Vitruvion: A Generative Model of Parametric CAD Sketches

Ari SeffBlog

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P. AdamsInternational Conference on Learning Representations (ICLR) 2022PaperVideoCode & model weights Vitruvion is a transformer-based model trained to generate parametric computer-aided design (CAD) sketches. It shows promise to augment mechanical design via tasks such as converting hand drawings to CAD models, autocompleting sketches, and inferring intended constraints. Overview Parametric CAD tools are the predominant way engineers specify physical structures, from bicycle pedals to airplanes to printed circuit boards. They empower users to explore parameterized variations on their designs, while also providing a structured representation for simulation and manufacturing. At an operational level, parametric CAD starts with the specification of two-dimensional geometric representations, referred to as “sketches”. A sketch consists of a collection … Read More

Using 3D Printing to Develop Rapid-Response PPE Manufacturing

Geoffrey RoederBlog

SARS-CoV-2 cases are beginning to rise again as we head into October. In part due to Labor Day celebrations and the return of many students to in-person classes, the latest National CDC forecasts predict up to 7,400 new COVID-19 deaths per week in our near future. Back during the first spike, one of the major challenges that emerged was a shortage of personal protective equipment and resulting threat to our medical practitioners. Many academic communities paused research pursuits to address this challenge, with my group among them. This post covers our successes, setbacks, and a vision for addressing inevitable future shortages through effective, distributed rapid-response manufacturing. In early April 2020, after daily COVID-19 infections in New York had increased from … Read More

The ELBO without Jensen, Kullback, or Leibler

Ryan AdamsBlog, ProbabilityLeave a Comment

The log marginal likelihood is a central object for Bayesian inference with latent variable models:     where are observations, are latent variables, and are parameters. Variational inference tackles this problem by approximating the posterior over with a simpler density . Often this density has a factored structure, for example. The approximating density is fit by maximizing a lower bound on the log marginal likelihood, or “evidence” (hence ELBO = evidence lower bound):     The hope is that this will be a tight enough bound that we can use this as a proxy for the marginal likelihood when reasoning about . The ELBO is typically derived in one of two ways: via Jensen’s inequality or by writing down the … Read More

Discrete Object Generation with Reversible Inductive Construction

Ryan AdamsBlog, Machine Learning, Recent work

The success of generative modeling in continuous domains has led to a surge of interest in generating discrete data such as molecules, source code, and graphs. However, construction histories for these discrete objects are typically not unique and so generative models must reason about intractably large spaces in order to learn. Additionally, structured discrete domains are often characterized by strict constraints on what constitutes a valid object and generative models must respect these requirements in order to produce useful novel samples. Here, we present a generative model for discrete objects employing a Markov chain where transitions are restricted to a set of local operations that preserve validity.

Efficient Optimization of Loops and Limits with Randomized Telescoping Sums

Ryan AdamsBlog, Machine Learning, Recent work

We consider optimization problems in which the objective requires an inner loop with many steps or is the limit of a sequence of increasingly costly approximations. Meta-learning, training recurrent neural networks, and optimization of the solutions to differential equations are all examples of optimization problems with this character. In such problems, it can be expensive to compute the objective function value and its gradient, but truncating the loop or using less accurate approximations can induce biases that damage the overall solution. We propose randomized telescope (RT) gradient estimators, which represent the objective as the sum of a telescoping series and sample linear combinations of terms to provide cheap unbiased gradient estimates.

Lab Progress: 3D Printer Enclosures

Ryan AdamsBlog

The university safety folks said we needed to have serious ventilation and fire suppression, even for consumer-grade FDM 3D-printers. The enclosures do look cool, though.

A Bayesian Nonparametric View on Count-Min Sketch

Ryan AdamsBlog, Recent work

The count-min sketch is a time- and memory-efficient randomized data structure that provides a point estimate of the number of times an item has appeared in a data stream. The count-min sketch and related hash-based data structures are ubiquitous in systems that must track frequencies of data such as URLs, IP addresses, and language n-grams. We present a Bayesian view on the count-min sketch, using the same data structure, but providing a posterior distribution over the frequencies that characterizes the uncertainty arising from the hash-based approximation.