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Abstract

Deep belief networks are a powerful way
to model complex probability distributions.
However, it is difficult to learn the structure
of a belief network, particularly one with hid-
den units. The Indian buffet process has been
used as a nonparametric Bayesian prior on
the structure of a directed belief network with
a single infinitely wide hidden layer. Here, we
introduce the cascading Indian buffet process
(CIBP), which provides a prior on the struc-
ture of a layered, directed belief network that
is unbounded in both depth and width, yet
allows tractable inference. We use the CIBP
prior with the nonlinear Gaussian belief net-
work framework to allow each unit to vary
its behavior between discrete and continuous
representations. We use Markov chain Monte
Carlo for inference in this model and explore
the structures learned on image data.

1 Introduction

The belief network or directed probabilistic graphical
model (Pearl, 1988) is a popular and useful way to
represent complex probability distributions. Methods
for learning the parameters of such networks are well-
established. Learning network structure, however, is
more difficult, particularly when the network includes
unobserved hidden units. Then, not only must the
structure (edges) be determined, but the number of
hidden units must also be inferred. This paper con-
tributes a novel nonparametric Bayesian perspective
on the general problem of learning graphical models
with hidden variables. Nonparametric Bayesian ap-
proaches to this problem are appealing because they
can avoid the difficult computations required for select-
ing the appropriate a posteriori dimensionality of the
model. Instead, they introduce an infinite number of
parameters into the model a priori and the inference
procedure determines the subset of these parameters
that actually contributed to the observations. The In-
dian buffet process (IBP) (Griffiths and Ghahramani,

2006) is one example of a nonparametric Bayesian
prior. It has previously been used to introduce an
infinite number of hidden units into a belief network
with a single hidden layer (Wood et al., 2006) or with a
pre-specified number of layers (Courville et al., 2009).

This paper unites two important areas of research:
nonparametric Bayesian methods and deep belief net-
works. Specifically, we develop a nonparametric
Bayesian framework to perform structure learning in
deep networks, a problem that has not been addressed
to date. We first propose a novel extension to the In-
dian buffet process—the cascading Indian buffet pro-
cess (CIBP)—and use the Foster-Lyapunov criterion
to prove convergence properties that make it tractable
with finite computation. We then use the CIBP to
generalize the single-layered, IBP-based, directed be-
lief network to construct multi-layered networks that
are both infinitely wide and infinitely deep. We discuss
useful properties of such networks including expected
in-degree and out-degree for individual units. Finally,
we combine this approach with the continuous sig-
moidal belief network framework of Frey (1997). This
framework allows us to infer the type (i.e., discrete
or continuous) of individual hidden units—an impor-
tant property that is not widely discussed in previous
work. In summary, we present a flexible, nonparamet-
ric framework for directed deep belief networks that
permits inference of the number of hidden units, the
directed edge structure between units, the depth of the
network, and the most appropriate type for each unit.

2 Finite Belief Networks

We consider belief networks that are layered directed
acyclic graphs with both visible and hidden units. Hid-
den units are random variables that appear in the joint
distribution described by the belief network but are
not observed. We index layers by m, increasing with
depth up to M , and allow visible units (i.e., observed
variables) only in layer m=0. We require that units
in layer m have parents only in layer m+1. Within
layer m, we denote the number of units as K(m) and
index the units with k so that the kth unit in layer m
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Figure 1: Three operation modes for a NLGBN unit.
The black solid line shows the zero mean distribution (i.e.,
y = 0), the red dashed line shows a pre-sigmoid mean of
+1 and the blue dash-dot line shows a pre-sigmoid mean
of −1. (a) Binary behavior resulting from small precision.
(b) Roughly Gaussian behavior resulting from medium pre-
cision. (c) Deterministic behavior from large precision.

is denoted u
(m)
k . We use the notation u(m) to refer to

the vector of all K(m) units for layer m together. A
binary K(m−1)×K(m) matrix Z(m) specifies the edges

from layer m to layer m−1, so that element Z
(m)
k,k′ =1

iff there is an edge from unit u
(m)
k′ to unit u

(m−1)
k .

