2 ↪→ H∗

G
are dense and bounded (and hence continuous), and HG ↪→ H1 is bounded (and hence
continuous).

2◦ Inclusion ι2 is compact. We can decompose ι2 as

HG ↪→ H1 ↪→ L2 .

It is known that H1 ↪→ L2 is compact [2]. If one of two inclusions is compact, their
composition is compact (see [2], or simply note that any bounded sequence in HG is also
bounded in H1). That shows HG ↪→ L2 is compact.

3◦ F is dense in Cpbc. We know from Lemma 36 that H1(Π◦) ⊂ C(Π◦), and hence
∥h∥H1 ≥ ∥h∥sup for all h ∈ C(Π◦). In other words, the sup-closure of the H1-closure is
the sup-closure, so

F sup
= (FH1

)
sup

= HG
sup

= (HH1

)
sup

= H sup
.

It hence suffices to show H is dense in Cpbc. To this end, we use a standard fact: If
we consider the closed set Π instead of the interior, C∞(Π) is dense in C(Π), since Π is
compact. (One way to see this is that C∞ contains all polynomials, which are dense in
C(Π) by the Stone-Weierstrass theorem [2].) Since Cpbc(Π) is a closed linear subspace of
C(Π), it follows that

Cpbc(Π) ∩C∞(Π) is dense in Cpbc(Π) ∩C(Π) = Cpbc(Π) .
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Consider a function f ∈ Cpbc(Π
◦). Then f has a unique continuous extension f̄ to Π,

which satisfies the periodic boundary condition. That shows that

(37) f 7→ f̄ is an isometric isomorphism Cpbc(Π
◦) → Cpbc(Π) ,

since the extension is unique and does not change the supremum norm. If f is also
infinitely differentiable (and hence in H), then f̄ is infinitely differentiable, so the same
map is also an isometric isomorphism

H = Cpbc(Π
◦) ∩C∞(Π◦) → Cpbc(Π) ∩C∞(Π) .

In summary, we hence have

H isomorphic−−−−−−−→ Cpbc(Π) ∩C∞(Π)
dense
↪−−−−→ Cpbc(Π)

isomorphic−−−−−−−→ Cpbc(Π
◦) ,

and since isomorphisms preserve dense subsets, H is indeed dense in Cpbc(Π
◦).

F.3. Existence and properties of the Laplacian

Proof of Theorem 30. Since Π is a convex polytope, it is a Lipschitz domain, and ∆ hence
extends to a bounded linear operator Λ on H1(Π◦), by Fact 49. The restriction of Λ to
the closed linear subspace of HG is again a bounded linear operator that extends ∆.
It remains to verify self-adjointness and (26) on HG. Since Λ is bounded and hence
continuous, it suffices to do so on the dense subset H. For (26i), that has already been
established in Lemma 54. To show (26ii), we note (25) implies

∥f∥2H1 = ⟨f, f ⟩H1 = ⟨f, f ⟩L2
+ a(f, f) for f ∈ H

and hence
a(f, f) = ∥f∥2H1 − ∥f∥2L2

.

Since f ∈ H and hence Λf = ∆f , we can substitute into (35), which shows

⟨−∆f, f ⟩H1 = a(f, f) +
∑

i≤n a(∂if, ∂if) ≥ ∥f∥2H1 − ∥f∥2L2

where the last step uses the fact that a is positive semi-definite by (24). That proves
coercivity. Since the bilinear form a is symmetric, (35) also shows

⟨−∆f, h⟩H1 = a(f, h) +
∑

i
a(∂if, ∂ih) = a(h, f) +

∑
i
a(∂ih, ∂if) = ⟨−∆h, f ⟩H1

on H, so Λ is self-adjoint on HG.

G Proofs III: Fourier representation

We now prove the Fourier representation. We first restrict all function to a single tile Π.
By Lemma 55, we can then choose the space V in the spectral theorem (Fact 48) as HG.
Since we also know the Laplacian is self-adjoint on HG, we can use the spectral theorem to
obtain an eigenbasis. We then deduce Theorem 7 by extending the representation from Π
to the entire space Rn.
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G.1. Proof of the Fourier representation on a single tile

The eigenvalue problem (13) in Theorem 7 is defined on the unbounded domain Rn. We
first restrict the problem to the compact domain Π, that is, we consider

(38)
−∆h = λh on Π◦

subject to h(x) = h(y) whenever x ∼ y on ∂Π .