A unit’s activation is determined by a weighted sum of
its parents. The weights for layer m are denoted by a
K(m−1)×K(m) real-valued matrix W (m), so that the
activations for the units in layer m can be written as
y(m)=(W (m+1)⊙Z(m+1))u(m+1)+γ(m), where γ(m)

is a K(m)-dimensional vector of bias weights and the
binary operator ⊙ indicates the Hadamard product.

To achieve a wide range of possible behaviors, we
use the nonlinear Gaussian belief network (NLGBN)
(Frey, 1997; Frey and Hinton, 1999) framework. In the

NLGBN, the distribution on u
(m)
k arises from adding

zero mean Gaussian noise with precision ν
(m)
k to the

activation sum y
(m)
k . This noisy sum is transformed

with a sigmoid function σ(·) to obtain the value of
the unit. We modify the NLGBN slightly so that the
sigmoid function is from the real line to (−1, 1), i.e.,
σ : R→(−1, 1), via σ(x) = 2/(1 + exp{x})− 1. The

distribution of u
(m)
k ∈ (−1, 1) given its parents is then

p(u
(m)
k |y

(m)
k , ν

(m)
k ) =

exp

{

−
ν
(m)
k

2

[

σ−1(u
(m)
k )−y

(m)
k

]2
}

σ′(σ−1(u
(m)
k ))

√

2π/ν
(m)
k

where σ′(x) = d
dxσ(x). As discussed by Frey (1997)

and as shown in Fig 1, different choices of ν
(m)
k yield

different belief unit behaviors, ranging from effectively
discrete binary units to nonlinear continuous units.

3 Infinite Belief Networks

Conditioned on the number of layers M , the layer
widths K(m), and the network structures Z(m), infer-
ence in belief networks can be straightforwardly imple-
mented using Markov chain Monte Carlo (Neal, 1992).
Learning the depth, width, and structure, however,

presents significant computational challenges. In this
section, we present a novel nonparametric prior, the
cascading Indian buffet process, for multi-layered belief
networks that are both infinitely wide and infinitely
deep. By using an infinite prior we avoid the need
for the complex dimensionality-altering proposals that
would otherwise be required during inference.

3.1 The Indian buffet process

Sec 2 used the binary matrix Z(m) as a conve-
nient way to represent the edges connecting layer m
to layer m−1. We stated that Z(m) was a finite
K(m−1)×K(m) matrix. We can use the Indian buffet

process (IBP) (Griffiths and Ghahramani, 2006) to al-
low this matrix to have an infinite number of columns.
We assume the two-parameter IBP (Ghahramani et al.,

2007), and use Z(m)∼ IBP(α, β) to indicate that the

matrix Z(m) ∈ {0, 1}K
(m−1)×∞ is drawn from an IBP

with parameters α, β > 0. The eponymous metaphor
for the IBP is a restaurant with an infinite number
of dishes available. Each customer chooses a finite
set of dishes to taste. The rows of the binary ma-
trix correspond to customers, while the columns corre-
spond to dishes. If the jth customer tastes the kth dish,
then Zj,k=1. Otherwise, Zj,k=0. The first customer
to enter the restaurant samples a number of dishes
that is Poisson-distributed with parameter α. After
that, when the jth customer enters the restaurant, she
selects dish k with probability ηk / (j+β−1), where ηk
is the number of previous customers that have tried
the kth dish. She then chooses some number of addi-
tional dishes to taste that is Poisson-distributed with
parameter αβ / (j+β−1). Even though each customer
chooses dishes based on their popularity among the
previous customers, the rows and columns of the re-
sulting matrix Z(m) are infinitely exchangeable.

As with the model of Wood et al. (2006), if the model
in Sec 2 had only a single hidden layer, i.e.,M=1, then
the IBP could be used to make that layer infinitely
wide. Without intra-layer connections, however, the
hidden units are independent a priori. This “shallow-
ness” is a strong assumption that weakens the model
in practice. The explosion of recent literature on deep

belief networks (see, e.g., Hinton et al. (2006); Hinton
and Salakhutdinov (2006)) speaks to the empirical suc-
cess of networks with more hidden structure.

3.2 The cascading Indian buffet process

To build a prior on belief networks that are unbounded
in both width and depth, we use an IBP-like construc-
tion that results in an infinite sequence of binary matri-
ces Z(0),Z(1),Z(2), · · ·. The matrices in this sequence
must inherit the useful sparsity properties of the IBP,
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with the constraint that the columns from Z(m−1) cor-
respond to the rows in Z(m). We interpret each ma-
trix Z(m) as specifying the directed edge structure
from the units in layer m to those in layer m−1, where
both layers have a potentially-unbounded width.

We propose the cascading Indian buffet process
(CIBP), which provides a prior with these properties.
The CIBP extends the IBP as follows: each dish in the
restaurant is also a customer in another Indian buffet
process—i.e., the columns in one binary matrix corre-
spond to the rows in another. The CIBP is infinitely
exchangeable in the rows of matrix Z(0). Each of the
matrices in the recursion is exchangeable in its rows
and columns—propagating a permutation through the
matrices does not change the probability of the data.

Surprisingly, if there are K(0) customers in the first
restaurant, then for finite K(0), α, and β, the CIBP
recursion terminates with probability one. In other
words, at some point the customers do not taste any
dishes, and deeper restaurants have neither dishes nor
customers. Here we sketch the intuition behind this
result. (See the supplementary materials for a proof.)

The CIBP constructs matrices in a sequence, start-
ing with m=0. The number of nonzero columns in
matrix Z(m+1), K(m+1), is determined by K(m), the
number of active nonzero columns in Z(m). We re-
quire that for some matrix Z(m), all columns are zero.
We can therefore disregard the fact that the CIBP is a
matrix-valued stochastic process and instead consider
the Markov chain on the number of nonzero columns.
Fig 2a shows three traces of such a Markov chain
on K(m). If we define λ(K;α, β) = α

∑K
k′=1

β
k′+β−1 ,

then the Markov chain has the transition distribution

p(K(m+1) = k |K(m), α, β) =

1

k!
exp

{

−λ(K(m);α, β)
}

λ(K(m);α, β)k, (1)

which is a Poisson distribution with mean
λ(K(m);α, β). To show that the chain reaches
the absorbing state K(m)=0 with probability one, we
must show that K(m) does not blow up to infinity.

In such a Markov chain, this requirement is equiv-
alent to the chain having an equilibrium distribu-
tion when conditioned on nonabsorption (has a quasi-

stationary distribution) (Seneta and Vere-Jones, 1966).
For countably-infinite state spaces, a Markov chain
has a (quasi-) stationary distribution if it is positive-
recurrent, i.e., there is a finite expected time between
consecutive visits to any state. Positive recurrency can
be shown via the Foster–Lyapunov stability criterion

(FLSC) (Fayolle et al., 2008). Satisfying the FLSC
for the Markov chain with transitions given by Eqn 1
demonstrates that eventually the CIBP will reach a
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Figure 2: Properties of the Markov chain on layer width
for the CIBP, with α = 3, β = 1. Note that these values
are illustrative and are not necessarily appropriate for a
network structure. a) Example traces of a Markov chain

on layer width, indexed by depth m. b) Expected K(m+1)

as a function of K(m) is shown in blue. The Lyapunov
function L(·) is shown in green. c) The drift as a function of

the current width K(m). This corresponds to the difference
between the two lines in (a). Note that the drift becomes
negative when the layer width is greater than eight.

restaurant in which the customers try no new dishes.
We do this by showing that if K(m) is large enough,
then the expected K(m+1) is smaller than K(m). We
use a Lyapunov function L(k) : N+ → R > 0, L(0)=0,
with which we define the drift function as follows:

Ek|K(m) [L(k)− L(K(m))] =
∞
∑

k=1

p(K(m+1) = k |K(m))(L(k)− L(K(m))).