That allows us to apply Fact 48 and 50 above, which hold on compact domains. (The
deeper relevance of compact domains is that function spaces on such domains tend to have
better approximation properties than on unbounded domains.) The restricted version of
Theorem 7 we prove first is as follows.

Lemma 56. Let G be a crystallographic group that tiles Rn with a convex polytope Π.
Then (38) has solutions for countably many distinct values of λ, which satisfy

0 = λ1 < λ2 < λ3 < . . . and λi
i→∞−−−→ ∞ .

Each solution h is infinitely often differentiable on Π◦. There exists a sequence of solutions
h1, h2, . . . that is an orthonormal basis of L2(Π), and satisfies∣∣{ j ∈ N |hj solves (38) for λi}

∣∣ = k(λi) .

In the proof, we again use the notation M
L2 and M

H1

to indicate the norm used to take
the closure of a set M .

Proof of Lemma 56. We apply the spectral decomposition result (Fact 48), with A = Λ
and V = HG. We have already established its conditions are satisfied (except for the op-
tional assumption of strict positive definiteness): By Theorem 30, Λ exists, is a bounded
and self-adjoint linear operator on HG, and satisfies (32). By Lemma 55, HG approx-
imates L2(Π

◦) in the sense of (31). Fact 48 hence shows that there is an orthonormal
basis of eigenfunctions for HG, i.e., functions ξ1, ξ2, . . . that satisfy

(39) (i) Λξi = λiξi (ii) ⟨ξi, ξj ⟩H1 = δij (iii) span{ξ1, ξ2, . . .}
H1

= HG .

What remains to be shown are the properties of the eigenvalues and eigenfunctions, and
that the ONB of HG can be translated into an ONB of L2.

Non-negativity of eigenvalues. The operator Λ is positive semi-definite, but not
strictly positive definite, on V . To show this, it again suffices to consider −∆ on H. By
(35), we have

⟨Λf, f ⟩H1 = a(f, f) +
∑

i
a(∂if, ∂if)(40)

=
∫
∥∇f(x)∥2Rnvol(dx) +

∑
i

∫
∥∇∂if(x)∥2Rnvol(dx) ≥ 0 .

That shows Λ is positive semi-definite. Now consider, for any ε > 0, the operator

Λε : HG → HG defined by Λεf := Λf + εf .

This is operator is still bounded, coercive and self-adjoint, so Fact 48 is applicable.
Clearly, Λ has the same eigenfunctions as Λ, with eigenvalues λi + ε. It is also strictly
positive definite, since

⟨Λεf, f ⟩H1 = ⟨Λf, f ⟩H1 + ⟨εf, f ⟩H1 ≥ ε∥f∥H1 .
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It hence follows from Fact 48 that the smallest eigenvalue satisfies λ1 + ε > 0. Since that
holds for every ε > 0, we have λ1 ≥ 0.

The smallest eigenvalue and its eigenspace. If a function f is constant on Π◦, then

f ∈ HG and Λf = −∆f = 0 .

That shows the smallest eigenvalue is λ1 = 0, and its eigenspaceH(0) contains all constant
functions. To show that it contains no other functions, note that

⟨Λf, f ⟩ = 0 and by (40) hence ∥∇f(x)∥2 = 0 for almost all x ∈ Π◦ .

That implies f is piece-wise constant. Since the only piece-wise constant function con-
tained in H1 are those that are strictly constant (see Adams and Fournier [2]), H(0) is
the set of constant functions, and dimH(0) = 1.

Regularity of eigenfunctions. We now use the strategy outlined in Appendix D.3.
Let ξ be an eigenfunction. We have shown that implies ξ ∈ HG, and hence ξ ∈ H1(Π◦).
Consider any x ∈ Π◦. Since the interior is open, we can find ε > 0 such that the open
ball B = Bε(x) of radius ε centered at x satisfies B ⊂ Π◦. The restriction ξ|B of ξ to B
then satisfies

f |Bε(x)
∈ H1(B) and Λf |B = λf |B .