The drift is the expected change in L(k) as a func-
tion of K(m). If there is a K(m) above which all
drifts are negative, then the Markov chain satisfies
the FLSC and is positive-recurrent. In the CIBP,
this is satisfied for L(k) = k. That the drift even-
tually will become negative can be seen by the fact
that Ek|K(m) [L(k)] = λ(K(m) ; α, β) is O(lnK(m)) and

Ek|K(m) [L(K(m))] = K(m) is O(K(m)). Figs 2b and 2c
together provide a schematic illustration of this idea.

3.3 Unbounded priors on network structure

The CIBP can be used as a prior on the sequence
Z(0),Z(1),Z(2), · · · from Sec 2, to allow an infinite
sequence of infinitely-wide hidden layers. As before,
there are K(0) visible units. The edges between the
first hidden layer and the visible layer are drawn ac-
cording to the restaurant metaphor. This yields a
finite number of units in the first hidden layer, de-
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(a) α = 1, β = 1

(b) α = 1
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Figure 3: Samples from the CIBP prior (for four sets of
α, β values) over network structures with five visible units.

noted K(1) as before. These units become the visi-
ble units in another IBP-based network. While this
recurses infinitely deep, only a finite number of units
are ancestors of the visible units. If a unit has no
ancestors, its activation is determined only by its bias.
Fig 3 shows several samples from the prior for different
parameterizations. Only connected units are shown.

A significant aspect of using an IBP-based prior is that
it introduces a “rich-get-richer” behavior in the struc-
ture. The probability of a hidden unit acquiring a
new outgoing edge increases with the current number
of outgoing edges. While this is not desirable for all
models, we feel it is a reasonable property of a be-
lief network. Sharing of hidden variables in the belief
network is what induces structure on the outputs. It
seems appropriate that a hidden variable which is al-
ready important will likely become more important.

The parameters α and β govern the expected width
and sparsity of the network at each level. The ex-
pected in-degree of each unit (number of parents)
is α and the expected out-degree (number of children)

is K/
∑K

k=1
β

β+k−1 , for K units used in the layer below.
These equations arise directly from the properties of
the IBP described by Ghahramani et al. (2007). For
clarity, we have presented the CIBP results with α
and β fixed at all depths; however, this may be overly
restrictive. For example, in an image recognition prob-
lem we would not expect the sparsity of edges mapping
low-level features to pixels to be the same as that for
high-level features to low-level features. To address
this, we allow α and β to vary with depth, writing α(m)

and β(m). The CIBP terminates with probability one
as long as there exists some finite upper bound for α(m)

and β(m) for all m. To ensure this, we place top-hat
priors on α(m) and β(m), which is vague but bounded.

3.4 Priors on other parameters

For other parameters in the model, we use priors that
tie parameters together according to layer. We assume
that the weights in layer m are drawn independently

from Gaussian distributions with mean µ
(m)
w and pre-

cision ρ
(m)
w . We assume a similar layer-wise prior for

biases γ(m) with parameters µ
(m)
γ and ρ

(m)
γ . We use

layer-wise gamma priors on the ν
(m)
k , with parame-

ters a(m) and b(m). We tie these prior parameters to-
gether with global normal-gamma hyperpriors for the

weight and bias parameters, and gamma hyperpriors
for the unit-activation precision parameters ν(m).

4 Inference

We have so far described a prior on belief network
structures and parameters, along with likelihood func-
tions for unit activation. For inference, however, we
must find the posterior distribution over the structure
and the parameters of the network, having seen a set
of data given by N D-dimensional vectors. We will
assume that these data have been scaled to be in the
range (−1, 1). Our inference procedure assumes that
these data have been generated by a belief network
of some unknown width, depth, and structure. The
first layer always has a width equal to the dimension-
ality of the data, i.e., K(0)=D and treat the data as
activations of the visible units. This corresponds to
pre-specifying the values of the visible units to be the
data in N identically-structured networks. We denote

this set of N visible layer units as {u
(0)
n }Nn=1.

We then wish to find the posterior distribution over:
1) the depth of the network; 2) the widths of the hid-
den layers; 3) the edge structure between layers; 4) the
weights associated with the edges; 5) the biases of the
units; 6) the activations of the hidden units that led
to the data; 7) the values of the various hyperparam-
eters. The posterior distribution over these unknowns
is not analytically tractable, so we use Markov chain
Monte Carlo (MCMC) to draw samples from it. To use
MCMC, we instantiate these unknowns to particular
values and then define a transition operator on this
state that leaves the posterior distribution invariant.
Under easily-satisfied conditions, the distribution over
the current state of the Markov chain will evolve so as
to be closer and closer to the distribution of interest.

From a technical standpoint, the trick with the CIBP
(and other similar nonparametric Bayesian models) is
that it does not actually define a prior on the width
and depth of the network. Rather, it constructs a net-
work with an infinite number of layers that each have
an infinite number of units in such a way that only a
finite number of units actually contribute to the ob-
served data. In general, one would not expect that a
distribution on infinite networks would yield tractable
inference. However, in our construction, given the se-
quence Z(1),Z(2), · · ·, almost all of the infinite number
of units are conditionally independent, unconnected to
the data and therefore irrelevant to the posterior dis-
tribution. Due to this independence, the activations
of these unconnected units trivially marginalize out of
the model’s joint distribution and we can restrict in-
ference only to those units that are ancestors of the
visible units. Of course, since this trivial marginaliza-
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tion only arises from the Z(m) matrices, we must also
have a distribution on infinite binary matrices that
allows exact marginalization of all the uninstantiated
edges. The row-wise and column-wise exchangeability
properties of the IBP are what allows the use of infi-
nite matrices. The bottom-up conditional structure of
the CIBP allows an infinite number of these matrices.

To simplify notation, we will use Ω for the aggregated
state of the model variables. It is this aggregated state
on which the Markov chain is defined. Given the hy-
perparameters, we write the joint distribution as

p(Ω) =



p(γ(0)) p(ν(0))

K(0)
∏

k=1

N
∏

n=1

p(xk,n | y
(0)
k,n, ν

(0)
k )





×

(

∞
∏

m=1

p(W (m)) p(γ(m)) p(ν(m))

×

K(m)
∏

k=1

N
∏

n=1

p(u
(m)
k,n | y

(m)
k,n , ν

(m)
k )



 . (2)

Although this distribution involves several infinite sets,
the aforementioned marginalization makes it possible
to sample the relevant parts via MCMC. We use a
sequence of transition operators that update subsets of
the state, conditioned on the remainder, in such a way
as to leave Eqn 2 invariant. We specifically note that
conditioned on the binary matrices {Z(m)}∞m=1, which
define the structure of the network, inference becomes
exactly as it would be in a finite belief network.

4.1 Updating hidden unit activations

Since we cannot easily integrate out the activations
of the hidden units, we have included them as part
of the MCMC state. Conditioned on the network
structure, it is only necessary to sample the activa-
tions of the units that are ancestors of the visible
units. Frey (1997) used slice sampling for the hidden
unit states but we have had greater success with a
specialized independence-chain variant of multiple-try
Metropolis–Hastings (Liu et al., 2000). Our method
proposes several (≈ 5) possible new unit activations
from the prior imposed by its parents and selects
among them (or rejects them all) according to the like-
lihood imposed by its children. As this operation can
be executed in a vectorized manner with modern math
libraries we have seen significantly better mixing per-
formance by wall-clock time than with slice sampling.