Since ξ|B appears on both sides of the equation, Fact 50 implies that f |B is also inH1+2(B),
hence also in H1+4(B), and so forth, so ξ|B ∈ Hk(B) for all k ∈ N. Lemma 36 then shows
that ξ|B is even in Ck(B) for each k ∈ N, and hence in C∞(B). We have thus shown
that ξ has infinitely many derivatives on a neighborhood of each x ∈ Π◦, and hence that
ξ ∈ C∞(Π◦).

Turning the Sobolev basis into an L2 basis. The functions ξi form an orthonormal
basis of HG, by (39). To obtain an orthonormal basis for L2(Π

◦), we substitute (25) into
(39ii), and obtain

δij = ⟨ξi, ξj ⟩H1 = ⟨ξi, ξj ⟩L2
+ a(ξi, ξj) = ⟨ξi, ξj ⟩L2

+ ⟨Λξi, ξj ⟩L2
.

Since ξi is an eigenfunction, it follows that

δij = ⟨ξi, ξj ⟩L2
+ λi ⟨ξi, ξj ⟩L2

and hence
1

1 + λi
⟨ξi, ξj ⟩L2

= δij .

The functions hi := ξi/
√
1 + λi then satisfy

−∆hi = λihi on Π◦ and ⟨hi, hj ⟩L2
= δij .

Since we have merely scaled the functions ξi, we also have

span{h1, h2, . . .} = span{ξ1, ξ2, . . .} .

That implies

L2-closure of span{h1, h2, . . .} = L2-closure of H1-closure of span{h1, h2, . . .}
= L2-closure of HG ,

and since the inclusion HG ↪→ L2(Π
◦) is dense by Lemma 55, we have

span{h1, h2, . . .}
L2 = L2(Π

◦) .
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In summary, we have shown that {h1, h2, . . .} is an orthonormal basis of L2(Π
◦) consisting

of eigenfunctions of −∆.

Extending the basis on Π◦ to a basis on Π. Each hi is in C∞(Π◦), and hence
has a unique continuous extension h̄i to Π◦. Since voln(∂Π) = 0, we can isometrically
identify L2(Π

◦) with L2(Π): Under this identification, each function hi on the interior Π◦

is equivalent to any measurable extension of hi to Π, so

span{h1, h2, . . .}
L2 = L2(Π) .

The extended functions also satisfy

−∆h̄i = λih̄i on Π and ⟨ h̄i, h̄j ⟩L2(Π) = δij ,

where the first identity extends from Π◦ to Π by C∞-continuity, and the second holds
since the boundary does not affect the integral. The functions h̄i are hence eigenfunctions
of −∆ on Π, and form and orthonormal basis of L2(Π).

G.2. Proof of the Fourier representation on Rn

Proof of Theorem 7. To deduce the theorem from Lemma 56, we must (1) extend the basis
constructed on Π above to a basis on Rn, and (2) show that every continuous invariant
function can be represented in this basis.

1◦ Consider the function h̄i in the proof of Lemma 56. Recall each h̄i is infinitely smooth
on Π and satisfies the periodic boundary condition. It follows by (12) that

ei := h̄i ◦ p

is in CG. Let ∆k denote the k-fold application of ∆. By Lemma 27, the fact that h̄i
satisfies the periodic boundary condition (6) implies that the continuous extension ∆hi
also satisfies (6). Iterating the argument shows that the same holds for the continuous
extension of ∆khi for any k ∈ N. We hence have

∆kei = ∆k(h̄i ◦ p) = (∆khi) ◦ p and (∆khi) ◦ p ∈ CG for all k ∈ N ,

so ei has infinitely many continuous derivatives on Rn. Since it is also G-invariant, it
solves the constrained eigenvalue problem (13) on Rn. That extends Lemma 56 to Rn.
2◦ It remains to be shown that a function f on Rn is in CG if and only if f =

∑
ciei

for some sequence (ci), where the series converges in the supremum norm. Combining
Corollary 17 and (37) shows that

h 7→ h̄ ◦ p is an isometry Cpbc(Π
◦) → CG .

For any f : Rn → R, we hence have

f =
∑

ciei ⇐⇒ f |Π◦ =
∑

ciei|Π◦ .