4.2 Updating weights and biases

Given that a directed edge exists in the structure, we
sample the posterior distribution over its weight. Con-
ditioned on the rest of the model, the NLGBN provides

a convenient Gaussian form for the distribution over
weights so that we can Gibbs sample them from a con-
ditional posterior Gaussian with parameters

µw−post

m,k,k′ =
ρ
(m)
w µ

(m)
w +ν

(m−1)
k

∑

nu
(m)
n,k′(σ−1(u

(m−1)
k )−ξ

(m)
n,k,k′)

ρ
(m)
w + ν

(m−1)
k

∑

n(u
(m)
n,k′)2

ρw−post

m,k,k′ =ρ(m)
w + ν

(m−1)
k

∑

n

(u
(m)
n,k′)

2,

where

ξ
(m)
n,k,k′ = γ

(m−1)
k +

∑

k′′ 6=k′

Z
(m)
k,k′′W

(m)
k,k′′u

(m)
n,k′′ . (3)

The bias γ
(m)
k can also be similarly sampled from a

Gaussian conditional posterior distribution.

4.3 Updating activation variances

We use the NLGBN model to gain the ability to vary
the mode of unit behaviors between discrete and con-
tinuous representations. This corresponds to sampling

from the posterior distributions over the ν
(m)
k . With a

conjugate prior, the new value can be sampled from a
gamma distribution with the following parameters:

aν−post

m,k = a(m)
ν +N/2 (4)

bν−post

m,k = b(m)
ν +

1

2

N
∑

n=1

(σ−1(u
(m)
n,k )− y

(m)
k )2. (5)

4.4 Updating structure

To sample from the structure of the network—the se-
quence Z(1),Z(2), · · · in our construction—we must de-
fine an MCMC operator that adds and removes edges
while leaving the posterior in Eqn 2 invariant. The
procedure we use is similar to that proposed by Fox
et al. (2009). When adding a layer, we must sample
additional layer-wise model components. When intro-
ducing an edge, we must also sample its weight from
the posterior distribution. If a new edge introduces a
previously-unseen hidden unit, we must draw a bias
for it and also draw its deeper-cascading connections
from the posterior. Finally, we draw a top-down sam-
ple of the N new hidden unit activations from any unit
we introduce. Effectively, we make a joint proposal for
the edge and all relevant state that we previously did
not have to store. We generate these proposals from
the prior but define a Metropolis–Hastings rule that
accepts them according to the posterior distribution.

We iterate over each layer that connects to the visi-
ble units. Within each layer m ≥ 0, we iterate over
the connected units. Sampling the edges incident to
the kth unit in layer m has two phases. First, we iter-
ate over each connected unit in layer m+ 1, indexed
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(a) (b)

(c) (d)
Figure 4: Olivetti faces a) Test images on the left, with
reconstructed bottom halves on the right. b) Sixty features
learned in the bottom layer, where black shows absence of
an edge. Note the learning of sparse features correspond-
ing to specific facial structures such as mouth shapes, noses
and eyebrows. c) Raw predictive fantasies. d) Feature ac-
tivations from individual units in the second hidden layer.

by k′. We calculate η
(m)
−k,k′ , the number of nonzero en-

tries in the k′th column of Z(m+1), excluding any entry

in the kth row. If η
(m)
−k,k′ is zero, we call the unit k′ a

singleton parent, to be dealt with in the second phase.

If η
(m)
−k,k′ is nonzero, we introduce (or keep) the edge

from unit u
(m+1)
k′ to u

(m)
k with Bernoulli probability

p(Z
(m+1)
k,k′ =1 |Ω\Z

(m+1)
k,k′ )=

1

Z

(

η
(m)
−k,k′

K(m)+β(m)−1

)

N
∏

n=1

p(u
(m)
n,k |Z

(m+1)
k,k′ = 1,Ω\Z

(m)
k,k′)

p(Z
(m+1)
k,k′ =0 |Ω\Z

(m+1)
k,k′ )=

1

Z

(

1−
η
(m)
−k,k′

K(m)+β(m)−1

)

N
∏

n=1

p(u
(m)
n,k |Z

(m+1)
k,k′ = 0,Ω\Z

(m+1)
k,k′ ),

where Z is the appropriate normalization constant.