In other words, we have to show that

h ∈ Cpbc(Π
◦) ⇔ h =

∑
ciei|Π◦ and hence that Cpbc(Π

◦) = span{ei|Π◦ | i ∈ N} sup
.

Since the proof of Lemma 56 shows {ei|Π◦ | i ∈ N} is a rescaled orthonormal basis of HG,
and hence a subset of HG ∩Cpbc(Π

◦) that is dense in HG, that holds by Lemma 55.
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H Proofs IV: Embeddings

To prove Theorem 15, we first establish two auxiliary results on topological dimensions
of quotient spaces. Recall from Fact 37 that Rn/G is locally isometric to quotients of
metric balls. The first lemma considers the effect of taking a quotient on the dimension
of a ball. The second lemma combines this result with Fact 37 to bound the dimension
of Rn/G.

Lemma 57 (Quotients of metric balls). Let B be an open metric ball in Rn, and G a
finite group of isometries of Rn. Then the quotient B/G has topological dimension

n ≤ Dim (B/G) < n+ |G| .

Proof. The quotient map q : B → B/G is, by definition, continuous and surjective. Recall
that preimages of points under q are orbits: If ω ∈ Rn/G is the orbit G(x) of some x ∈ Rn,
then q−1ω = G(x). We show q is also closed: Let A ⊂ B be a subset. First observe that

qA closed ⇔ B/G qA open ⇔ q−1(B/G qA) open,

by continuity of q. This set can be expressed as

q−1(B/G qA) = B q−1qA = B
(
∪ϕ∈G ϕA

)
= ∩ϕ∈G ϕ(B A) ,

and is therefore open whenever A is closed, since each ϕ is an isometry and G is finite.
Consider any element ω ∈ B/G. Then there is some x ∈ B with ω = q(x), and

q−1ω = {ϕx|ϕ ∈ G and ϕx ∈ B} which shows that |q−1ω| ≤ |G| .

Fact 47(ii) is now applicable, and shows

DimB ≤ Dim (B/G) < DimB + |G| ,

and by Fact 47(i), DimB = n.

Lemma 58 (Topological dimension of the quotient space). Let G be a crystallographic
group that tiles Rn with a convex polytope Π. Then Rn/G is a G-orbifold, of topological
dimension

n ≤ DimRn/G < n + max
x∈Π

|Stab(x)|

Proof. Choose the index set in the orbifold definition as I = Π. By Fact 37, we may then
choose Ux = BdG(q(x), ε), the group Hx as Stab(x), and the map

θx : BdG(q(x), ε) → Bdn(x, ε)

as the isometry guaranteed by Fact 37. That makes Rn/G an orbifold. Isometry of the
open balls also implies for the corresponding closed balls of radius δ = ε/2 that

BdG
(q(x), δ) is homeomorphic to BdG

(x, δ)/Stab(x) for each x ∈ Π .

Since homeomorphic spaces have the same topological dimension, Lemma 57 shows

BdG
(q(x), δ) = BdG

(x, δ)/Stab(x) < n+ |Stab(x)| .

Since G is crystallographic, the quotient space is compact, and we can hence cover it with
a finite number of the closed balls above. Applying Fact 47(i) then shows the result.
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Proof of Theorem 15. Let S be the side pairing defined byG for Π. SinceG is by definition
a discrete group of isometries, S is subproper (see [53], 13.4, problem 2). The gluing
construction hence constructs a set M that is a G-orbifold, according to Fact 42. By
definition of M as a quotient, the gluing construction also defines a quotient map

qM : Π →M ,

which is continuous and surjective. By Fact 40, the quotient topology is metrized by dpath.
By Fact 40, the metric space (M,dpath) is complete. It hence follows by Fact 43 that
there exists a isometry

γM : (M,dpath) → (Rn/S, dS) ,

where S is the group generated by S. In our case, S = SΠ, and by Fact 41, the generated
group is S = G. That shows γM in fact an isometry

γM : (M,dpath) → (Rn/G, dG) .

Since isometric spaces have the same topological dimension, Lemma 58 shows

DimM < n+max
x∈Π

|Stab(x)| .