In the second phase, we consider deleting connections
to singleton parents of unit k, or adding new sin-
gleton parents. We use Metropolis–Hastings with a
birth/death process. If there are currently K◦ sin-
gleton parents, then with probability 1/2 we propose
adding a new one by drawing it recursively from deeper
layers, as above. We accept the proposal to insert a

connection to this new parent unit with M–H ratio1

α(m)β(m)

(K◦+1)2(β(m)+K(m)−1)

∏N
n=1

p(u
(m)
n,k

|Z
(m+1)
k,j

=1,Ω\Z
(m+1)
k,j

)

p(u
(m)
n,k

|Z
(m+1)
k,j

=0,Ω\Z
(m+1)
k,j

)
.

If we do not propose to insert a unit and K◦ ≥ 0, then
with probability 1/2 we select uniformly from among
the singleton parents of unit k and propose removing
the connection to it. We accept the proposal to remove
the jth one with M–H acceptance ratio given by

K2
◦
(β(m)+K(m)−1)

α(m)β(m)

∏N
n=1

p(u
(m)
n,k

|Z
(m+1)
k,j

=0,Ω\Z
(m+1)
k,j

)

p(u
(m)
n,k

|Z
(m+1)
k,j

=1,Ω\Z
(m+1)
k,j

)
.

After these phases, chains of units that are not ances-
tors of the visible units can be discarded. Notably,
this birth/death operator samples from the IBP poste-
rior with a nontruncated equilibrium distribution, even
without conjugacy. Unlike the stick-breaking approach
of Teh et al. (2007), it allows use of the two-parameter
IBP, which is important to this model.

5 Reconstructing Images

We applied our approach to three image data sets—the
Olivetti faces, the MNIST digits and the Frey faces—
and analyzed the structures that arose in the model
posteriors. To assess the model, we constructed a
missing-data problem using held-out images from each
set. We removed the bottom halves of the test images
and used the model to reconstruct the missing data,
conditioned on the top half. Prediction itself was done
by integrating out the parameters and structure via
MCMC and averaging over predictive samples.

Olivetti Faces The Olivetti faces data (Samaria
and Harter, 1994) are 400 64×64 grayscale images
of the faces of 40 distinct subjects, which we divided
randomly into 350 training and 50 test data. Fig 4a
shows six bottom-half test set reconstructions on the
right, compared to the ground truth on the left. Fig 4b
shows a subset of sixty weight patterns from a poste-
rior sample of the structure, with black indicating that
no edge is present from that hidden unit to the visible
unit (pixel). The algorithm is clearly assigning hid-
den units to specific and interpretable features, such
as mouth shapes, facial hair, and skin tone. Fig 4c
shows ten pure fantasies from the model, easily gener-
ated in a directed acyclic belief network. Fig 4d shows
the result of activating individual units in the second
hidden layer, while keeping the rest unactivated, and
propagating the activations down to the visible pix-
els. This provides an idea of the image space spanned
by the principal components of these deeper units. A
typical posterior network structure had three hidden
layers, with approximately seventy units in each layer.

1These equations had an error in the original version.
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(a) (b) (c)

(d)

Figure 5: MNIST Digits a) Eight pairs of test image re-
constructions, with the bottom half of each digit missing.
The truth is the left image in each pair. b) 120 features
learned in the bottom layer, where black indicates that no
edge exists. c) Activations in pixel space resulting from ac-
tivating individual units in the deepest layer. d) Samples

from the posterior of Z(0), Z(1) and Z
(2) (transposed).