By Fact 47(ii) there is an embedding e :M → RN with N ≤ 2(n+max |Stab(x)|)− 1.
Since G is crystallographic, and Rn/G hence compact, M and Ω := e(M) are compact.
Using the restriction q : Π → Rn/G of the quotient map to Π, we can define

ρΠ : Π → Ω as ρΠ := e ◦ γ−1 ◦ q .

By the properties of the constituent maps, ρΠ is continuous and satisfies the periodic
boundary condition (6). That makes ρ := ρΠ ◦ p continuous andG-invariant. If h : RN → Y
is a continuous function, the composition f = h ◦ ρ is hence continuous and G-invariant
on Rn. Conversely, suppose f : Rn → Y is continuous and G-invariant. For each z ∈ Ω,
the preimage ρ−1{z} is precisely the orbit G(x) of some x ∈ Π. Since G-invariant function
are constant on orbits, the assignment

ĥ(z) := the unique value of f on the orbit ρ−1{z}

is a well-defined and continuous function ĥ : Ω → Y . Since Ω is compact, ĥ has a (non-
unique) continuous extension to a function h : RN → Y , which satisfies f = h ◦ ρ.

I Proofs V: Kernels and Gaussian processes

I.1. Kernels

Proof of Proposition 19. Suppose κ is invariant. For any f ∈ H, (28) implies

f(ϕx) = ⟨f, κ(ϕx, • )⟩H = ⟨f, κ(x, • )⟩H = f(x) ,

so f is G-invariant. Conversely, suppose all f ∈ H are G-invariant. Let f1, f2, . . . be a
complete orthonormal system. Then all fi are G-invariant, so (29) shows

κ(ϕx, ψy) =
∑

i∈N fi(ϕx)fi(ψy) =
∑

i∈N fi(x)fi(y) = κ(x, y)

and κ is invariant. Suppose κ is also continuous. If κ is invariant, its infimum and
supremum on Rn equal its infimum and supremum on the compact set Π, and since κ is
continuous, that implies it is bounded. That shows all functions in H are continuous [59,
4.28].
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The main ingredient in the proof of Proposition 23 is the following lemma, which shows
that the RKHS of κ is isometric to that of κ̂, and that an explicit isometric isomorphism
between them is given by composition with the embedding map ρ.

Lemma 59. Let κ̂ be a continuous kernel on Ω with RKHS Ĥ. Set

κ := κ̂ ◦ (ρ⊗ ρ) and H := RKHS defined by κ .

Then κ is a continuous kernel on Rn, is G-invariant in both arguments, and H ⊂ CG.
The map

I : Ĥ → H defined by f̂ 7→ f̂ ◦ ρ
is a linear isometric isomorphism, and two functions f̂ and ĝ in Ĥ are orthogonal if and
only if f̂ ◦ ρ and ĝ ◦ ρ are orthogonal in H.

Proof. 1◦ The kernel κ is clearly continuous, since κ̂ and ρ are. Since Ω is compact, κ̂
is bounded, and since ∥κ∥sup = ∥κ̂∥sup, it follows that κ is bounded. Bounded continuity
of κ implies all elements of H are continuous [59, Lemma 4.28]. That shows H ⊂ CG.

2◦ Next, consider the map I. Linearity of I is obvious. To show it is bijective, write

S := span{κ(x, • ) |x ∈ Rn} and Ŝ := span{κ̂(ω, • ) |ω ∈ Ω} .

Note that makes H the norm closure of S, and Ĥ the norm closure of Ŝ (see Appendix B.4).

3◦ Consider any f̂ ∈ Ŝ. Then f̂ =
∑
aiκ̂(ωi, • ) for some scalars ai and points ωi in Ω.

Since ρ is surjective by Theorem 15, we can find points xi in Rn such that ωi = ρ(xi). It
follows that

f = f̂ ◦ ρ =
(∑

aiκ̂(ρ(xi), • )
)
◦ ρ =

∑
aiκ(xi, • ) ∈ S and hence I(Ŝ) ⊂ S .

Reversing the argument shows I−1(S) ⊂ Ŝ. Thus, I is a linear bijection of Ŝ and S.

4◦ Substituting f̂ ∈ Ŝ as above into the definition of the scalar product shows

⟨ f̂ , f̂ ⟩Ĥ =
∑
aiaj κ̂(ρ(xi), ρ(xj)) =

∑
aiajκ(xi, xj) = ⟨f, f ⟩H

and hence ∥f∥H = ∥f̂∥Ĥ for all f̂ ∈ Ŝ. In summary, we have shown that the restriction of

I to Ŝ is a bijective linear isometry Ŝ → S.

5◦ Since I is an isometry on a dense subset, it has a unique uniformly continuous extension
to the norm closure Ĥ, which takes the norm closure Ĥ to the norm closure H of the image
and is again an isometry [3, 3.11].

Proof of Proposition 23. 1◦ By Theorem 15, there is a unique continuous function

κ̂ : Ω× Ω → R that satisfies κ = κ̂ ◦ (ρ⊗ ρ) .

Lemma 59 then implies all f ∈ H are G-invariant and continuous.

2◦ We next show the inclusion is compact. Consider first the map I : f̂ 7→ f̂ ◦ ρ as in
Lemma 59, but now defined on the larger space C(Ω). We know from Theorem 15 that
I is an isometric isomorphism C(Ω) → CG (with respect to the supremum norm). By
Lemma 59 its restriction to a map Ĥ → H is also an isometric isomorphism (with respect
to the RKHS norms). It follows that the inclusion maps

ι : H → CG and ι̂ : Ĥ → C(Ω) satisfy ι = I ◦ ι̂ ◦ I−1 .

Since κ̂ is a continuous kernel by step 1, and its domain Ω is compact by Theorem 15,
the inclusion ι̂ is compact [59, 4.31]. The composition of a compact linear operator with
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any continuous linear operator is again compact [4, Theorem 5.1]. Since I and its inverse
are linear and continuous, that indeed makes ι compact.

3◦ Since κ̂ is a continuous kernel on a compact domain, Mercer’s theorem [59, 4.49] holds
for κ̂. It shows there are functions f̂1, f̂2, . . . and scalars c1 ≥ c2 ≥ . . . > 0 such that

(
√
cif̂i)i∈N is an ONB for Ĥ and κ̂(ω, ω′) =

∑
i
cif̂i(ω)f̂i(ω

′) for all ω, ω′ ∈ Ω .

The functions fi := f̂i ◦ ρ then satisfy

κ(x, y) = κ̂(ρ(x), ρ(y)) =
∑

i cif̂i(ρ(x))f̂i(ρ(y)) =
∑

i cifi(x)fi(y) .

Since the map f̂ 7→ f̂ ◦ ρ preserves the scalar product by Lemma 59, the sequence (
√
cifi)

is an ONB for H.
4◦ It remains to verify the representation

H = { f=∑
i∈N ai

√
cifi | a1, a2, . . . ∈ R with

∑
i |ai|2 <∞} .

Since Mercer’s theorem applies to κ̂, the analogous representation

Ĥ = { f̂=∑
i∈N ai

√
cif̂i | a1, a2, . . . ∈ R with

∑
i |ai|2 <∞}

holds on Ω, by Steinwart and Christmann [59, 4.51]. As f̂ 7→ f̂ ◦ ρ is an isometric isomor-
phism by Lemma 59, that yields the representation for H above.

I.2. Gaussian processes

Proof of Proposition 24. That F is continuous and G-invariant almost surely follows im-
mediately from Theorem 15. Let Π̃ be a transversal. Our task is to show that the
restriction F |Π̃ is a continuous Gaussian process on Π̃. To this end, suppose h is a con-
tinuous function on RN . Then h ◦ ρ is continuous by Theorem 15, and the restriction is
again continuous. That means

τ : h 7→ (h ◦ ρ)|Π̃ is a map C(Ω) → C(Π̃) .

Since both composition with a fixed function and restriction to a subset are linear as
operations on functions, τ is linear, and since neither composition nor restriction can
increase the sup norm, it is bounded. The restriction

F |Π̃ = τ(H)

is hence the image of a Gaussian process with values in the separable Banach space C(Ω)
under a bounded linear map into the Banach space C(Π̃). That implies it is a Gaussian
process with values in C(Π̃), and that κ and µ transform accordingly [63, Lemma 7.1].
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