MNIST Digits We used a subset of the MNIST
handwritten digit data (LeCun et al., 1998) for train-
ing: 50 28× 28 examples of each of the ten digits, with
ten more examples of each digit held out for testing.
The inferred lower-level features are extremely sparse,
as shown in Fig 5b, and the deeper units are sim-
ply activating sets of blobs at the pixel level. This is
shown also by activating individual units at the deep-
est layer, as shown in Fig 5c. Test reconstructions are
in Fig 5a. A typical network had three hidden layers,
with roughly 120, 100, and 70 units in each one. Fig 5d
shows typical binary matrices Z(0), Z(1), and Z(2).

Frey Faces The Frey faces data2 are 1965 20× 28
grayscale video frames of a single face with different ex-
pressions. We randomly selected 1865 training images
and 100 test images. While typical posterior samples
of the network again typically used three hidden layers,
the networks for these data tended to be much wider
and more densely connected. In the bottom layer, as
shown in Fig 6b, a typical hidden unit connects to
many pixels. We attribute this to global correlation
effects since all images come from a single person. Typ-
ical layer widths were around 260, 120, and 35 units.

In the experiments, our MCMC sampler appeared to
mix well and begins to find reasonable reconstructions
after a few hours of CPU time. Note that the learned
sparse connection patterns in Z(0) varied from local
(MNIST), through intermediate (Olivetti) to global
(Frey), despite identical IBP hyperpriors. This sug-
gests that flexible priors on structures are needed to

2http://www.cs.toronto.edu/~roweis/data.html

(a) (b)

Figure 6: Frey faces a) Eight pairs of test reconstructions,
with the bottom half of each face missing. The truth is
the left image in each pair. b) 260 features learned in the
bottom layer, where black indicates that no edge exists.

adequately capture the statistics of different data sets.

6 Discussion

This paper unites two areas of research—
nonparametric Bayesian methods and deep belief
networks—to provide a novel nonparametric perspec-
tive on the general problem of learning the structure
of directed deep belief networks with hidden units.

We addressed three issues surrounding deep belief net-
works. First, we inferred appropriate local representa-
tions with units varying from discrete binary to nonlin-
ear continuous behavior. Second, we provided a way
for a deep belief network to contain an arbitrary num-
ber of hidden units arranged in an arbitrary number
of layers. Third, we presented a method for inferring
the graph structure of a directed deep belief network.
To achieve this, we introduced a cascading extension
to the Indian buffet process and proved convergence
properties that make it useful as a Bayesian prior dis-
tribution for a sequence of infinite binary matrices.

This work can be viewed as an infinite multilayer gener-
alization of the density network (MacKay, 1995), and
also as part of a more general literature of learning
structure in probabilistic networks. With a few excep-
tions (e.g., Ramachandran and Mooney (1998); Fried-
man (1998); Elidan et al. (2000); Beal and Ghahra-
mani (2006)), most previous work on learning the
structure of belief networks has focused on the case
where all units are observed (Buntine, 1991; Hecker-
man et al., 1995; Friedman and Koller, 2003; Koivisto
and Sood, 2004). Our framework not only allows for
an unbounded number of hidden units, but couples
the model for the number of units with a nonpara-
metric model for the structure of the network. Rather



Learning the Structure of Deep Sparse Graphical Models

than comparing structures by evaluating marginal like-
lihoods, we do inference in a single model with an un-
bounded number of units and layers, thereby learning
effective model complexity. This approach is more ap-
pealing both computationally and philosophically.

There are a variety of future research directions arising
from the model we have presented here. As we have
presented it, we do not expect that our unsupervised,
MCMC-based inference scheme will be competitive on
supervised tasks with extensively-tuned discriminative
models based on variants of maximum-likelihood learn-
ing. However, we believe that our model can inform
choices for the network depth, layer size, and edge
structure in such networks, and will inspire further re-
search into flexible, nonparametric network models.
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